Optimization for Data Sciences @École Polytechnique
Schedule
Sept 10: Introduction (S. Vaiter)
- Rémi Flamary's slides
- Notes on convexity
- Homework: review on your undergrad notes the notion of gradient, Hessian, eigenvalues/eigenvectors and singular value decomposition
Sept 17: Gradient descent (S. Vaiter)
- Rémi Flamary's slides
- Notes on GD
- Practical .ipynb (NOT RATED!)
- Homework 1: Finish the practical
- Homework 2: Do the exercice sheet
Sept 24: Quadratic problems and linesearch methods (A. Gramfort)
Oct 1: Proximal methods (S. Vaiter)
Oct 8: Proximal methods (S. Vaiter + A. Van Elst)
- Practical .ipynb (to submit on Moodle, email ignored!)
Oct 15: Stochastic Gradient methods (S. Vaiter)
Nov 05: Stochastic Gradient methods (S. Vaiter + A. Van Elst)
- Practical .ipynb (to submit on Moodle, email ignored!)