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Abstract. We show that the derivatives of the Sinkhorn--Knopp algorithm, or iterative propor-
tional fitting procedure, converge towards the derivatives of the entropic regularization of the optimal
transport problem with a locally uniform linear convergence rate.
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1. Introduction. The optimal transport (OT) problem plays an increasingly
important role in optimization and machine learning [26]. In particular, entropic
regularization of OT has gained much attention due to the existence of a simple and
efficient algorithm introduced in [31], which is also known as matrix scaling or the
iterative proportional fitting procedure in the stochastic literature; see [28]. It has
been known that Sinkhorn--Knopp iterates converge linearly, with an explicit rate
computable from the cost matrix, to the solution of entropic OT, since the work of
[16] which introduced the use of the Hilbert metric.

1.1. Differentiation of the Sinkhorn--Knopp algorithm. Among the differ-
ent properties of the Sinkhorn--Knopp algorithm, a striking one is its differentiability
with respect to the inputs. Differentiating the iterates of the Sinkhorn--Knopp algo-
rithm is a common routine in machine learning. It was first used by Adams and Zemel
[1] for ranking with linear objective function. They proposed using backpropagation
through Sinkhorn--Knopp iterates with respect to the cost matrix, without discussion
of the convergence of the Jacobian. This routine was later used for different applica-
tions, such as computing of Wasserstein barycenters cast as an optimization problem
[6], where backpropagation is performed with respect to the weight vector; training
generative models involving an OT loss as in [20, 17]; defining differentiable sorting
procedures [13]; and solving cluster assignments problems [8]. Popular libraries, such
as POT [15] and OTT [11], for computational optimal transport implement backpropa-
gation of Sinkhorn--Knopp. To mitigate the memory footprint required by backprop-
agation, an alternative is to use implicit differentiation, as first discussed by [24] for
computing the derivatives of Sinkhorn divergences. This approach was later used in
[12, 14]. To the best of our knowledge, even though some of these works justify the
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1495

correctness of using automatic differentiation for a given iterate, they do not consider
the issue of the convergence of the derivatives computed by automatic differentiation.

1.2. Convergence of algorithmic differentiation. The issue of the conver-
gence of the derivatives of an algorithm was considered by the automatic differenti-
ation community. The linear convergence of derivatives was studied in [18, 19] for
piggyback recursion and in [9, Theorem 2.3] for backpropagation. More recently, con-
vergence of the derivatives of gradient descent [25, 23], the Heavy-ball [25] method,
and nonsmooth fixed point methods [5] were analyzed. All these analyses require
explicitly, or implicitly, that the (generalized) Jacobians are strict contractions, i.e.,
Lipschitz continuous with a constant strictly less than 1. Unfortunately, the deriva-
tives of Sinkhorn--Knopp do not enjoy this property.

1.3. Contribution. We prove (Theorem 3.3) that the derivatives of the iterates
of the Sinkhorn--Knopp algorithm converge towards the derivative of the entropic
regularization of optimal transport, with an explicit expression of the derivative and
with a locally uniform linear convergence rate, provided that all functions entering
the problem definition are twice continuously differentiable.

1.4. Organization. Our paper is organized as follows. Section 2 introduces the
parameterized entropic regularized optimal transport problem with the Sinkhorn--
Knopp algorithm and recalls linear convergence properties. In section 3, we present
our main result stating the convergence of the derivatives of Sinkhorn--Knopp towards
the derivatives of the regularized optimal transport with a locally uniform linear
convergence rate. Section 4 provides the proof of our result. Section 5 contains
important intermediate results towards a linear rate for the convergence. Section 6
establishes miscellaneous lemmas that are used in the main proof.

1.5. Notation. The sets of positive reals, nonnegative reals, and nonzero reals
are denoted by \BbbR >0, \BbbR \geq 0, and \BbbR \not =0, respectively. The simplex \Delta n - 1 is the set of
vectors of \BbbR n

\geq 0 summing to 1:

\Delta n - 1 =

\Biggl\{ 
x\in \BbbR n :

n\sum 
i=1

xi = 1 and xi \geq 0\forall i\in \{ 1, . . . , n\} 

\Biggr\} 
.

The identity matrix (of arbitrary size) is denoted by I. For two vectors x \in \BbbR n, y \in 
\BbbR n

\not =0, the entrywise (Hadamard) division x
y is defined as

\Bigl( 
x
y

\Bigr) 
i
= xi/yi, and the product

x \odot y is defined as (x \odot y)i = xiyi, for all i \in \{ 1, . . . , n\} . The 1-vector 1n \in \BbbR n

is the vector only composed of 1's. When the context is clear, and to lighten the
notation, 1

x for x \in \BbbR \not =0 should be understood as 1n
x . Given a function f : \BbbR \rightarrow \BbbR ,

we extend its domain as f : \BbbR p \rightarrow \BbbR p by applying it entrywise, that is, for x \in \BbbR n,
f(x)i = f(xi), for all i \in \{ 1, . . . , n\} . Given l \in \BbbN >0 and a continuously differentiable
function F :\BbbR p \rightarrow \BbbR n1\times \cdot \cdot \cdot \times nl , we denote by dF

d\theta (\theta ) \in \BbbR n1\times \cdot \cdot \cdot \times nl\times p its Jacobian matrix
(or tensor) at \theta \in \BbbR p, i.e.,\biggl( 

dF

d\theta 
(\theta )

\biggr) 
i1,\cdot \cdot \cdot ,il,j

= lim
h\rightarrow 0

Fi1,\cdot \cdot \cdot ,il(\theta + hej) - Fi1,\cdot \cdot \cdot ,il(\theta )

h
,

where (ej)j=1,...,n is the canonical basis of \BbbR n. Given a differentiable function F :
\BbbR n\times \BbbR p \rightarrow \BbbR m, we denote by JF (x, \theta ) the total derivative at (x, \theta )\in \BbbR n\times \BbbR p, that is,

JF (x, \theta ) =
\Bigl( 

\partial F (\cdot ,\theta )
\partial x (x) \partial F (x,\cdot )

\partial \theta (\theta )
\Bigr) 
,

where \partial F (\cdot ,\theta )
\partial x (x) and \partial F (x,\cdot )

\partial \theta (\theta ) are the partial derivatives of F .
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1496 EDOUARD PAUWELS AND SAMUEL VAITER

2. Entropic optimal transport and Sinkhorn--Knopp algorithm.

2.1. Entropic regularization. We consider a parametric formulation of the
entropic OT.1 The entropic regularization of optimal transport associated to the pa-
rameterized marginals a : \BbbR p \rightarrow \Delta n - 1 \cap \BbbR n

>0 and b : \BbbR p \rightarrow \Delta n - 1 \cap \BbbR m
>0 of level

\epsilon :\BbbR p \rightarrow \BbbR >0 for the parameterized cost matrix C :\BbbR p \rightarrow \BbbR n\times m reads, for \theta \in \BbbR p,

\^P (\theta ) = arg min
P\in U(\theta )

\scrL (P,\theta ) \mathrm{d}\mathrm{e}\mathrm{f}.
= \langle P,C(\theta )\rangle  - \epsilon (\theta )Ent(P ),(OT\theta )

where \langle P,P \prime \rangle =
\sum 

i,j Pi,jP
\prime 
i,j , U(\theta ) is the set of admissible couplings (also called

transportation polytope)

U(\theta )
\mathrm{d}\mathrm{e}\mathrm{f}.
= \{ P \in \BbbR n\times m

\geq 0 : P1m = a(\theta ) and P\top 1n = b(\theta )\} ,

and Ent is the entropic regularization2 of the coupling matrix P defined as

Ent(P )
\mathrm{d}\mathrm{e}\mathrm{f}.
=  - 

n\sum 
i=1

m\sum 
j=1

Pi,j (log(Pi,j) - 1) ,

where Pi,j log(Pi,j) = 0 if Pi,j = 0, by continuous extension. Note that \scrL \theta = \scrL (\cdot , \theta )
defined in (OT\theta ) is \epsilon (\theta )-strongly convex, and hence (OT\theta ) has a unique minimizer3

\^P (\theta ) \in \BbbR n\times m
>0 . We will assume that all functions entering the problem definition are

twice continuously differentiable.

2.2. Sinkhorn--Knopp algorithm. The Sinkhorn--Knopp algorithm is built
upon the fact [30, Theorem 1] that the unique solution \^P (\theta ) of (OT\theta ) has, for all
i\in \{ 1, . . . , n\} and j \in \{ 1, . . . ,m\} , the form

\^P (\theta )i,j = ui(\theta )Ki,j(\theta )vj(\theta ) where Ki,j(\theta ) = exp

\biggl( 
 - Ci,j(\theta )

\epsilon (\theta )

\biggr) 
> 0(2.1)

for positive numbers ui(\theta ), vj(\theta ), i = 1, . . . , n, and j = 1, . . . ,m. The goal is thus to
find positive vectors u(\theta )\in \BbbR n

>0 and v(\theta )\in \BbbR m
>0, such that

diag(u(\theta ))K(\theta )diag(v(\theta ))1m = a(\theta ) and diag(v(\theta ))K(\theta )Tdiag(u(\theta ))1n = b(\theta ).

