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Abstract
Penalized least squares are widely used in signal and image processing. Yet, it suffers from a major limitation since it requires
fine-tuning of the regularization parameters. Under assumptions on the noise probability distribution, Stein-based approaches
provide unbiased estimator of the quadratic risk. The Generalized Stein Unbiased Risk Estimator is revisited to handle
correlated Gaussian noise without requiring to invert the covariance matrix. Then, in order to avoid expansive grid search, it
is necessary to design algorithmic scheme minimizing the quadratic risk with respect to regularization parameters. This work
extends the Stein’s Unbiased GrAdient estimator of the Risk of Deledalle et al. (SIAM J Imaging Sci 7(4):2448–2487, 2014)
to the case of correlated Gaussian noise, deriving a general automatic tuning of regularization parameters. First, the theoretical
asymptotic unbiasedness of the gradient estimator is demonstrated in the case of general correlated Gaussian noise. Then, the
proposed parameter selection strategy is particularized to fractal texture segmentation, where problem formulation naturally
entails inter-scale and spatially correlated noise. Numerical assessment is provided, as well as discussion of the practical
issues.

Keywords Regularization parameters tuning · SURE · Estimation · Gaussian noise · Texture, segmentation · Algorithmic
differentiation

1 Introduction

Numerous problems in signal and image processing consist
in finding the best possible estimate x̂ of a quantity x̄ ∈ H
froman observation y ∈ G (whereH andG areHilbert spaces
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isomorphic to R
N and R

P , respectively), potentially cor-
rupted by a linear operator Φ : H → G, which encapsulates
deformation or information loss, and by some additive zero-
meanGaussian noise ζ ∼ N (0P ,S), with known covariance
matrix S ∈ R

P×P , leading to the general observation model

y = Φ x̄ + ζ . (1)

Examples resorting to inverse problems include image
restoration [13,55], inpainting [17], texture-geometrydecom-
position [3], but also texture segmentation as recently pro-
posed in [50]. A widely investigated path for the estimation
of underlying x̄ is linear regression [10,40], providing an
unbiased linear regression estimator x̂LR. Yet correspond-
ing estimates suffer from large variances, which can lead to
dramatic errors in the presence of noise ζ [6].

An alternative relies on the construction of parametric
estimators

G × R
L −→ H

( y,Λ) �−→ x̂( y;Λ)
(2)
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allowing some estimation bias, and thus leading to drastic
decrease of the variance. Given some prior knowledge about
ground truth x̄, e.g., [34], either sparsity of the variable
x̄ [65], of its derivative [36,61,68] or of its wavelet trans-
form [26], one can build parametric estimators performing a
compromise between fidelity to the model (1) and structure
constraints on the estimation. In general, the compromise is
tuned by a small number L = O(1) parameters, stored in a
vector Λ ∈ R

L . A very popular class of parametric estima-
tors relies on a penalization of least squares data fidelity term
formulated as a minimization problem

x̂( y;Λ) ∈ Argmin
x∈H

‖ y − Φx‖2W + ‖UΛx‖qq (3)

with ‖ · ‖W the Mahalanobis distance associated withW ∈
R

P×P , defined as

‖ y − Φx‖W �
√

( y − Φx)� W ( y − Φx). (4)

