Convergence and Stability of Graph Convolutional Networks on Large Random Graphs
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1: Summary

2: Latent Positions Random Graphs and Continuous GCN

4: Stability of GCNs to model deformations

We study the convergence of Graph Convolu-
tional Networks (GCNs) to their continuous
counterpart as the number of nodes grows for a ran-
dom graph model, and derive stability properties
for realistic perturbations of the model.

Classical “isomorphism-based” analyses of GCN |[2]
or discrete stability bounds [4] are not entirely sat-
isfying on large graphs. How do GCNs interact
with (statistical models of) large graphs?

» We characterize GCNs on latent position
random graphs as the number of nodes grows;

» Results are non-asymptotic and valid for relatively
sparse graphs (logarithmic degrees);

» Analyze the stability of GCNs to small
deformations of the random graph model.

3: Convergence to continuous GCNs

Theorem Let (A, Z) ~ ' with n nodes be drawn
from I'. When «, = log n/n, with probability 1 —n™"
for some r > 0, we have

\/%Z,-(CDA(Z)/—CDW,P('C)(X"))2 <
|DA(Z) — Dw p(f)|
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where R, = O(dn= + (no,)2).

R

Numerical illustration
Equivariant GCN output for constant input f = 1 with growing
number of nodes and convergence with different sparsity levels «,
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Graphs

Random Graphs

G=(A Z)

» Adjacency matrix A € {0, 1}™*"
» Signal over nodes Z € R"*%

» Degrees D = diag(Al,)

= (W, P, f)

» Connectivity kernel W : XX x X — [0, 1]
» Distribution P over X C IR?
» Function f : X — R

W (- x)

> Norm. Laplacian L = D2AD™ > Norm. Laplacian Lf = | Ti04 X)f(x)dP(x)
Generative model
el
xi~ P, z= f(Xi), djj ~ Ber(con(Xi,Xj))
» Dense &, = O(1), Sparse o, = O(1/n), Relatively sparse &, = O(log n/n)

» Includes ER, SBM, e-graphs, Gaussian kernel...

Isomorphism
(A, Z) ~ (cAc',0Z)

» Permutation matrix o € {0, 1}7*"

Continuous isomorphism
(P.W,f) ~ (@, P, Wo @%* foq)
» Bijection @ : X — X

(Spectral) GCNs

Continuous-GCNs (c-GCNs)

» Propagate signal over nodes
> Poly. filters h(L) = >, BxL*

Equivariant output
Du(Z2) = ZMep
> O por(0Z) = 0D y(Z)

Invariant output
Dp(Z) =1, Dp(2)
> (T)GAGT(GZ) — (T)A(Z)

» Propagate function over latent space
> Poly. filters with LX =L o...0 L

({+1) (0) (0)
75' P (Zihij (L) +

Equivariant output
Oy p(f) = FMO + b

Invariant output

Oy p(f)= | Owp(f)dP

> q)Wo(p@z,(pﬁ—lp(f o @) =Dy p(f)

For i = 1,2, assume (A;, Z;) drawn from models (W, P;, f;).

Finite-sample stability in the equivariant
case

Theorem Denote Q; = Oy, p.(f)yP;. With prob. 1 —n™":

minger, /2 X ((@a,); — (©4,)o(5)
< Wa(Q1, @) + R, + O(n9),
where W, is the Wasserstein-2 distance and d = dim(X).

Deformation of a translation-invariant
model

Wix,y) =w(x—y)
T:X — X (“size” [|VT||s0)

» Translation-invariant kerne
» Smooth diffeomorphism [3

Theorem (Deformations of W, P, or f.)
> W(x, x") = Wiix,x") = W(x —1(x), x —t(x")
|Pw, — Pwl| < [[VTl[eo

> P— P =(ld —7):P,and f'=f o (ld — 1), or
degree functions as inputs (f, f') = (dp, dp.)

|Dp(f) — Op ()] S| VT
> f > f.=fo(ld—T)
D(f) —O(F)] S |VT]o.

Similar bounds hold for the equivariant case on W5( @1, Q»)
with Q; = @ w. p.():P;.
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Numerical illustration (Random graph with 3D latent positions)
From left to right: output signal; new drawing of the random edges;
deterministically deformed latent positions; invariant GCN with respect to the
amplitude of the deformation.

[1] Bruna et al. Spectral Networks and Locally Connected Networks on Graphs.
ICLR, 2014.

2] Xu et al. How Powerful are Graph Neural Networks?. /CLR, 2020.
3] Mallat. Group Invariant Scattering. Comm. Pure Appl. Math., 2012.

4] Gama et al. Stability Properties of Graph Neural Networks. /EEE Trans. Sig.
Proc., 2020.

nicolas.keriven@gipsa-lab.grenoble-inp.fr, alberto@bietti.me, samuel.vaiter@u-bourgogne.fr

This work was supported by ANR GraVa ANR-18-CE40-0005 and ANER RAGA G048CVCRB2018ZZ.