(2.2)

In its most elementary formulation, the Sinkhorn---Knopp algorithm, also called the
matrix scaling problem algorithm, has the alternating updates

uk+1(\theta ) =
a(\theta )

K(\theta )vk(\theta )
and vk+1(\theta ) =

b(\theta )

K(\theta )Tuk+1(\theta )
,(2.3)

starting from a couple (u0(\theta ), v0(\theta ))\in \BbbR n
>0\times \BbbR m

>0; see [32] for a discussion on initializa-
tion strategies. Even though in practice it is not necessary to evaluate \^P at each iter-
ation, one can use (2.1) to form a current guess at iteration k as diag(uk(\theta ))K(\theta )diag
(vk(\theta )).

1We recover the standard formulation, letting a, b,C, \epsilon be constant functions.
2Note that one could replace Ent by the Kullback--Leibler mutual entropy KL(P | a(\theta ) \otimes b(\theta ))

without changing the minimizer.
3The (strict) positivity follows from assumptions a(\theta ) > 0 and b(\theta ) > 0. Indeed, P = a(\theta )b(\theta )T

is feasible for (OT\theta ), with strictly positive entries, and therefore Slater's qualification condition
holds for (OT\theta ), and the required form follows from necessary and sufficient KKT conditions for the
(attained) optimum; see, for example, [10, Lemma 2].
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1497

2.3. Reduced formulation of Sinkhorn--Knopp. We will analyze an equiv-
alent version of (2.3) by considering a single iterate u and performing the change of
variable x= log(u). Given an initialization x0(\theta ) \in \BbbR n, this results in rewriting (2.3)
as the recursion in the ``log-domain,""

xk+1(\theta ) = F (xk(\theta ), \theta ),(SK\theta )

where

F (x, \theta )
\mathrm{d}\mathrm{e}\mathrm{f}.
= log(a(\theta )) - log

\biggl( 
K(\theta )

\biggl( 
b(\theta )

K(\theta )T ex

\biggr) \biggr) 
.

Note that this formulation is close to the dual formulation of (OT\theta ) as explained in
[26, Remark 4.22], but we will not need duality results in this paper.

We will work under the following standing assumption.

Assumption 2.1 (data are continuously differentiable). Let \Omega \subseteq \BbbR p be a connected
open set. The data in problem (OT\theta ), i.e., C : \Omega \rightarrow \BbbR n\times m, a : \Omega \rightarrow \Delta n - 1 \cap \BbbR n

>0,
b : \Omega \rightarrow \Delta m - 1 \cap \BbbR n

>0, \epsilon : \Omega \rightarrow \BbbR >0, and initialization x0 : \Omega \rightarrow \BbbR n, are all twice
continuously differentiable functions on \Omega .

It is possible to get back to the scaling factors uk(\theta ) and vk(\theta ) from the reduced
variable xk(\theta ) as

uk(\theta ) = exk(\theta ) and vk(\theta ) =
b(\theta )

K(\theta )T exk(\theta )
.

Using the relationship (2.1), the optimal coupling matrix can be approximated as

P (x, \theta ) = diag(ex)K(\theta )diag

\biggl( 
b(\theta )

K(\theta )T ex

\biggr) 
,(2.4)

and we construct the transport plan estimates associated to each iterate, for all k \in \BbbN ,

Pk(\theta ) = P (xk(\theta ), \theta ).(2.5)

It is known that Pk(\theta ) converges linearly [16] to the optimal transport plan \^P (\theta )
for (OT\theta ). The next section is dedicated to studying the linear convergence of the
reduced variable xk(\theta ).

2.4. Linear convergence of the centered reduced iterates. It is known
that uk(\theta ) converges to a limit \=u(\theta ), with a linear rate in the Hilbert metric [16]
(see also [26, Theorem 4.2]), whereas we are concerned with the convergence of the
reduced iterates in the ``log-domain."" In order to study the convergence of (xk)k\in \BbbN ,
let us introduce the linear map Lcenter which associates to x its centered version:

Lcenter :

\left\{     
\BbbR n \rightarrow \BbbR n,

x \mapsto \rightarrow x - 

\Biggl( 
1

n

n\sum 
i=1

xi

\Biggr) 
1n.

(2.6)

To analyze the convergence rate of the Sinkhorn--Knopp algorithm, it is standard
to use the Hilbert projective metric [4] defined on \BbbR n

>0 as

d\scrH (u,u\prime ) = \| log(u) - log(u\prime )\| var,

where \| x\| var is the variation seminorm of x\in \BbbR n defined as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

8/
24

 to
 8

1.
64

.1
00

.2
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1498 EDOUARD PAUWELS AND SAMUEL VAITER

\| x\| var = max
i=1,...,n

xi  - min
i=1,...,n

xi.(2.7)

The next lemma shows the (local) linear convergence in \ell 2 norm of the centered
reduced variable Lcenter(xk(\theta )).

Lemma 2.2 (local linear convergence of Lcenter(xk(\theta ))). The centered reduced
variable Lcenter(xk(\theta )) converges linearly, locally, and uniformly to Lcenter(\=x(\theta )), i.e.,
there exists c : \Omega \rightarrow \BbbR >0 and \rho : \Omega \rightarrow (0,1) continuous such that for all k \in \BbbN and
\theta \in \Omega ,

\| Lcenter(xk(\theta )) - Lcenter(\=x(\theta ))\| \leq c(\theta )\rho (\theta )k.

Furthermore, \theta \rightarrow Lcenter(\=x(\theta )) is continuous on \Omega .

Proof. We combine the linear convergence result on uk(\theta ) of [16] with Lemma 6.3,
following the suggestion of [26, Remark 4.12].

We clarify how to combine these arguments. We first show that the linear con-
vergence of uk(\theta ) is such that for all \theta \in \Omega there exists c(\theta )> 0 and \rho (\theta )\in (0,1) such
that for all k \in \BbbN ,

d\scrH (uk(\theta ), \=u(\theta ))\leq c(\theta )\rho (\theta )k,

and the functions c and \rho are continuous. Indeed, [16, Theorem 4] ensures that for
all k \in \BbbN ,

d\scrH (uk(\theta ), \=u(\theta )) + d\scrH (vk(\theta ), \=v(\theta ))\leq 
\kappa 2(K(\theta ))k

1 - \kappa 2(K(\theta ))
(d\scrH (u0(\theta ), \=u(\theta )) + d\scrH (v0(\theta ), \=v(\theta ))),

where \kappa (K) is the contraction ratio defined for K \in \BbbR n\times m
>0 as

\kappa (K) =
\vargamma (K)1/2  - 1

\vargamma (K)1/2 + 1
< 1 and \vargamma (K) = max

i,j,k,l

Ki,kKj,l

Kj,kKi,l
.

Note that Pk and \^P (\theta ) enjoy the relation

Pk =diag

\biggl( 
uk(\theta )

\=u(\theta )

\biggr) 
\^P (\theta )diag

\biggl( 
vk(\theta )

\=v(\theta )

\biggr) 
,

and d\scrH (uk(\theta )
\=u(\theta ) ,1n) = d\scrH (uk(\theta ), \=u(\theta )). Using [26, Theorem 4.2], we deduce that

d\scrH (uk(\theta ), \=u(\theta ))\leq 
\kappa 2(K(\theta ))k

(1 - \kappa 2(K(\theta )))2
\bigl( 
d\scrH (P (x0(\theta ), \theta )1m, a) + d\scrH (P (x0(\theta ), \theta )

T 1n, b)
\bigr) 
,

=
c(\theta )\surd 
n
\rho (\theta )k,

where

c(\theta ) =
\surd 
n\kappa 2(\theta )

d\scrH (P (x0(\theta ), \theta )1m, a(\theta )) + d\scrH (P (x0(\theta ), \theta )
T 1n, b(\theta ))

(1 - \kappa 2(K(\theta )))2
,

\rho (\theta ) = \kappa 2(\theta ).

Since for all \theta , K(\theta )> 0 and K is continuous, we have that \theta \mapsto \rightarrow \kappa 2(\theta ) is continuous,
and since \theta \mapsto \rightarrow x0(\theta ) is assumed to be continuous on \Omega , \theta \mapsto \rightarrow d\scrH (P (x0(\theta ), \theta )) is also

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1499

continuous. Thus, c(\theta ) and \rho (\theta ) depend continuously on the initial condition x0 and
problem data (a, b,K, \epsilon ) which are all continuous functions of \theta . Therefore the linear
convergence is actually locally uniform in \theta .

To conclude the proof, we need to point out that the Hilbert projective metric
on u corresponds to the variation seminorm after the change of variable x= log(u) so
that for all k \in \BbbN and all \theta \in \Omega ,

\| xk(\theta ) - \=x(\theta )\| var = d\scrH (uk(\theta ), \=u(\theta )),

and Lemma 6.3 provides

\| Lcenter(xk(\theta )) - Lcenter(\=x(\theta ))\| \infty \leq \| xk(\theta ) - \=x(\theta )\| var.

Using the fact that \| x\| 2 \leq 
\surd 
n\| x\| \infty for all x\in \BbbR p, we obtained the claimed result.

Regarding the continuity, fix \theta 0 \in \Omega , then for all \theta \in \Omega and all k \in \BbbN , we have

d\scrH (\=u(\theta ), \=u(\theta 0))\leq d\scrH (\=u(\theta ), uk(\theta )) + d\scrH (uk(\theta ), uk(\theta 0)) + d\scrH (uk(\theta 0), \=u(\theta 0))

\leq c(\theta )\rho (\theta )k + c(\theta 0)\rho (\theta 0)
k + d\scrH (uk(\theta ), uk(\theta 0)).