UΛ : H → Q is a linear operator parametrized by Λ and
‖·‖q the �q -norm with q ≥ 1 in Hilbert space Q.
Least squares While ordinary least squares involve usual �2
squared norm as data-fidelity term, that isW = I P , general-
ized least squares [63]make use of the covariance structure of
the noise throughW = S−1, encapsulating all the observa-
tion statistics in the case of Gaussian noise. This generalized
approach is equivalent to decorrelating the data and equal-
izing noise levels before performing the regression. Further,
Gauss–Markov theorem [1] asserts thatminimizingweighted
least squares provides the best linear estimator of x̄, advocat-
ing for the use of Mahalanobis distance as data fidelity term
in penalized least squares.
Yet, in practice, generalized least squares (or weighted least
squares in the case when S is diagonal) requires not only the
knowledge of the covariance matrix, but also to be able to
invert it. For uncorrelated data, S is diagonal and, provided
that it is well-conditioned, it is easy to invert numerically. On
the contrary, computingS−1 might be extremely challenging
for correlated data since S is not diagonal anymore and has
a size scaling like the square of the dimension of G. Thus, to
handle possibly correlated Gaussian noise ζ , using ordinary
least squares is oftenmandatory, even though it does not ben-
efit from same theoretical guarantees that generalized least
squares. Nevertheless, we will show that the knowledge ofS
is far from being useless, since it is possible to take advantage
of it when estimating the quadratic risk.
Penalization Appropriate choice of q and UΛ covers a large
variety of well-known estimators. Linear filtering is obtained
for q = 2 [30], the shape of the filter being encapsulated
in operator UΛ [36], the hyperparameters Λ tuning, e.g., its
band-width. It is very common in image processing to impose
priors on the spatial gradients of the image, using the finite

discrete horizontal and vertical difference operatorD and one
regularization parameter Λ = λ > 0 (L = 1). For example,
smoothness of the estimate is favored using �2 squared norm,
performing Tikhonov regularization [36,68], in which q =
2 and ‖UΛx‖qq � λ‖Dx‖22. Another standard penalization
is the anisotropic total variation [61] ‖UΛx‖qq � λ‖Dx‖1,
corresponding to q = 1, where the �1-norm enforces sparsity
of spatial gradients.
Risk estimation The purpose of Problem (3) is to obtain a
faithful estimation x̂( y;Λ) of ground truth x̄, the error being
measured by the so-called quadratic risk

E‖Bx̂( y;Λ) − Bx̄‖2W (5)

with B a linear operator, which enables to consider various
types of risk. For instance, when B = Π is a projector on a
subset of H [29], the projected quadratic risk (5) measures
the estimation error on the projected quantity Π x̄. This case
includes the usual quadratic risk when B = IN . Conversely,
when B = Φ, the risk (5) quantifies the quality of the pre-
diction ŷ( y;Λ) � Φ x̂( y;Λ) with respect to the noise-free
observation ȳ � Φ x̄ lying in G, and is known as the predic-
tion risk. The main issue is that one does not have access to
ground truth x̄. Hence, measuring the quadratic risk (5) first
requires to derive an estimator ofE ‖Bx̂( y;Λ) − Bx̄‖2W not
involving x̄.
This problem was handled originally in the case of indepen-
dent, identically distributed, (i.i.d.) Gaussian linear model,
that is for scalar covariance matrix S = ρ2 I P , by Stein
[62,66], performing a clever integration by part, leading to
Stein’s Unbiased Risk Estimate (SURE) [25,46,57,67], ini-
tially formulated for the prediction risk,

‖(Φ x̂( y;Λ) − y)‖2W + 2ρ2Tr
(

∂ y x̂( y;Λ)
)− Pρ2, (6)

whose expected value equals quadratic risk (5) with B = Φ.
In the past years, SURE was intensively used both in statis-
tical, signal and image processing applications [11,25,53].
It was recently extended to the case of independent but not
identically distributed noise [18,76], corresponding to diag-
onal covariance matrix S = diag(σ 2

1 , . . . , σ 2
P ), and to the

case when the noise is Gaussian with potential correlations,
with very general covariance matrix S. Yet, to the best of
our knowledge, very few numerical assessments are avail-
able for Gaussian noise with non-scalar covariance matrices.
A notable exception is [18], in which numerical experiments
are run on uncorrelated multi-component data, the compo-
nents experiencing different noise levels. The noise being
assumed independent, this corresponds to a diagonal covari-
ance matrix S = diag(ρ2

