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1: Summary

We study the universality of Graph Neural Net-
works (GNNs) on random graphs (RGs). It is
known that GNNs converge to continuous models
when the number of nodes grow to infinity. We study
their universality on several classical RG models.

Classical “isomorphism-based” analyses of GNN [2]
are not entirely satisfying on large graphs. What
can GNNs compute on (statistical models of)
large graphs? Are recent architectures more
powerful than vanilla ones?

I so-called Structured GNNs (SGNNs) [1] also
converge to continuous models on random graphs;

I c-SGNNs are strictly more powerful than c-GNNs;
I c-SGNNs are universal on some RG models.

3: c-GNN vs c-SGNN

Approximation power? We look at:
I Perm.-invariant: {(W ,P) 7→ ΨW ,P} w.r.t. (a

subset of) the functions RW×P;
I Perm.-equivariant: (W ,P) are fixed,

{x 7→ ΨW ,P(x)} w.r.t. (a subset of) the
functions RX (when Ψ parameters vary)

Theorem c-SGNNs are more powerful than c-
GNNs, for perm.-invariant or perm.-equivariant, de-
terministic or random edges.

SBM with constant expected degree:
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2: Random Graphs, GNNs, SGNNs
Latent Position Random Graphs

I Compact latent space X ⊂ Rd , connectivity kernel W : X× X→ [0, 1], distrib. P ∈ P(X)

x1, . . . , xn
iid
∼ P , aij =

{
W (xi , xj) deterministic edges case

α−1
n Ber(αnW (xi , xj)) random edges case (NB: normalized)

I Two cases, some results simpler (and/or only valid) in the deterministic case
I Dense αn = O(1), Sparse αn = O(1/n), Relatively sparse αn = O(log n/n)
I Includes ER, SBM, ε-graphs, geometric graphs...

(Spectral) GNNs Continuous-GNNs (c-GNNs)
I Propagate node signal Z (`) ∈ Rn×d`

I Poly. filters h(A) =
∑

k βkAk
I Propagate function f (`) : X→ Rd`

I Poly. filters with TW ,Pf =
∫

W (·, x)f (x)dP(x)

Z (`+1)
:,j = ρ

(∑
i h(`)ij (A/n)Z (`)

:,i + b(`)
j

)
f (`+1)
j = ρ

(∑
i h(`)ij (TW )f (`)i + b(`)

j

)
Output:

ΦA(Z (0)) =

{
Z (M) perm.-equi.
gMLP(

1
n
∑

i Z (M)
i ,: ) perm.-inv.

Output:

ΦW ,P(f (0)) =
{

f (M) perm.-equi.
gMLP(

∫
f (M)dP) perm.-inv.

No input signal?
I Classic strategy: constant input ΦA = ΦA(1n), ΦW ,P = ΦW ,P(1)
I Just as Weisfeiler-Lehman [2], limited power on constant degree function (for instance)

Structured GNN (SGNN) [1] Continuous-SGNN
I Node ids Eq ∈ Rn with arbitrary

ordering, like eq or Akeq
I Perm.-Equi. ΦA, perm.-inv./equi. Φ ′A

I Bivariate function η : X× X→ R
I E.g., δ(x − y) or T k

Wδ(x − y)

ΨA = Φ ′A(
1
n
∑

qΦA(Eq)) ΨW ,P = Φ ′W ,P(
∫
ΦW ,P(η(·, x))dP(x))

I Still perm.-inv./equi. as Φ ′A
I Proved to be more powerful than WL [1]

I We need Eq ≈ [η(xi , xq)]i → k > 1 for
deterministic edges, k > 2 for random edges

Theorem GNNs converge to c-GNNs [4], and SGNNs converge to c-SGNNs.

4: Universality of c-SGNN

Stochastic Block Models

X = {1, . . . ,K }

I Assume: no Pk is a sum/difference of the others.
Proposition
I Inv.: fix P , c-SGNNs {W → ΨW ,P} are universal.
I Equi.: fix W ,P . If additionally [Wkl ] is invertible,

c-SGNNs can distinguish communities.

”Additive” kernels

W (x , y) = u(v(x) + v(y))
I When u, v can be anything, universal approximators of kernels
I Assume: u, v : R→ R are injective
Proposition
I Inv.: Fix W : c-SGNNs {P → ΨW ,P} are universal.
I Equi.: Fix W ,P : c-SGNNs are universal.

Radial kernels

W (x , y) = w(‖x − y‖)
I Assume: X = [−1, 1] and injective w
Proposition
I Inv.: Fix W . c-SGNNs are universal when P vary.
I Equi.: Fix W and centered P . When P is symmetric,

c-SGNNs are universal in symmetric functions;
when P is non-symmetric, c-SGNNs are universal.

Latent position on x -axis, output on y -axis. From left to right: sym. target
and P ; non-sym. target but sym. P , non-sym. target and P .

Spherical kernels

W (x , y) = w(x>y), X = Sd−1

I Assume: w injective, P has density f with “some injectivity
condition” (w.r.t. spherical harmonics)

Proposition
I Equi.: Fix W ,P . c-SGNNs are universal.
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