We may choose k such that the first two terms are as small as desired uniformly for \theta 
in a neighborhood of \theta 0. The last term is continuous in \theta and evaluates to 0 for \theta = \theta 0
so that reducing the neighborhood, if necessary, allows one to choose it as small as
desired, which proves continuity.

Note that Lemma 2.2 does not imply the linear convergence of (xk(\theta ))k\in \BbbN . As
we will see later in Lemma 4.4, this is not an issue in our objective---proving the
convergence of the derivatives of (SK\theta )---because derivatives of the algorithm en-
joy a directional invariance, which makes them equal when evaluated at xk(\theta ) or
Lcenter(xk(\theta )).

3. Derivatives of Sinkhorn--Knopp algorithm and their convergence.

3.1. Derivatives of the transport plan. Note that for all (x, \theta ) \in \BbbR n \times \Omega ,
P (x, \theta ) is an n\times m matrix. Hence, P (x, \cdot ) is a map from \BbbR p to \BbbR n\times m, and P (\cdot , \theta ) is
a map from \BbbR n to \BbbR n\times m. Thus, we identify its partial derivatives with third-order
tensors,

\partial P (\=x(\theta ), \theta )

\partial x
\in \BbbR n\times m\times n,

\partial P (\=x(\theta ), \theta )

\partial \theta 
\in \BbbR n\times m\times p.(3.1)

Left multiplication by these derivatives is considered as follows, for arguments of
compatible size: for any c\in \BbbR n, \partial P (\=x(\theta ),\theta )

\partial x c\in \BbbR n\times m, and for any M \in \BbbR n\times q, for some

q \in \BbbN , \partial P (\=x(\theta ),\theta )
\partial x M \in \BbbR n\times m\times q, where both operations are compatible with the usual

identification of vectors as single rows in \BbbR n\times 1. This multiplication is assumed to be
compatible with the rules of differential calculus; for example, if v : \BbbR p \rightarrow \BbbR n

>0 is C1,
then we have the identity, for any \theta \in \BbbR p,

\partial 

\partial \theta 
P (v(\theta ), \theta ) =

\partial P (v(\theta ), \theta )

\partial x

dv(\theta )

d\theta 
+

\partial P (\=x(\theta ), \theta )

\partial \theta 
\in \BbbR n\times m\times p.(3.2)

The operation is also invariant with order of products, for example, if M = uvT , then

\partial P (\=x(\theta ), \theta )

\partial x
M =

\partial P (\=x(\theta ), \theta )

\partial x

\bigl( 
uvT

\bigr) 
=

\biggl( 
\partial P (\=x(\theta ), \theta )

\partial x
u

\biggr) 
vT .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1500 EDOUARD PAUWELS AND SAMUEL VAITER

3.2. Spectral pseudoinverse. In order to explicitly describe the derivative of
\^P (\theta ), we will use the following notion of a pseudoinverse of a diagonalizable matrix.

Definition 3.1 (spectral pseudoinverse [29, 3]). Given a diagonalizable matrix
M \in \BbbR n\times n, let M = QDQ - 1 be a diagonalization, where Q \in \BbbR n\times n is invertible and
D \in \BbbR n\times n is diagonal. The spectral pseudoinverse of M is given by M \sharp = QD\dagger Q - 1,
where \dagger denotes Moore--Penrose pseudoinverse.

The Moore--Penrose D\dagger pseudoinverse of a diagonal matrix D \in \BbbR n\times n is given
by (D\dagger )ii = (Dii)

 - 1 if (Dii) \not = 0 and 0 otherwise. The key property of the spectral
pseudoinverse is that it preserves the eigenspaces of M , contrary to the more standard
Moore--Penrose pseudoinverse, which preserves eigenspaces only in special cases such
as symmetric matrices.

Lemma 3.2 (eigenspace preservation of spectral pseudoinverse [29]). Let M \in 
\BbbR n\times n be a diagonalizable matrix. Then, M and M \sharp have the same kernel, and the
remaining eigenspaces are the same with inverse eigenvalues.

Note that this definition and result are defined even for nondiagonalizable matrices
in [29] using its Jordan reduced form, but for the sake of our results, we only need
this property for diagonalizable matrices.

3.3. Main result. Our contribution is the following.

Theorem 3.3 (the derivatives of Sinkhorn--Knopp converge). Under Assumption
2.1, let \=x(\theta ) be the limit of Sinkhorn--Knopp iterations (SK\theta ) initialized by x0(\theta ) for
all \theta \in \Omega .

Then, the optimal coupling matrix \^P is continuously differentiable, and its deriv-

ative d \^P (\theta )
d\theta \in \BbbR n\times m\times p is given by

d \^P (\theta )

d\theta 
=

\partial P (\=x(\theta ), \theta )

\partial x
(I  - A(\theta ))\sharp B(\theta ) +

\partial P (\=x(\theta ), \theta )

\partial \theta 
,

where A(\theta ), B(\theta ) are the components of the total derivative of F at (\=x(\theta ), \theta ), i.e.,

[A(\theta )B(\theta )] = JF (\=x(\theta ), \theta );

F (resp., P ) is defined in (OT\theta ) (resp., (2.4)), and partial derivatives of P are de-
scribed in section 3.1. Here \sharp denotes the spectral pseudoinverse of a diagonalizable
matrix (Definition 3.1).

Furthermore, Pk is continuously differentiable for all k, and the sequence of de-
rivatives dPk

d\theta converges at a linear rate, locally uniformly in \theta . In particular, for all
\theta \in \Omega ,

lim
k→+∞

dPk

dθ
(θ) =

dP̂

dθ
(θ).

Remark 3.4 (relation to previous works). The differentiability of the Sinkhorn--
Knopp iterations is an elementary and well-known fact (used, for example, in [1]),
the new contribution here being that the derivatives converge towards the derivative
of entropic regularization (OT\theta ). Using an alternative formulation (in the context
of implicit differentiation), Eisenberger et al. [14] proves the differentiability of the
entropic regularization of OT (first part of Theorem 3.3) and obtains an alternative
expression of the derivative. They do not, however, prove the convergence of the
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1501

derivatives that is the main concern of our work, and to the best of our knowledge,
the expression for the derivative in Theorem 3.3 has not been mentioned previously
in the literature.

If F weres a strict contraction mapping, applying [18, Proposition 1] would be
sufficient to conclude and obtain the same expression as in Theorem 3.3 with an
inverse instead of the spectral pseudoinverse. This is unfortunately not the case, and
a more refined analysis is necessary to obtain the convergence. The main intuition
behind this analysis is that Sinkhorn iterations are equivariant with respect to scaling
of u= exp(x), and the optimal solution P in (2.4) is invariant with respect to the same

scaling. In terms of derivative, it produces a lack of invertibility of \partial F (x,\theta )
\partial x , but the

corresponding direction does not depend on (x, \theta ) and lies precisely in the kernel of
\partial P (x,\theta )

\partial x for all (x, \theta ). This ``alignment"" allows one to maintain an overall convergence
of derivatives. Section 4 is dedicated to proving this intuition rigorously.

Remark 3.5 (limitations of our result). Despite the generality of Theorem 3.3,
we would like to point out two limitations:

1. We do not have any guarantees for the convergence of the derivatives of the
iterates xk(\theta ), k \in \BbbN . Said otherwise, we have guarantees for the derivatives
of the optimal transport plan Pk but not for the derivatives of the scaling
factors uk, vk or the derivatives of the reduced variable xk.

2. Inspecting the proof of Theorem 3.3, we see the linear convergence factor is a
(\=\rho )

1
2 where \=\rho is an upper bound on both the linear convergence factor of the

iterates (Lemma 2.2) and the second largest eigenvalue of \partial F
\partial x at the solution,

call it \lambda . Classical discrete dynamical system arguments (see [26, Remark
4.15] on local linear convergence) suggest that the linear convergence factor
of the iterates is asymptotically of order \lambda . Taking this into consideration,
our proof suggests an asymptotic linear convergence factor of the order

\surd 
\lambda 

for the derivatives, a factor strictly greater than that of the sequence. This
discrepancy is a consequence of Lemma 5.2 which we use for simplicity of the
presentation, which requires a nonasymptotic analysis to ensure uniformity in
\theta . However, removing uniformity, this could be improved to obtain pointwise
an asymptotic linear convergence factor arbitrarily close to \lambda using Lemma 6.4
instead, combined with arguments outlined in [26, Remark 4.15]; see also
Remark 3.8.