1 , . . . , ρ
2
P ), with ρ2

i the variance of
the noise of the i th component.
Further, in the case when the noise is neither independent
identically distributed norGaussian,Generalized SteinUnbi-
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ased Risk Estimators were proposed, e.g., for Exponential
Families [29,37] or Poisson noise [38,41,44].
As for practical evaluation of Stein estimator, more sophis-
ticated tools might be required to evaluate the second term
of (6), notably when x̂( y;Λ) is obtained from a proximal
splitting algorithm [4,19,20,49] solving Problem (3). Indeed
Stein estimator involves the Jacobian of x̂( y;Λ)with respect
to observations y, which might not be directly accessible
in this case. In order to manage this issue, Vonesch et al.
proposed in [71] to perform recursive forward differentia-
tion inside the splitting scheme solving (3), which benefits
from few theoretical results from [31]. This approach, even
if remaining partially heuristic, proved to be efficient for a
large class of problems [23].
Hyperparameter tuning Equation (3) clearly shows that the
estimate x̂( y;Λ) drastically depends on the choice of regu-
larization parameters Λ. Thus, fine-tuning of regularization
parameters is a long-standing problem in signal and image
processing. A common formulation of this problem consists
in minimizing the quadratic risk with respect to regulariza-
tion parameters Λ, solving:

minimize
Λ

E ‖Bx̂( y;Λ) − Bx̄‖2W . (7)

As emphasized in [29], approximate solution of (7) found
selecting among the estimates (̂x( y;Λ))Λ∈RL the one reach-
ing lowest SURE (6), as proposed in pioneering work [62],
leads to lower mean square error than classical maximum
likelihood approaches applied to Model (1).
The most direct method solving (7) consists in computing
SURE (6) over a grid of parameters [26,29,57], and to select
the parameter of the grid for which SURE is minimal. Yet,
grid search methods suffers from a high computation cost
for several reasons. First of all, the size of the grid scaling
algebraically with the number of regularization parameters
L , exhaustive grid search is often inaccessible. Recently,
random strategies were proposed to improve grid search effi-
ciency [7]. Yet, for L ≥ 3, it remains very challenging if not
unfeasible. Further, an additional difficulty might appear in
the case when x̂( y;Λ) is obtained from a splitting algorithm
solving Problem (3). Indeed, when the regularization term
‖UΛx‖qq is nonsmooth, the proximal algorithms solving (3)
suffer from slow convergence rate, making the evaluation of
Stein estimator at each point of the grid very time-consuming.
Although accelerated schemes were proposed [5,16], grid
search with L ≥ 2 remains very costly, preventing from
practical use.
When a closed-form expression of Stein estimator is avail-
able, exact function minimization over the regularization
parametersΛmight be possible. This is the case, for instance,
for the Tikhonov penalization for which Thompson et al.
[64], Galatsanos et al. in [32], and Desbat et al. in [24]

