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1: Summary

We study the convergence of Graph Convolu-
tional Networks (GCNs) to their continuous
counterpart as the number of nodes grows for a ran-
dom graph model, and derive stability properties
for realistic perturbations of the model.

Classical “isomorphism-based” analyses of GCN [2]
or discrete stability bounds [4] are not entirely sat-
isfying on large graphs. How do GCNs interact
with (statistical models of) large graphs?

I We characterize GCNs on latent position
random graphs as the number of nodes grows;

I Results are non-asymptotic and valid for relatively
sparse graphs (logarithmic degrees);

I Analyze the stability of GCNs to small
deformations of the random graph model.

3: Convergence to continuous GCNs

Theorem Let (A, Z ) ∼ Γ with n nodes be drawn
from Γ . When αn & log n/n, with probability 1− n−r

for some r > 0, we have√
1
n
∑

i(ΦA(Z )i −ΦW ,P(f )(xi))2

‖Φ̄A(Z ) − Φ̄W ,P(f )‖2

}
6 Rn

where Rn = O(dn−1
2 + (nαn)

−1
2).

Numerical illustration
Equivariant GCN output for constant input f = 1 with growing
number of nodes and convergence with different sparsity levels αn
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2: Latent Positions Random Graphs and Continuous GCN

Graphs Random Graphs

G = (A, Z )

I Adjacency matrix A ∈ {0, 1}n×n

I Signal over nodes Z ∈ Rn×d0

Γ = (W , P , f )
I Connectivity kernel W : X× X→ [0, 1]
I Distribution P over X ⊂ Rd

I Function f : X→ Rd0

I Degrees D = diag(A1n)

I Norm. Laplacian L = D−1
2AD−1

2

I Degree function d =
∫

W (·, x)dP(x)
I Norm. Laplacian Lf =

∫ W (·,x)√
d(·)d(x)

f (x)dP(x)

Generative model
xi

iid
∼ P , zi = f (xi), aij ∼ Ber(αnW (xi , xj))

I Dense αn = O(1), Sparse αn = O(1/n), Relatively sparse αn = O(log n/n)
I Includes ER, SBM, ε-graphs, Gaussian kernel...

Isomorphism
(A, Z ) ∼ (σAσ>,σZ )

I Permutation matrix σ ∈ {0, 1}n×n

Continuous isomorphism
(P , W , f ) ∼ (ϕ−1

] P , W ◦ϕ⊗2, f ◦ϕ)
I Bijection ϕ : X→ X

(Spectral) GCNs Continuous-GCNs (c-GCNs)
I Propagate signal over nodes
I Poly. filters h(L) =

∑
k βkLk

I Propagate function over latent space
I Poly. filters with Lk = L ◦ . . . ◦ L

z (`+1)
j = ρ

(∑
i h(`)ij (L)z (`)i + b(`)

j 1n

)
f (`+1)
j = ρ

(∑
i h(`)ij (L)f (`)i + b(`)

j

)
Equivariant output

ΦA(Z ) = Z (M)θ+ 1nb>

I ΦσAσ>(σZ ) = σΦA(Z )

Equivariant output
ΦW ,P(f ) = f (M)θ+ b

I ΦW ◦ϕ⊗2,ϕ−1
] P(f ◦ϕ) = ΦW ,P(f ) ◦ϕ

Invariant output
Φ̄A(Z ) = 1>nΦA(Z )

I Φ̄σAσ>(σZ ) = Φ̄A(Z )

Invariant output
Φ̄W ,P(f ) =

∫
ΦW ,P(f )dP

I Φ̄W ◦ϕ⊗2,ϕ−1
] P(f ◦ϕ) = Φ̄W ,P(f )

4: Stability of GCNs to model deformations

For i = 1, 2, assume (Ai , Zi) drawn from models (Wi , Pi , fi).
Finite-sample stability in the equivariant
case
Theorem Denote Qi = ΦWi ,Pi(fi)]Pi . With prob. 1 − n−r :

minσ∈Σn

√
1
n
∑

i((ΦA1)i − (ΦA2)σ(i))
2

6W2(Q1, Q2) + Rn + O(n−1/d),

where W2 is the Wasserstein-2 distance and d = dim(X).

Deformation of a translation-invariant
model
I Translation-invariant kernel W (x , y) = w(x − y)
I Smooth diffeomorphism [3] τ : X→ X (“size” ‖∇τ‖∞)

Theorem (Deformations of W , P , or f .)
I W (x , x ′)→ Wτ(x , x ′) def.

= W (x − τ(x), x ′ − τ(x ′))
‖Φ̄Wτ

− Φ̄W‖ . ‖∇τ‖∞
I P → Pτ = (Id − τ)]P , and f ′ = f ◦ (Id − τ), or

degree functions as inputs (f , f ′) = (dP, dPτ)

‖Φ̄P(f ) − Φ̄Pτ(f ′)‖ . ‖∇τ‖∞
I f → fτ = f ◦ (Id − τ)

‖Φ̄(fτ) − Φ̄(f )‖ . ‖∇τ‖∞.

Similar bounds hold for the equivariant case on W2(Q1, Q2)
with Qi = ΦWi ,Pi(fi)]Pi .

Numerical illustration (Random graph with 3D latent positions)
From left to right: output signal; new drawing of the random edges;
deterministically deformed latent positions; invariant GCN with respect to the
amplitude of the deformation.
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