Remark 3.6 (application to automatic differentiation of Sinkhorn--Knopp). Given
k \in \BbbN and \.\theta \in \BbbR p, forward automatic differentiation [33] allows one to evaluate \.Pk =
dPk(\theta )

d\theta 
\.\theta \in \BbbR n\times m, e.g., Jacobian-vector products (JVP), just by implementing (OT\theta )

in a dedicated framework. Similarly, given \=wk \in \BbbR n\times m, the reverse mode of automatic
differentiation [22], also called backpropagation, computes \=\theta Tk = \=wT

k
dPk(\theta )

d\theta \in \BbbR p, e.g., a
vector-Jacobian product (VJP). Using an argument similar to that in [5], it is possible,
thanks to Theorem 3.3, to prove the convergence of these quantities. Note that in
practice, the object of interest is not necessarily Pk by itself but its composition
by another function, e.g., \langle C(\theta ), Pk(\theta )\rangle to compute the primal Sinkhorn divergence,
\langle C(\theta ), Pk(\theta )\rangle  - Ent(Pk(\theta )) to compute the OT loss, a sum of similar terms when
dealing with Wasserstein barycenters [2], or any function L(Pk(\theta )) where L :\BbbR n\times m \rightarrow 
\BbbR k is a continuously differentiable function. Applying our result (Theorem 3.3) and
the chain rule leads to the same convergence of automatic differentiation for such
quantities.
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1502 EDOUARD PAUWELS AND SAMUEL VAITER

Remark 3.7 (differentiation with respect a, b, C, or \epsilon ). Theorem 3.3 is presented
with an abstract parameterization of the problem with variable \theta \in \BbbR q. Choosing
different values for \theta allows one to obtain derivatives of Pk for k \in \BbbN as well as \^P
with respect to the original transport problem data: a, b, C, or \epsilon . These are typically
evaluated numerically by algorithmic differentiation, but one could get closed form
expressions in simple cases. For example, choosing \theta = a, we have

\partial F (x, \theta )

\partial a
=diag

\biggl( 
1

a

\biggr) 
.

Similarly, setting \theta = b, we have

\partial F (x, \theta )

\partial b
= - diag

\Biggl( 
1

K b
KT ex

\Biggr) 
Kdiag

\biggl( 
1

KT ex

\biggr) 
.

One could also compute derivatives with respect to the cost matrix C or \epsilon , but the
corresponding expressions become more complicated, and the use of automatic differ-
entiation alleviates this difficulty in practice.

Remark 3.8 (numerical illustration). Figures 1 and 2 illustrate a simple example
where C is a Euclidean cost matrix between two point clouds X,Y in \BbbR 2 of sizes
nX = 100 and nY = 50. The starting point cloud X follows a uniform law in the
square [ - 1/2,1/2], and the target Y follows a uniform law on a circle inscribed in
the square. The marginals are two uniform histograms a= 1n/n and b= 1m/m. The
Sinkhorn--Knopp algorithm (SK\theta ) is automatically differentiated with the Python
library jax [7] with respect to the parameter \epsilon , and we record the median of 10 trials
for \epsilon = 10 - 3,10 - 2,10 - 1. The blue filled area represents the first and last deciles. We
run the algorithm for a high number of iterations Nit and display both\bigm\| \bigm\| \bigm\| Pk(\epsilon ) - \^P (\epsilon )

\bigm\| \bigm\| \bigm\| and

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| dPk

d\epsilon 
(\epsilon ) - d \^P

d\epsilon 
(\epsilon )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| .
Note we assume here that PN\mathrm{i}\mathrm{t}

(\epsilon ) (resp.,
dPN\mathrm{i}\mathrm{t}

d\epsilon (\epsilon )) is close enough to the optimal

solution \^P (\epsilon ) (resp., d \^P
d\epsilon (\epsilon )) such that it is a good proxy. In particular, we ran (SK\theta )

0 100 200 300 400

10−15

10−12
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10−6

10−3

‖P
k
(ε

)
−
P̂

(ε
)‖

0 100 200 300 400
iteration k

10−12

10−9

10−6

10−3

100

‖d
P
k

d
ε

(ε
)
−

d
P̂ d
ε
(ε

)‖

Fig. 1. Illustration of the linear convergence of the regularized transport plan Pk(\theta ) (2.5) of

Sinkhorn--Knopp (SK\theta ) and its derivatives dPk
d\theta 

(\theta ) towards the derivative of the entropic optimal
transport problem (OT\theta ).
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1503
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Fig. 2. Illustration of the linear convergence of the regularized transport plan Pk(\theta ) (2.5) of

Sinkhorn--Knopp (SK\theta ) (first line) and its derivatives dPk
d\theta 

(\theta ) (second line) towards the derivative
of the entropic optimal transport problem (OT\theta ). Each column corresponds to a specific value of the
regularization parameter: \epsilon = 10 - 3 (left), \epsilon = 10 - 2 (middle), \epsilon = 10 - 1 (right).

up to machine precision. We observe that the number of iterations required to gain an
order of precision is roughly inversely proportional to \epsilon , as predicted by [26, Remark
4.15], and we observe the same asymptotic rate for both iterates and their derivatives
as described in Remark 4.2.

4. Proof of Theorem 3.3. Before diving into the proof, we are going to first
provide important spectral properties of the Jacobians of the algorithm and transport
plan (section 4.1), then introduce a proxy G for the Jacobian of F that is a contrac-
tion mapping in contrast to dF

dx (section 4.2), and finally rewrite (3.2) thanks to G
(section 4.3).

4.1. Eigendecomposition of the transport plan and Jacobian. The fol-
lowing lemma provides important properties of the Jacobians of P and F as a function
of x. Here \theta is fixed, and we look at properties of the derivative with respect to x,
and hence the dependency in \theta does not appear.

Lemma 4.1 (expression of the Jacobian of F (x)). Let x\in \BbbR n.

1. We have dP (x)
dx 1n = 0n\times m, where the product is described as in section 3.1.

2. The Jacobian dF (x)
dx of F reads

dF (x)

dx
=diag

\Biggl( 
1

K
\bigl( 

b
KT ex

\bigr) \Biggr) Kdiag

\Biggl( 
b

(KT ex)
2

\Biggr) 
KTdiag (ex)

= diag
\Bigl( 
eF (x)

\Bigr) 
diag

\biggl( 
1

a\odot ex

\biggr) 
P (x)diag

\biggl( 
1

b

\biggr) 
PT (x).

Proof.
1. We note that P (x+\lambda 1n) = P (x) for all \lambda \in \BbbR so that (P (x+\lambda 1n) - P (x))/\lambda =

\lambda dP (x)
dx 1n + o(\lambda ) = 0. This implies that dP (x)

dx 1n = 0.
2. The first expression is a direct computation observing that if f : \BbbR n \rightarrow \BbbR n

is an entrywise function, then Jf (x) = diag(f \prime (x)) where f \prime is again applied
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1504 EDOUARD PAUWELS AND SAMUEL VAITER

entrywise. Indeed, we have, for x \in \BbbR n, dex

dx = diag(ex), which in turns gives
dKT ex

dx =KTdiag(ex). Then, we obtain the derivatives of the ratio

d b
KT ex

dx
(x) = - diag

\biggl( 
b

(KT ex)2

\biggr) 
KTdiag(ex).

Similarly, since K is a linear operator, we have

d
\bigl( 
K b

KT ex

\bigr) 
dx

(x) = - Kdiag

\biggl( 
b

(KT ex)2

\biggr) 
KTdiag(ex).

Finally, since d log(g(x))
dx = dg(x)

dx \odot 1
g(x) , for a differentiable g : \BbbR n \rightarrow \BbbR n, we

obtain that

dF (x)

dx
=diag

\Biggl( 
1

K
\bigl( 

b
KT ex

\bigr) \Biggr) Kdiag

\Biggl( 
b

(KT ex)
2

\Biggr) 
KTdiag (ex) .

The second expression uses the definition of P in (2.4). Observe that

diag

\Biggl( 
b

(KT ex)
2

\Biggr) 
KTdiag (ex) = diag

\biggl( 
1

KT ex

\biggr) 
PT (x)(4.1)

and (using the fact that diagonal matrices commute)

diag(eF (x)) = diag

\Biggl( 
1

K
\bigl( 

b
KT ex

\bigr) \Biggr) diag(a).(4.2)

Observe now that

Kdiag

\biggl( 
1

KT ex

\biggr) 
=diag

\biggl( 
1

ex

\biggr) 
P (x)diag

\biggl( 
1

b

\biggr) 
.(4.3)

Combining (4.1), (4.2), and (4.3) gives the result.

Remark 4.2. If x = F (x), at a fixed point solution, that is if x = F (x), the
Jacobian expression in Lemma 4.1 can be simplified as follows:

dF (x)

dx
=diag

\biggl( 
1

a

\biggr) 
P (x)diag

\biggl( 
1

b

\biggr) 
PT (x).

We have the following result on the eigenvalues and eigenvectors of dF
dx .

Lemma 4.3 (eigendecomposition of dF
dx ). For any x, dF (x)

dx is diagonalizable on
\BbbR . The 1 is an eigenvalue with multiplicity 1, and the other eigenvalues have modulus
strictly smaller than 1. Furthermore, we have the following eigenvectors:

dF (x)

dx
1n = 1n,\biggl( 

dF (x)

dx

\biggr) T
a\odot ex

eF (x)
=

a\odot ex

eF (x)
.
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1505

Proof. Fix x\in \BbbR n and let

S =diag

\Biggl( 
1

K
\bigl( 

b
KT ex

\bigr) \Biggr) , M =Kdiag

\Biggl( 
b

(KT ex)
2

\Biggr) 
KT , and T =diag (ex) .

The matrices S and T are diagonal with positive entries, and M is symmetric such
that SMT = dF (x)

dx . Setting A= (TS - 1)1/2, we have, using the fact that the diagonal
matrices commute,

ASMTA - 1 = T
1
2S - 1

2SMTS
1
2T - 1

2

= T
1
2S

1
2MS

1
2T

1
2 ,

and therefore AdF (x)
dx A - 1 is real symmetric and, hence, diagonalizable with real ei-

genvalues. As a consequence, with dF (x)
dx being similar to AdF (x)

dx A - 1, it has the same

property. It is an easy calculation to check that dF (x)
dx 1n = 1n. Indeed, T1n = ex,

and since diag(y)x = y \odot x for x, y \in \BbbR n, we have that Mex = K b
KT ex

and then
SK b

KT ex
= 1n. Multiplicity of the eigenvalue 1 as well as properties of the remaining

eigenvalue is a consequence of the Perron--Frobenius theorem [21, Theorems 8.2.8 and

8.3.4] applied to the stochastic matrix dF (x)
dx .