took advantage of the linear closed-form expression of
x̂( y;Λ) to find the “best” regularization parameter, i.e., to
solve (7). Another well-known closed-form expression holds
for soft-thresholding, which is widely used for wavelet-
shrinkage denoising, e.g., [26,43]. Note that generalized
cross-validation [35] also makes use of closed-form expres-
sion for parameters tuning, but in a slightly different way,
working on prediction risk, solving (7) for B = Φ. Gen-
eralized cross-validation and Stein-based estimators were
compared independently by Li [42], Thompson [64], and
Desbat [24]. Further, Bayesian methods were proposed to
deal with very large number of hyperparameters L 	 1,
amongwhich sequentialmodel-based optimization (SMBO),
providing smart sampling of the hyperparameter domain [8].
Such methods are particularly adapted to machine learning,
as they manage huge amount of hyperparameters without
requiring knowledge of the gradient of the cost function [9].
In order to go further than (random) sampling methods, elab-
orated approaches relying on minimization schemes were
proposed, requiring sufficiently smooth risk estimator, as
well as access to its derivative with respect to Λ. From a C∞
closed-form expression of Poisson unbiased risk estimate,
Deledalle et al. [22] proposed a Newton algorithm solv-
ing (7). Nevertheless, it does not generalize, since it is very
rare that one has access to all the derivatives of the risk estima-
tor. In the case when the noise is Gaussian i.i.d., Chaux et al.
[18] proposed and assessed numerically an empirical descent
algorithm for automatic choice of regularization parameter,
but with no convergence guarantee. For i.i.d. Gaussian noise
and estimators built as the solution of (3), Deledalle et al. [23]
proposed sufficient conditions so that x̂( y;Λ) is differen-
tiable with respect toΛ, and then derived the differentiability
of Stein’s Unbiased Risk Estimate. Further, they elaborated
a Stein Unbiased GrAdient estimator of the Risk (SUGAR)
with the aim of performing a quasi-Newton descent solv-
ing (7) using BFGS strategy. SUGAR proved its efficiency in
the automated hyperparameter selection in a spatial-spectral
deconvolution method for large multispectral data corrupted
by i.i.d. Gaussian noise [2]
Contributions and outline We propose a Generalized Stein
Unbiased GrAdient estimator of the Risk, for the case of
Gaussian noise ζ with any covariance matrix S, using the
framework of ordinary least squares, that is (5) with W =
I P , enabling to manage different noise levels and correla-
tions in the observed data.
Section2 revisits Stein’s Unbiased Estimator of the Risk in
the particular case of correlated Gaussian noise with covari-
ance matrix S and derives the Finite Difference Monte
Carlo SURE for this framework, extending [23]. Further, we
include a projection operator B = Π making the model ver-
satile enough to fit various applications.
In this context, Finite Difference Monte Carlo SURE is dif-
ferentiated with respect to regularization parameters leading
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to Finite Difference Monte Carlo Generalized Stein Unbi-
ased GrAdient estimator of the Risk, whose asymptotic
unbiasedness is demonstrated in Sect. 3. Moreover, the esti-
mation of the Jacobian with respect to hyperparameters of
sequential estimators is discussed in Sect. 3.2. Then, Gener-
alized Stein Unbiased Risk Estimate and Generalized Stein
Unbiased GrAdient estimate of the Risk are embedded in a
quasi-Newton optimization scheme for automatic parameters
tuning, presented in Sect. 3.3.
Then, in Sect. 4, the entire proposed procedure is particular-
ized to an original application to texture segmentation based
on a wavelet (multiscale) estimation of fractal attributes, pro-
posed in [50,52]. The texture model is cast into the general
formulation (1), y corresponding to a nonlinear multiscale
transform of the image to be segmented. Hence, the noise ζ

presents both inter-scale and intra-scale correlations, leading
to a non-diagonal covariance matrix S. Both Stein Unbi-
ased Risk Estimate and Stein Unbiased GrAdient estimate of
the Risk are evaluated with a Finite Difference Monte Carlo
strategy, all steps of which are made explicit for the texture
segmentation problem.
Finally, Sect. 5 is devoted to exhaustive numerical simu-
lations assessing the performance of the proposed texture
segmentation with automatic regularization parameters tun-
ing. We notably emphasize the importance of taking into
account the full covariance structure into account in Stein-
based approaches.

This manuscript has improved considerably thanks to the
relevant and precise comments of the reviewers. The authors
thank them for carefully reviewing this paper and for their
helpful suggestions for improvement.

2 Stein Unbiased Risk Estimate (SURE) with
Correlated Noise

This section details the extension of Stein Unbiased Risk
Estimator (6) whenW = I P to the case when observations
evidence correlated noise, leading to the Finite Difference
Monte Carlo Generalized Stein Unbiased Risk Estimator,
̂Rν,ε( y;Λ|S), defined in (17).
Notations For a linear operator Φ : H → G, the adjoint
operator is denoted Φ∗ and characterized by: for every x ∈
H, and y ∈ G, 〈 y,Φx〉 = 〈Φ∗ y, x〉.
The Jacobian with respect to observations y ∈ R

P of a dif-
ferentiable estimator x̂( y;Λ) ∈ R

N is denoted ∂ y x̂( y;Λ) ∈
R

N×P .
For any fixed Λ ∈ R

L and any vector ε ∈ R
P , the differ-

ential of ỹ �→ x̂(̃ y;Λ) at point y applied to ε is denoted
∂ y (̂x( y;Λ)) [ε].