Let us prove the last identity. We have

eF (x) =
a

K
\bigl( 

b
KT ex

\bigr) ,
P (x)1m =diag(ex)K

\biggl( 
b

KT ex

\biggr) 
=

a\odot ex

eF (x)
,

P (x)T 1n =
b

KT ex
\odot KT ex = b,

from which we deduce\biggl( 
dF (x)

dx

\biggr) T
a\odot ex

eF (x)

= P (x)diag

\biggl( 
1

b

\biggr) 
PT (x)diag

\biggl( 
eF (x)

(a\odot ex)

\biggr) 
a\odot ex

eF (x)

= P (x)diag

\biggl( 
1

b

\biggr) 
PT (x)1n

= P (x)1m

=
a\odot ex

eF (x)
.

This concludes the proof.

4.2. Reduced partial Jacobian of \bfitF . For any (x, \theta )\in \BbbR n \times \BbbR p, we set

\alpha (x, \theta ) = 1Tn

\biggl( 
a(\theta )\odot ex

eF (x,\theta )

\biggr) 
v(x, \theta ) =

1

\alpha (x, \theta )

a(\theta )\odot ex

eF (x,\theta )
.(4.4)

For any x, \theta , consider furthermore the block decomposition of the total derivative of
F , [A(x, \theta ) B(x, \theta )] = JF (x, \theta ), and set

G(x, \theta ) =A(x, \theta ) - 1nv(x, \theta )
T .(4.5)
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1506 EDOUARD PAUWELS AND SAMUEL VAITER

We call G the reduced partial Jacobian of F . From Lemma 4.3, we have that 1n is an
eigenvector of A(x, \theta ), and v(x, \theta ) is an eigenvector of A(x, \theta )T , both with eigenvalue
1, which has multiplicity 1, with 1Tnv(x, \theta ) = 1. Therefore Lemma 6.1 ensures that the
matrix G(x, \theta ) is diagonalizable in the same basis as A(x, \theta ) with the same eigenvalues,
except eigenvalue 1 which is set to 0, and therefore its spectral radius is strictly
less than 1. Later in the proof, we will study a recursion involving A (which is
not a contraction), and we will use an equivalent recurrence involving G (which is
a contraction). By Assumption 2.1, the functions JF , P,A,B,G are continuously
differentiable on \BbbR n \times \Omega .

The following lemma shows that JF andG are invariant by the centering operation
Lcenter and, more generally, by translation of \lambda 1n.

Lemma 4.4 (invariance by centering). For all \lambda \in \BbbR , x\in \BbbR n, and \theta \in \Omega , we have

F (x+ \lambda 1n, \theta ) = F (x, \theta ) + \lambda 1n,

JF (x+ \lambda 1n, \theta ) = JF (x, \theta ),

v(x+ \lambda 1n, \theta ) = v(x, \theta ),

G(x+ \lambda 1n, \theta ) =G(x, \theta ).

In particular, JF (Lcenter(x), \theta ) = JF (x, \theta ) and G(Lcenter(x), \theta ) =G(x, \theta ) where Lcenter

is the centering operator introduced in Lemma 2.2.

Proof. We have, for \lambda \in \BbbR and x\in \BbbR n,

F (x+ \lambda 1n, \theta ) = log(a(\theta )) - log

\biggl( 
K(\theta )

\biggl( 
b(\theta )

K(\theta )T ex+\lambda 1n

\biggr) \biggr) 
= log(a(\theta )) - log

\biggl( 
K(\theta )

\biggl( 
b(\theta )

e\lambda K(\theta )T ex

\biggr) \biggr) 
= log(a(\theta )) - log

\biggl( 
e - \lambda K(\theta )

\biggl( 
b(\theta )

K(\theta )T ex

\biggr) \biggr) 
= log(a(\theta )) + \lambda 1n  - log

\biggl( 
K(\theta )

\biggl( 
b(\theta )

K(\theta )T ex

\biggr) \biggr) 
= F (x, \theta ) + \lambda 1n,

which implies, for all \lambda \in \BbbR , that JF (x+ \lambda 1n, \theta ) = JF (x, \theta ). Observe now that

a(\theta )\odot ex+\lambda 1n

eF (x+\lambda 1n,\theta )
=

a(\theta )\odot e\lambda ex

eF (x,\theta )+\lambda 1n

=
a(\theta )\odot e\lambda ex

e\lambda eF (x,\theta )

=
a(\theta )\odot ex

eF (x,\theta )
.

Thus, \alpha (x+ \lambda 1n, \theta ) = \alpha (x, \theta ), and in turn we get that v(x+ \lambda 1n, \theta ) = v(x, \theta ).
To conclude, we have

G(x+ \lambda 1n, \theta ) =A(x+ \lambda 1n, \theta ) - 1nv(x+ \lambda 1n, \theta )
T

=A(x, \theta ) - 1nv(x, \theta )
T =G(x, \theta ),

following the fact that JF (x+ \lambda 1n, \theta ) = JF (x, \theta ) and, in particular, A(x+ \lambda 1n, \theta ) =
A(x, \theta ).
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1507

4.3. Preliminary computation. We start with some computation and no-
tation before providing the proof arguments. Setting, for all k \in \BbbN and \theta \in \BbbR p,
[Ak(\theta ) Bk(\theta )] = JF (xk(\theta ), \theta ), we have the piggyback recursion

dxk+1(\theta )

d\theta 
=Ak(\theta )

dxk(\theta )

d\theta 
+Bk(\theta ).(4.6)

We have, for all k and \theta , using (3.2) for the total derivative of P ,

dPk+1(\theta )

d\theta 
=

\partial P (xk+1(\theta ), \theta )

\partial x

dxk+1(\theta )

d\theta 
+

\partial P (xk+1(\theta ), \theta )

\partial \theta 

=
\partial P (xk+1(\theta ), \theta )

\partial x

\biggl( 
Ak(\theta )

dxk(\theta )

d\theta 
+Bk(\theta )

\biggr) 
+

\partial P (xk+1(\theta ), \theta )

\partial \theta 
.(4.7)

For all \theta and all k \in \BbbN , we have Ak(\theta ) =A(xk(\theta ), \theta ), and we set

Gk(\theta ) =G(xk(\theta ), \theta ) =Ak(\theta ) - 1nv(xk(\theta ), \theta )
T ,

where G is defined as in (4.5)m and v is defined as in (4.4). From Lemma 6.1, the
matrix Gk(\theta ) is diagonalizable in the same basis as Ak(\theta ) with the same eigenvalues,
except eigenvalue 1 which is set to 0, and therefore its spectral radius is strictly less
than 1.

From Lemma 4.1, we have \partial P (x,\theta )
\partial x 1n = 0n\times m for all (x, \theta ), and therefore

\partial P (x, \theta )

\partial x
Gk(\theta ) =

\partial P (x, \theta )

\partial x
Ak(\theta ) - 

\partial P (x, \theta )

\partial x
1nv(xk(\theta ), \theta )

T =
\partial P (x, \theta )

\partial x
Ak(\theta ).

Plugging this into (4.7), we obtain

dPk+1(\theta )

d\theta 
=

\partial P (xk+1, \theta )

\partial x

\biggl( 
Ak(\theta )

dxk

d\theta 
+Bk(\theta )

\biggr) 
+

\partial P (xk+1, \theta )

\partial \theta 

=
\partial P (xk+1, \theta )

\partial x

\biggl( 
Gk(\theta )

dxk

d\theta 
+Bk(\theta )

\biggr) 
+

\partial P (xk+1, \theta )

\partial \theta 
.

This allows one to rewrite the iterations equivalently as follows, with D0 =
dx0

d\theta for all
k\geq 0 and \theta , using the product rule for partial derivatives of P defined in section 3.1:

dPk(\theta )

d\theta 
=

\partial P (xk, \theta )

\partial x
Dk(\theta ) +

\partial P (xk, \theta )

\partial \theta 
,

Dk+1(\theta ) =Gk(\theta )Dk(\theta ) +Bk(\theta ).(4.8)

4.4. Proof of the main result (Theorem 3.3). We are now ready to prove
our main result.

Proof of Theorem 3.3.
Step 1: Convergence of Ak, Gk, and Bk. For all \theta \in \Omega , from Lemma 2.2, the

centered iterates (Lcenter(xk(\theta )))k\in \BbbN converge with a linear rate to Lcenter(\=x(\theta )) which
is locally uniform in \theta . Furthermore, using Assumption 2.1, F is twice continuously
differentiable jointly in x \in \BbbR n and \theta \in \Omega , and therefore JF and G are continuously
differentiable and hence locally Lipschitz on \BbbR n \times \Omega .

We remark that for all \theta , using Lemma 4.4,

Gk(\theta ) =G(xk(\theta ), \theta ) =G(Lcenter(xk(\theta )), \theta ),
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1508 EDOUARD PAUWELS AND SAMUEL VAITER

so that, as k \rightarrow \infty , Gk(\theta ) converges with a locally uniform linear rate to G(\theta ) :=
G(Lcenter(\=x(\theta )), \theta ) = G(\=x(\theta ), \theta ). Similarly, Bk(\theta ) converges with a locally uniform
linear rate to B(\theta ) := B(\=x(\theta ), \theta ), and Ak(\theta ) converges with a locally uniform linear
rate to A(\theta ) := A(\=x(\theta ), \theta ). Note that by Lemma 2.2, the map \theta \mapsto \rightarrow Lcenter(\=x(\theta )) is
continuous, so that A, G, and B are continuous functions of \theta .

For any \theta , G(\theta ) is diagonalizable with spectral radius strictly less than 1, and the
recursion on Dk(\theta ) should converge with a locally uniformly linear rate in \theta . This
assertion is a consequence of the following lemma which makes explicit the constants
appearing in the linear rate for the matrix recursion.

Lemma 4.5 (explicit rate for linear convergence). Let \rho < 1 and \=G \in \BbbR n\times n

be diagonalizable on \BbbR , with spectral radius smaller than \rho and Q an invertible ma-
trix whose rows are made of an eigenbasis of \=G. Let \=B \in \BbbR n\times m. Let (Gk)k\in \BbbN and
(Bk)k\in \BbbN be sequences of matrices such that there exists a constant c1 > 0 such that for
all k \in \BbbN ,

\| Gk  - \=G\| op \leq c1\rho 
k+1,(4.9)

\| Bk  - \=B\| \leq c1\rho 
k+1.(4.10)

Then, for the recursion

Dk+1 =GkDk +Bk,

setting \=D= (I - \=G) - 1 \=B, there exists a continuous function const : \BbbR 5
\geq 0\times (0,1)\rightarrow \BbbR \geq 0

such that for all k \in \BbbN ,

\| Dk  - \=D\| \leq \rho 
k
2 const(\| Q\| op,\| Q - 1\| op, c1,\| D0\| ,\| \=B\| , \rho ).

Step 2: Convergence of Dk. Let us make explicit how Lemma 4.5 allows one
to prove convergence of (Dk(\theta ))k\in \BbbN . Starting with a fixed \theta \in \Omega , we first drop the
dependency in \theta for clarity. We have, from Remark 4.2,

A=diag

\biggl( 
1

a

\biggr) 
\^Pdiag

\biggl( 
1

b

\biggr) 
\^PT .

Setting S =diag
\Bigl( 

1\surd 
a

\Bigr) 
, we have that

S - 1AS =diag

\biggl( 
1\surd 
a

\biggr) 
\^Pdiag

\biggl( 
1

b

\biggr) 
\^PTdiag

\biggl( 
1\surd 
a

\biggr) 
,

which is symmetric. Therefore, there is an orthogonal matrix Uand diagonal matrix
E such that

S - 1AS =UEUT

and

A= SUEUTS - 1 = SUE(SU) - 1.

Setting Q= SU , we have, by submultiplicativity of \| \cdot \| op,

\| Q\| op \leq \| U\| op\| S\| op = \| S\| op =
\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 

a

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

8/
24

 to
 8

1.
64

.1
00

.2
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1509

Similarly \| Q - 1\| op = \| 
\surd 
a\| \infty . From Lemma 6.1, Q diagonalizes both A and G.

Getting back to the dependency in \theta , we fix \theta 0 \in \Omega and set, for all \theta \in \Omega ,

\=D : \theta \mapsto \rightarrow (I  - G(\theta )) - 1B(\theta ),

\=\rho : \theta \mapsto \rightarrow max\{ \rho (\theta ),\| Q(\theta ) - 1G(\theta )Q(\theta )\| op\} < 1,

where \rho (\theta ) < 1 is given as in Lemma 2.2 and \| Q(\theta ) - 1G(\theta )Q(\theta )\| op is the largest
eigenvalue, in absolute value, of G(\theta ), which is smaller than 1 and continuous with
respect to \theta . In particular, \=\rho is continuous.

Fix a compact set V \subset \Omega which contains \theta 0 in its interior and a compact set
W \subset \BbbR n which contains Lcenter(xk(\theta )) for all k \in \BbbN and \theta \in V (this exists thanks
to Lemma 2.2). We set c1 : \Omega \rightarrow \BbbR \geq 0 such that c1 = Lc/\rho where c : \Omega \rightarrow \BbbR \geq 0 is the
constant in Lemma 2.2 and L is a Lipschitz constant of JF and G on W \times V (recall
that they are continuously differentiable). Using Lemma 4.4, we have for all \theta \in V
and k \in \BbbN ,

\| JF (xk(\theta ), \theta ) - JF (\=x(\theta ), \theta )\| = \| JF (Lcenter(xk(\theta )), \theta ) - JF (Lcenter(\=x(\theta )), \theta )\| 
\leq c1(\theta )\=\rho (\theta )

k+1

and

\| G(xk(\theta ), \theta ) - G(\=x(\theta ), \theta )\| = \| G(Lcenter(xk(\theta )), \theta ) - G(Lcenter(\=x(\theta )), \theta )\| 
\leq c1(\theta )\=\rho (\theta )

k+1.

The largest eigenvalue of G(\theta ) is at most \=\rho (\theta ) so that Lemma 4.5 applies, and we
have, for all k \in \BbbN and all \theta \in V ,

\| Dk(\theta ) - \=D(\theta )\| 

\leq \=\rho (\theta )
k
2 const

\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1\sqrt{} 
a(\theta )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

,
\bigm\| \bigm\| \bigm\| \sqrt{} a(\theta )

\bigm\| \bigm\| \bigm\| 
\infty 
, c1(\theta ),

\bigm\| \bigm\| \bigm\| \bigm\| dx0(\theta )

d\theta 

\bigm\| \bigm\| \bigm\| \bigm\| ,\| B(\theta )\| , \=\rho (\theta )

\Biggr) 
,

where const : \BbbR 5
\geq 0\times (0,1) is continuous. All terms in the right-hand side are continuous

functions of \theta and can be uniformly bounded on V , so that Dk(\theta ) \rightarrow \=D(\theta ) = (I  - 
G(\theta )) - 1B(\theta ) at a locally uniform linear convergence rate.

Step 3: Convergence of the derivatives of Sinkhorn--Knopp towards the derivatives
of entropic regularization. From Lemma 4.5 the limit of (Dk(\theta 0))k\in \BbbN is of the form

\=D(\theta 0) = (I  - G(\theta 0))
 - 1B(\theta 0)

[A(\theta 0)B(\theta 0)] = JF (\=x(\theta 0), \theta 0).

Recall that for any \lambda \in \BbbR and any x, \theta , P (x+ \lambda 1n, \theta ) = P (x+ \lambda 1n, \theta ) so that JP (x+
\lambda 1n, \theta ) = JP (x+ \lambda 1n, \theta ). Therefore expression (4.8) is equivalently rewritten as

dPk(\theta )

d\theta 
=

\partial P (Lcenter(xk), \theta )

\partial x
Dk(\theta ) +

\partial P (Lcenter(xk), \theta )

\partial \theta 
.(4.11)

We have shown locally uniform linear convergence of both Dk(\theta ) and Lcenter(xk(\theta )).
By Assumption 2.1, equation (4.11) is continuously differentiable, and hence it has
a locally Lipschitz dependency in Lcenter(xk),Dk and \theta , so that as k \rightarrow \infty uniformly
linearly in a neighborhood of \theta 0,

lim
k\rightarrow \infty 

d

d\theta 
Pk(\theta ) =

\partial P (\=x(\theta ), \theta )

\partial x
\=D(\theta ) +

\partial P (\=x(\theta ), \theta )

\partial \theta 
.(4.12)
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1510 EDOUARD PAUWELS AND SAMUEL VAITER

Note that Pk(\theta ) converges pointwise towards \^P (\theta ) = P (\=x(\theta ), \theta ) which is a solution
to problem (OT\theta ). By local uniform convergence of derivatives and the fact that Pk

are continuously differentiable, thanks to Lemma 6.2, we have that \^P is continuously
differentiable, and

lim
k\rightarrow \infty 

dPk(\theta )

d\theta 
=

d \^P (\theta )

d\theta 
.

Step 4: Expression of the derivative. Finally, by construction of G in (4.5) and
thanks to Lemma 6.1, we have, for all x, \theta , that I  - A(x, \theta ) and I  - G(x, \theta ) have the
same eigenspaces, with all eigenvalues being nonzero except the one generated by 1n
which corresponds to eigenvalues 0 for I  - A(x, \theta ) and 1 for I  - G(x, \theta ). Therefore,
we have (I  - G(x, \theta )) - 1 = (I  - A(x, \theta ))\sharp +1nv(x, \theta )

T , where v(x, \theta ) is the normalized
eigenvector of A(\theta )T associated to eigenvalue 1 (see (4.4)). Recall that \sharp denotes the
spectral pseudoinverse for diagonalizable matrices (Definition 3.1). From Lemma 4.1,

we have dP (x,\theta )
dx 1n = 0 for all (x, \theta ), and therefore for all \theta \in \Omega ,

\partial P (\=x(\theta ), \theta )

\partial x
\=D(\theta ) =

\partial P (\=x(\theta ), \theta )

\partial x
(I  - G(\=x(\theta ), \theta )) - 1B(\theta ),

=
\partial P (\=x(\theta ), \theta )

\partial x
((I  - A(\theta ))\sharp + 1nv(x, \theta )

T )B(\theta )

=
\partial P (\=x(\theta ), \theta )

\partial x
(I  - A(\theta ))\sharp B(\theta ).