2.1 ObservationModel

In this work, we consider observations y, supposed to follow
Model (1), as stated inAssumption1with a degradation oper-
ator Φ assumed to be full-rank, as stated in Assumption2.

Assumption 1 (Gaussianity) The additive noise ζ ∈ G is
Gaussian: ζ ∼ N (0P ,S), where 0P is the null vector of G
and S ∈ R

P×P is the covariance matrix of the noise, where
P = dim(G). Thus, the density probability law associated
with the model (1) is written as

y ∼ 1
√

(2π)P |detS| exp
(

−
‖ y − Φ x̄‖2S−1

2

)

. (8)

Assumption 2 (Full-rank) The linear operator Φ : H → G
is full-rank, or equivalently Φ∗Φ is invertible.

Full-rank linear operators are encountered in various sit-
uations, and we can mention denoising problems in which
Φ = I is the identity operator, machine learning when
performing regression over a number of samples which is
larger than the number of descriptors, or texture segmenta-
tion basedon fractal attributes involving amultiscale operator
Φ, defined at Eq. (62) (see Sect. 4). Moreover, even when
Assumption2 is not satisfied, numerous elements developed
in the following can be adapted to build generalized estima-
tors of the quadratic risk and of its gradient. Such strategies
to handle non full-rank operators will be further detailed in
Remark5.

2.2 Estimation Problem

Let x̂( y;Λ) be a parametric estimator of ground truth x̄ ∈ H,
defined in a unique manner from observations y ∈ G and
hyperparameters Λ ∈ R

L .

Remark 1 For instance, x̂( y;Λ) can be the penalized ordi-
nary least squares estimator, defined in (3). In this case
full-rank Assumption2 ensures the unicity of the minimizer.
Nevertheless, we emphasize that Sects. 2 and 3 address Prob-
lem (7) in a more general framework.

The possibility that the quantity of interest might be a
projection of x̄ on a the subspace I ofH is considered. One
can think, for instance, of the texture segmentation problem
presented in Sect. 4, in which fractal textures are character-
ized by their local regularity, constituting themain featurewe
are interested in, and their local variance, being an auxiliary
variable.

Definition 1 The linear operator Π : H → H performs
the orthogonal projection on subspace I capturing relevant
information about x̄. Moreover, from both Assumption2

123



Journal of Mathematical Imaging and Vision

and the projection operator Π, we define the linear opera-
tor A : G → H as the composition

A � Π
(

Φ∗Φ
)−1

Φ∗. (9)

The risk is defined as the projected estimation error made
on the quantity of interestΠ x̄ by the estimator, measured via
an ordinary squared �2-norm.

R[̂x](Λ) � Eζ ‖Π x̂( y;Λ) − Π x̄‖22 . (10)

Remark 2 Another usual definition of the risk involves the
inverse of the covariance matrix [29] through a Mahalanobis
distance writing

RM [̂x](Λ) � Eζ ‖Π x̂( y;Λ) − Π x̄‖2S−1 . (11)

requiring the knowledge of S−1, which might be non-
trivial or even inaccessible for correlated noise presenting
non-diagonal covariance matrix. Hence, our approach uses
exclusively ordinary quadratic risk defined in (10). Never-
theless, these two approaches, even though being different,
share interesting common points which will be mentioned
briefly in the following (see Remark3).

The aim of this work is automatic fine-tuning the regu-
larization parameters Λ in order to minimize the ordinary
risk (10) defined above. Yet in practice, the optimal regular-
ization parameters Λ† satisfying

Λ† ∈ Argmin
Λ∈RL

R[̂x](Λ) (12)

are inaccessible. In the following, we propose a detailed pro-
cedure to closely approachΛ†, by minimizing a Generalized
Stein Unbiased Risk Estimator approximating R[̂x](Λ).

2.3 Generalized Stein Unbiased Risk Estimator

The risk defined in (10) depends explicitly on ground truth x̄
and hence is inaccessible. Stein proposed an unbiased esti-
mator of this risk, known as Stein Unbiased Risk Estimator
(SURE) in the case of i.i.d.Gaussian noise, recalled inEq. (6).
This estimator was then extended to very general noise dis-
tributions (see, e.g., [29] for Exponential Families, including
Gaussian densities). In particular, when the noise ζ is Gaus-
sian, with possible non-trivial covariance matrix, Theorem1
provides a generalization of Stein’s original estimator, which
constitutes the starting point of this work.
Stein’s approach for risk estimation crucially relies on the
following hypothesis on estimator x̂( y;Λ):

Assumption 3 (Regularity and integrability) The estimator
x̂( y;Λ) is continuous and weakly differentiable with respect

to observations y = Φ x̄ + ζ . Moreover, the quantities
〈

A∗Π x̂( y;Λ), ζ
〉

and ∂ y x̂( y;Λ) are integrable with respect
to ζ against the Gaussian density:

1
√

(2π)P |detS| exp
(

−
‖ζ‖2S−1

2

)

dζ .

Theorem 1 Consider Model (1), together with Assump-
tions1 (Gaussianity), 2 (Full-rank), 3 (Integrability), and
linear operator A defined in (9). Then, generalized Stein’s
lemma is applied and leads to

R[̂x](Λ) = Eζ

[ ‖A (Φ x̂( y;Λ) − y)‖22 (13)

+ 2Tr
(SA∗Π∂ y x̂( y;Λ)

)− Tr(ASA∗)
]

,

the quantity in the brackets being the so-called Generalized
Stein Unbiased Risk Estimator.

Proof A detailed proof is provided in AppendixA. ��
Remark 3 Interestingly,when considering the squaredMaha-
lanobis distance in the definition of the risk (11), Stein
Unbiased Risk Estimator has the same global structure, yet,
instead of involving the covariance matrix S it involves its
inverse writing

˜R[̂x](Λ) = Eζ

[ ‖A (Φ x̂( y;Λ) − y)‖2S−1 (14)

+ 2Tr
(

A∗Π∂ y x̂( y;Λ)
)− Tr(AA∗)

]

.

2.4 Finite Difference Monte Carlo SURE

In the proposed SURE expression (13), the quantity
Tr
(SA∗Π∂ y x̂( y;Λ)

)

appearing in (13), called the degrees
of freedom, concentrates the major difficulties in computing
Stein’s estimator in data processing problems, as evidenced
by the prolific literature addressing this issue in the case
S ∝ I P [27,39,67,69]. Indeed, it involves the product of
the P × P matrix SA∗Π with the P × P Jacobian matrix
∂ y (̂x( y,Λ)). Not only the product of two P × P matrices
might be extremely costly in computational efforts but also
the Jacobian matrix, because of its large size, P 	 1, might
also be very demanding to compute (or even to estimate).
Two-step Finite Difference Monte Carlo strategy together
with Assumption4, enable to overcome these difficulties and
to build a usable Stein Unbiased Risk Estimator, denoted
̂Rν,ε( y;Λ|S), defined in Eq. (17).

Assumption 4 (Lipschitzian w.r.t. observations) Let x̂( y;Λ)

an estimator of x̄, depending on observations y, and
parametrized by Λ.

(i) The mapping y �→ x̂( y;Λ) is uniformly L1-
Lipschitz.
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(ii) ∀Λ ∈ R
L , x̂(0P ;Λ) = 0N , with 0N (resp. 0P ) the

null vector of H (resp. G).

Step 1 Trace estimation via Monte Carlo:
In theway to practical degrees of freedomestimation, the first
step is to remark that it is far less costly to compute the prod-
uct of the P × P matrix SA∗Π with ∂ y (̂x( y,Λ))[ε] ∈ R

P ,
the Jacobian matrix applied on a vector ε ∈ R

P . Further,
straightforward computation shows that if ε ∈ R

P is a nor-
malized random variable ε ∼ N (0P , I P ), and M ∈ R

P×P

any matrix, then

Tr(M) = Eε〈Mε, ε〉.