Therefore we have that

d \^P (\theta )

d\theta 
=

\partial P (\=x(\theta ), \theta )

\partial x
(I  - A(\theta ))\sharp B(\theta ) +

\partial P (\=x(\theta ), \theta )

\partial \theta 
,

[A(\theta )B(\theta )] = JF (\=x(\theta ), \theta ),

which concludes the proof.

5. Proof of Lemma 4.5. We start with two lemmas on real sequences. The
first one is a quantitative version of [27, Lemma 9, Chapter 2].

Lemma 5.1 (quantitative Gladyshev convergence). Let (\alpha k)k\in \BbbN and (\beta k)k\in \BbbN be
positive summable sequences, and let (zk)k\in \BbbN be a positive sequence such that for all
k \in \BbbN ,

zk+1 \leq (1 + \alpha k)zk + \beta k.

Then for all k \in \BbbN ,

zk \leq exp

\Biggl( 
+\infty \sum 
i=0

\alpha i

\Biggr) \left(  z0 +

+\infty \sum 
j=0

\beta j

\right)  .

Proof. For all k \in \BbbN , set

wk = zk

+\infty \prod 
i=k

(1 + \alpha i) +

+\infty \sum 
i=k

\beta i

+\infty \prod 
j=i+1

(1 + \alpha j).

Note that, using concavity of logarithm,
\prod +\infty 

i=0 (1 + \alpha i)\leq exp(
\sum +\infty 

i=0 \alpha i), so that wk is
well defined. Note also that wk \geq zk for all k.
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1511

The sequence (wk)k\in \BbbN is decreasing; indeed, we have, for all k \in \BbbN ,

wk+1 = zk+1

+\infty \prod 
i=k+1

(1 + \alpha i) +

+\infty \sum 
i=k+1

\beta i

+\infty \prod 
j=i+1

(1 + \alpha j)

\leq ((1 + \alpha k)zk + \beta k)

+\infty \prod 
i=k+1

(1 + \alpha i) +

+\infty \sum 
i=k+1

\beta i

+\infty \prod 
j=i+1

(1 + \alpha j)

= zk

+\infty \prod 
i=k

(1 + \alpha i) +

+\infty \sum 
i=k

\beta i

+\infty \prod 
j=i+1

(1 + \alpha j)

=wk.

Therefore, for all k \in \BbbN ,

zk \leq wk

\leq w0

= v0

+\infty \prod 
i=0

(1 + \alpha i) +

+\infty \sum 
i=0

\beta i

+\infty \prod 
j=i+1

(1 + \alpha j)

\leq 
+\infty \prod 
i=0

(1 + \alpha i)

\Biggl( 
v0 +

+\infty \sum 
i=0

\beta i

\Biggr) 
\leq exp

\Biggl( 
+\infty \sum 
i=0

\alpha i

\Biggr) \Biggl( 
v0 +

+\infty \sum 
i=0

\beta i

\Biggr) 
,

and the result follows.

The following lemma specifies Lemma 5.1 when \alpha k and \beta k are geometric se-
quences.

Lemma 5.2 (application of Gladyshev's convergence to geometric sequences). Let
\rho \in (0,1), c > 0, and (\delta k)k\in \BbbN be a positive sequence such that for all k \in \BbbN ,

\delta k+1 \leq (\rho + c\rho k+1)\delta k + c\rho k+1.(5.1)

Then, (\delta k)k\in \BbbN is a geometric sequence: for all k \in \BbbN ,

\delta k \leq \rho 
k
2 exp

\biggl( 
c
\surd 
\rho 

1 - \rho 

\biggr) \biggl( 
\delta 0 +

c
\surd 
\rho 

1 - \surd 
\rho 

\biggr) 
.

Proof. Dividing (5.1) on both sides by c\rho (k+1)/2, we have, for all k \in \BbbN ,

\delta k+1

c\rho 
k+1
2

\leq \delta k

c\rho 
k - 1
2

+
\delta k

c\rho 
k
2

c\rho k+1c\rho 
k
2

c\rho 
k+1
2

+ \rho 
k+1
2

=

\surd 
\rho \delta k

c\rho 
k
2

+
\delta k

c\rho 
k
2

c\rho k+
1
2 + \rho 

k+1
2

\leq \delta k

c\rho 
k
2

(1 + c\rho k+
1
2 ) + \rho 

k+1
2 .

Setting, for all k \in \BbbN ,

zk =
\delta k

c\rho 
k
2

, \alpha k = c\rho k+
1
2 , and \beta k = \rho 

k+1
2 ,
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1512 EDOUARD PAUWELS AND SAMUEL VAITER

we may apply Lemma 5.1 to obtain the result. Note that
\sum +\infty 

i=0 \alpha i =
c
\surd 
\rho 

1 - \rho and\sum +\infty 
i=0 \beta i =

\surd 
\rho 

1 - \surd 
\rho , so that for all k \in \BbbN ,

\delta k

c\rho 
k
2

= zk \leq exp

\Biggl( 
+\infty \sum 
i=0

\alpha i

\Biggr) \left(  z0 +

+\infty \sum 
j=0

\beta j

\right)  
= exp

\biggl( 
c
\surd 
\rho 

1 - \rho 

\biggr) \biggl( 
\delta 0
c
+

\surd 
\rho 

1 - \surd 
\rho 

\biggr) 
,

which is the desired result.

Lemma 5.3 (reduced perturbated convergence). Let \rho < 1 and \=G \in \BbbR n\times n have
operator norm smaller than \rho and let \=B \in \BbbR n\times m. Let (Gk)k\in \BbbN and (Bk)k\in \BbbN be a
sequence of matrices such that there exists a constant c0 > 0 such that for all k \in \BbbN ,

\| Gk  - \=G\| op \leq c0\rho 
k+1,

\| Bk  - \=B\| \leq c0\rho 
k+1.

Then for the recursion

Dk+1 =GkDk +Bk,

setting \=D= (I  - \=G) - 1 \=B, we have

\| Dk  - \=D\| 

\leq \rho 
k
2 exp

\biggl( 
c0
\surd 
\rho 
1 + \| \=B\| 
(1 - \rho )2

\biggr) \biggl( 
\| D0\| +

\| \=B\| 
1 - \rho 

+
c0
\surd 
\rho (1 + \| B\| )

(1 - \surd 
\rho )2

\biggr) 
.

Proof. Note that \=G is invertible, and it follows that the potential limit is \=D =
(I  - \=G) - 1 \=B, as it is a fixed point of the limiting recursion, \=D= \=G \=D+ \=B. We rewrite
the recursion as follows:

Dk+1  - \=D=GkDk +Bk  - \=G \=D - \=B

=Gk(Dk  - \=D) + (Gk  - \=G) \=D+Bk  - \=B.

Setting, for all k \in \BbbN , \delta k = \| Dk  - \=D\| , using the fact that \| \cdot \| op is subordinate to \| \cdot \| ,
we have the recursion

\delta k+1 \leq \| Gk(Dk  - \=D)\| + \| (Gk  - \=G) \=D\| + \| Bk  - \=B\| 
\leq \| Gk\| op\| (Dk  - \=D)\| + \| (Gk  - \=G)\| op\| \=D\| + \| Bk  - \=B\| 
\leq (\rho + c0\rho 

k+1)\delta k + c0\rho 
k+1(\| \=D\| + 1).

Note that \| \=D\| = \| (I  - \=G) - 1 \=B\| \leq \| (I  - \=G) - 1\| op\| \=B\| \leq \| \=B\| 
1 - \rho . Since

c0 \leq c0
1 + \| \=B\| 
1 - \rho 

and c0

\biggl( 
1 +

\| \=B\| 
1 - \rho 

\biggr) 
\leq c0

1 + \| \=B\| 
1 - \rho 

,

we apply Lemma 5.2 with c= c0
1+\| \=B\| 
1 - \rho and use the fact that 1

1 - \rho \leq 1
1 - \surd 

\rho and \| D0  - 
\=D\| \leq \| D0\| + \| \=B\| 

1 - \rho .

Proof of Lemma 4.5. Note that \=G is invertible, and it follows that the potential
limit is \=D = (I  - \=G) - 1 \=B, which satisfies \=D = \=A \=D + \=B. Since \=G is diagonalizable in
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THE DERIVATIVES OF SINKHORN--KNOPP CONVERGE 1513

the basis given by Q, there is a diagonal matrix E such that \=G=QEQ - 1. We rewrite
equivalently the recursion as

Q - 1Dk+1 =Q - 1GkQQ - 1Dk +Q - 1Bk,

and, setting \~Dk =Q - 1Dk, \~Gk =Q - 1GkQ and \~Bk =Q - 1Bk for all k \in \BbbN , this reduces
to

\~Dk+1 = \~Gk
\~Dk + \~Bk.

When k\rightarrow \infty , we have \~Gk \rightarrow E, which has operator norm at most \rho and \~Bk \rightarrow Q - 1 \=B.
Set \~D to be the fixed point of the limiting recursion for \~Dk,

\~D= (I  - E) - 1Q - 1 \=B =Q - 1Q(I  - E) - 1Q - 1 \=B =Q - 1(I  - QEQ - 1) - 1 \=B =Q - 1 \=D.