Thus, following the suggestion of [23,33,57], if one has
access to ∂ y (̂x( y,Λ)) [ε], then, since S is a covariance
matrix and hence is symmetric,

Tr
(SA∗Π∂ y x̂( y;Λ)

) = Eε

〈SA∗Π∂ y x̂( y;Λ)[ε], ε〉

= Eε

〈

A∗Π∂ y x̂( y;Λ)[ε],Sε
〉

,

(15)

and
〈

A∗Π∂ y x̂( y;Λ)[ε],Sε
〉

provides an estimator of degrees
of freedom.
Step 2
First-order derivative via Finite Differences: Second step con-
sists in tackling the problem of estimating ∂ y (̂x( y,Λ)) [ε]
when no direct access to the Jacobian ∂ y (̂x( y,Λ)) is pos-
sible. In this case, the derivative can be estimated using the
normalized random variable ε and a step ν > 0 making use
of Taylor expansion

x̂( y + νε;Λ) − x̂( y;Λ) �
ν→0

∂ y (̂x( y;Λ)) [νε]

⇐⇒ ∂ y x̂( y;Λ) [ε] = lim
ν→0

1

ν
(̂x( y + νε;Λ) − x̂( y;Λ)) .

It follows

Tr
(SA∗Π∂ y x̂( y;Λ)

)

= Eε lim
ν→0

1

ν

〈SA∗Π (̂x( y + νε;Λ) − x̂( y;Λ)) , ε
〉

= Eε lim
ν→0

1

ν

〈

A∗Π (̂x( y + νε;Λ) − x̂( y;Λ)) ,Sε
〉

.

(16)

Elaborating on Formula (16) and Assumption4, the fol-
lowing theorem provides an asymptotically unbiased Finite
Differences Monte Carlo estimator of the risk, which can be
used in a vast variety of estimation problems.

Theorem 2 Consider the observation Model (1), the linear
operatorA defined in (9) together with Assumptions1 (Gaus-
sianity),2 (Full-rank),3 (Integrability), and 4 (Lipschitzian-

ity w.r.t. y). Generalized Finite Differences Monte Carlo
SURE, writing

̂Rν,ε( y;Λ|S) � ‖A (Φ x̂( y;Λ) − y)‖22 (17)

+ 2

ν

〈

A∗Π (̂x( y + νε;Λ) − x̂( y;Λ)) ,Sε
〉− Tr(ASA∗),

is an asymptotically unbiased estimator of the quadratic risk
R[̂x](Λ) as ν → 0, meaning that

lim
ν→0

Eζ ,ε
̂Rν,ε( y;Λ|S) = R[̂x](Λ). (18)

Proof The proof of Theorem2 is postponed to AppendixB.
��

Remark 4 The use of Monte Carlo strategy is advocated in
[23] so that to reduce the complexity of SURE evaluation,
replacing costly P×P matrices product by products of P×P
matrix by vector of size P . Yet, the product of S ∈ R

P×P

with ε ∈ R
P , as well as the product of A∗Π ∈ R

P×N with
x̂( y;Λ) ∈ R

N , might still be extremely costly. Hopefully,
we will see that in data processing problems (e.g., for texture
segmentation in Sect. 4), both the covariance matrix S and
linear operator A (through the degradation Φ) benefit from
sufficient sparsity so that the calculations can be handled at
a reasonable cost.

Remark 5 In the case when Φ is not full-rank, i.e., Assump-
tion2 is not verified, it is possible to adapt the generalized
FDMC SURE of Eq. (17). A first possibility, explored in
[53,71,72], is to design a pseudo-inverse of Φ∗Φ, denoted
(

Φ∗Φ
)

inv, such that

(

Φ∗Φ
)

inv

(

Φ∗Φ
) ≈ I

is a reasonable approximation of the identity operator. Then,
one can define the operator Ainv = (Φ∗Φ

)

inv Φ∗, which can
be injected into the generalized FDMC SURE Formula (17)
in place of A. This approach leads to an approximated Stein
estimator of the quadratic risk. A second solution [77,78]
consists in replacing the quadratic risk in estimation, defined
in Eq. (10), by the following quadratic risk in prediction