Furthermore for all k \in \BbbN , we have the following bounds:

\| \~Gk  - E\| op = \| Q - 1(Gk  - \=G)Q\| op
\leq \| Q - 1\| op\| (Gk  - \=G)\| op\| Q\| op (\| \cdot \| op is submultiplicative)

\leq 
\bigl( 
c1\| Q - 1\| op\| Q\| op

\bigr) 
\rho k+1 (by hypothesis (4.9))

\| \~Bk  - Q - 1 \=B\| = \| Q - 1(Bk  - \=B)\| 
\leq \| Q - 1\| op\| Bk  - \=B\| (\| \cdot \| op is subordinate to \| \cdot \| )
\leq 
\bigl( 
c1\| Q - 1\| op

\bigr) 
\rho k+1, (by hypothesis (4.10))

\| Q - 1 \=B\| = \| Q - 1\| op\| \=B\| 
\| \~D0\| = \| Q - 1\| op\| D0\| .

We apply Lemma 5.3 with

c0 = c1\| Q - 1\| op(1 + \| Q\| op),

which gives, for all k \in \BbbN ,

\| Dk  - \=D\| 
= \| Q( \~Dk  - \~D)\| 
\leq \| Q\| op\| \~Dk  - \~D\| 

\leq \rho 
k
2 \| Q\| op exp

\biggl( 
c1\| Q - 1\| op(1 + \| Q\| op)

\surd 
\rho 
1 + \| Q - 1\| op\| \=B\| 

(1 - \rho )2

\biggr) 
\times \| Q - 1\| op

\biggl( 
\| D0\| +

\| \=B\| 
1 - \rho 

+
c1(1 + \| Q\| op)

\surd 
\rho (1 + \| \=B\| )

(1 - \surd 
\rho )2

\biggr) 
,

which is the desired result

6. Additional lemmas. In the following, we prove some technical, but impor-
tant, lemmas used in the main proof.

Lemma 6.1 (reduced eigenspace). Let A\in \BbbR n\times n be diagonalizable. Let u be such
that Au = u and v such that AT v = v, and assume that eigenvalue 1 is simple and
that uvT = 1. Then \~A := A - uvT and A have the same eigenspaces with the same
eigenvalues, except eigenvalue 1 for A which is set to 0 for \~A.
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1514 EDOUARD PAUWELS AND SAMUEL VAITER

Proof. A is of the form QDQ - 1 for an invertible Q and a diagonal matrix D.
Assume that the first diagonal entry of D is 1. Columns of Q form an eigenbasis, and
we may impose that the first column is u. Rows of Q - 1 form an eigenbasis of AT ;
set v0 as the vector corresponding to the first row. Since 1 is a simple eigenvalue, the
corresponding eigenspace has dimension 1, and there exists \alpha \not = 0 such that v = \alpha v0.
We have uT v = 1 by assumption and uT v0 = 1 because Q - 1Q = I; this shows that
\alpha = 1, and therefore v is the first row of Q - 1.

We have vTu= 1 and therefore \~Au=Au - u= 0. Let \~u be a different column of
Q corresponding to an eigenvector of A associated to eigenvalue d; we have vT \~u = 0
so that \~A\~u=A\~u= d\~u. This concludes the proof.

Lemma 6.2 (uniform convergence leads to continuous differentiable limit). Let
U \subset \BbbR p be open and (fk)k\in \BbbN be a sequence of continuously differentiable functions from
U to \BbbR converging pointwise to \=f : U \rightarrow \BbbR , such that \nabla fk converges pointwise, locally
uniformly on U . Then \=f is continuously differentiable on U and \nabla \=f = limk\rightarrow \infty \nabla fk.

Proof. Let g= limk\rightarrow \infty \nabla fk be the pointwise limit. By local uniform convergence,
g is continuous on U . Fix any x\in U and any v \in \BbbR n, and set I as a closed interval such
that x+tv \in U for all t\in I and 0 is in the interior of I (such an interval exists because
U is open). The sequence of univariate functions hk : t \mapsto \rightarrow fk(x+ tv) is continuously
differentiable and satisfies, for all k and all t\in I,

h\prime 
k(t) = \langle \nabla fk(x+ tv), v\rangle .

The derivatives h\prime 
k converge uniformly on I to \langle g(x+ tv), v\rangle which is continuous in t.

Therefore the function \=h : t \mapsto \rightarrow \=f(x+ tv) is continuously differentiable, with derivative
given by \langle g(x+ tv), v\rangle , by uniform convergence of derivatives. Since x\in U and v \in \BbbR n

were arbitrary, this implies that \=f admits continuous partial derivatives, and it is
therefore continuously differentiable with gradient g.

Lemma 6.3 (centering). For x,x\prime \in \BbbR n,

\| Lcenter(x) - Lcenter(x
\prime )\| \infty \leq \| x - x\prime \| var,

where Lcenter is defined as in (2.6) and \| \cdot \| var is defined as in (2.7).

Proof. Note that for f \in \BbbR n and a \in \BbbR , \| f + a1n\| var = \| f\| var. Setting f =
Lcenter(x) - Lcenter(x

\prime ), we have 1Tnf =
\sum n

i=1 fi = 0 so that

min
i

fi \leq 
n\sum 

i=1

fi = 0\leq max
i

fi.

This implies the following:

\| f\| \infty =max
i

| fi| 

=max
i

max\{ fi, - fi\} 

=max\{ max
i

fi,max
i

 - fi\} 

=max\{ max
i

fi, - min
i

fi\} 

\leq max\{ max
i

fi  - min
i

fi,max
i

fi  - min
i

fi\} 

= \| f\| var.

Now f =Lcenter(x) - Lcenter(x
\prime ) = x - x\prime +1n

\bigl( 
1
n

\sum n
i=1 x

\prime 
i  - 1

n

\sum n
i=1 xi

\bigr) 
, so that \| f\| var =

\| x - x\prime \| var, which concludes the proof.
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Lemma 6.4. Let \rho \in (0,1), c > 0, and (\delta k)k\in \BbbN be a positive sequence such that
for all k \in \BbbN ,

\delta k+1 \leq (\rho + c\rho k+1)\delta k + c\rho k+1.(6.1)

Then, for all k \in \BbbN , such that k\geq \rho 
1 - \rho , we have

\delta k \leq \rho k exp

\biggl( 
1 +

c

1 - \rho 

\biggr) 
(\delta 0 + c(k+ 1)) .

Proof. Fix \alpha \in (0,1) to be chosen later. Dividing (6.1) on both sides by c\rho (k+1)/\alpha ,
we have, for all k \in \BbbN ,

\delta k+1

c\rho \alpha (k+1)
\leq \delta k

c\rho \alpha k

\biggl( 
\rho c\rho \alpha k

c\rho \alpha (k+1)
+

c\rho k+1c\rho \alpha k

c\rho \alpha (k+1)

\biggr) 
+

c\rho k+1

c\rho \alpha (k+1)

=
\delta k

c\rho \alpha k
\bigl( 
\rho 1 - \alpha + c\rho k+1 - \alpha 

\bigr) 
+ \rho (k+1)(1 - \alpha )

\leq \delta k
c\rho \alpha k

\bigl( 
1 + c\rho k+1 - \alpha 

\bigr) 
+ \rho (k+1)(1 - \alpha ).

Setting, for all k \in \BbbN ,

zk =
\delta k

c\rho \alpha k
, \alpha k = c\rho k+1 - \alpha , and \beta k = \rho (k+1)(1 - \alpha ),

we apply Lemma 5.1 to obtain the result. As (\alpha k)k\in \BbbN and (\beta k)k\in \BbbN are geometric

sequences, we have
\sum +\infty 

i=0 \alpha i =
c\rho 1 - \alpha 

1 - \rho \leq c
1 - \rho and

\sum +\infty 
i=0 \beta i =

\rho 1 - \alpha 

1 - \rho 1 - \alpha \leq 1
1 - \rho 1 - \alpha , so that

for all k \in \BbbN ,

\delta k
c\rho \alpha k

= zk

\leq exp

\Biggl( 
+\infty \sum 
i=0

\alpha i

\Biggr) \left(  z0 +

+\infty \sum 
j=0

\beta j

\right)  
= exp

\biggl( 
c

1 - \rho 

\biggr) \biggl( 
\delta 0
c
+

1

1 - \rho 1 - \alpha 

\biggr) 
.

Since \alpha was arbitrary, the preceding holds for all k \in \BbbN and \alpha \in (0,1). Fix k \in \BbbN such
that k > \rho 

1 - \rho . Setting \alpha = 1+ log
\bigl( 
1 + 1

k

\bigr) 
/ log(\rho ), since \rho \in (0,1), we have

0 = 1+ log

\biggl( 
1 +

1 - \rho 

\rho 

\biggr) 
/ log(\rho )<\alpha < 1.

We have

\rho \alpha k = \rho k\rho k log((k+1)/k)/ log(\rho ) = \rho k
\biggl( 
1 +

1

k

\biggr) k

\leq e\rho k

and

1

1 - \rho 1 - \alpha 
=

1

1 - \rho  - log(1+1/k)/ log(\rho )
=

1

1 - \rho log(k/(k+1))/ log(\rho )

=
1

1 - k
k+1

= k+ 1.
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1516 EDOUARD PAUWELS AND SAMUEL VAITER

Therefore, for all k\geq \rho 
1 - \rho ,

\delta k \leq \rho k exp

\biggl( 
1 +

c

1 - \rho 

\biggr) 
(\delta 0 + c(k+ 1)) ,

proving our claim.
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