Rpred [̂x](Λ) � Eζ ‖Φ x̂( y;Λ) − Φ x̄‖22 . (19)

Considering theobservationModel (1), togetherwithAssump-
tions1 (Gaussianity), 3 (Integrability), and 4 (Lipschitzianity
w.r.t. y), the generalized Finite Difference Monte Carlo
SURE in prediction, defined as

̂Rpred
ν,ε ( y;Λ|S) � ‖Φ x̂( y;Λ) − y‖22 (20)

+ 2

ν
〈Φ (̂x( y + νε;Λ) − x̂( y;Λ)) ,Sε〉 − Tr(S),

123



Journal of Mathematical Imaging and Vision

verifies

lim
ν→0

Eζ ,ε
̂Rpred

ν,ε ( y;Λ|S) = Rpred [̂x](Λ). (21)

The proof of this assertion can be obtained following a rea-
soning very similar to the proof of Theorem2 detailed in
AppendixB.

3 Stein’s Unbiased GrAdient Estimator of the
Risk (SUGAR)

From the estimator of the risk ̂Rν,ε( y;Λ|S) provided in
Sect. 2.3, basic grid search approach could be performed,
in order to estimate the optimal Λ†, as defined in (12). Yet,
the exploration of a fine grid of Λ ∈ R

L might be time-
consuming if the evaluation of x̂( y;Λ) is costly, which is
the case when x̂( y;Λ) is sequential, i.e., obtained from an
optimization scheme. Moreover, the size of a grid inRL with
given step size grows algebraically with L . Altogether, this
precludes grid search when L > 2.
Inspiring from [23], this section addresses this issue in the
extended case of correlated noise. We provide in Eq. (22) a
generalized estimator ∂Λ

̂Rν,ε( y;Λ|S) ∈ R
L of the gradient

of the risk with respect to hyperparameters Λ. Further, we
demonstrate that the FiniteDifferenceMonteCarlo estimator
∂Λ
̂Rν,ε( y;Λ|S) is an asymptotically unbiased estimator of

the gradient of the risk (10) with respect to Λ.
In Algorithm1, we provide an example of sequential estima-
tor, relying on an accelerated primal-dual scheme, designed
to solve (3), with its differentiated counterpart, providing
both x̂( y;Λ) and its Jacobianwith respect toΛ, ∂Λ x̂( y;Λ) ∈
R

N×L .
Hence, costly grid search can be avoided, the estima-
tion of Λ† being performed by a quasi-Newton descent,
described inAlgorithm3,whichminimizes the estimated risk
̂Rν,ε( y;Λ|S), making use of its gradient ∂Λ

̂Rν,ε( y;Λ|S).

3.1 Differentiation of Stein Unbiased Risk Estimate

Proposition 1 Consider the observationModel (1), the oper-
atorA defined in (9) together with Assumptions1 (Gaussian-
ity), 2 (Full-rank), 3 (Integrability), 4 (Lipschitzianity w.r.t.
y), and 5 (Lipschitzianity w.r.t. Λ). Then, the Finite Dif-
ference Monte Carlo SURE ̂Rν,ε( y;Λ|S), defined in (17),
is weakly differentiable with respect to both observations y
and parameters Λ, and its gradient with respect to Λ, as an
element of RL , is given by

∂Λ

[

̂Rν,ε( y;Λ|S)
]

(22)

� 2 (AΦ∂Λ x̂( y;Λ))∗ A (Φ x̂( y;Λ) − y)

+ 2

ν

(

A∗Π (∂Λ x̂( y + νε;Λ) − ∂Λ x̂( y;Λ))
)∗ Sε.

Proof ̂Rν,ε( y;Λ|S), the Finite Difference Monte Carlo
SURE defined by Formula (17), is a combination of continu-
ous and weakly differentiable functions with respect to both
observations y and parameters Λ, composed with (bounded)
linear operators, and thus is continuous and weakly differ-
entiable. Further, the derivation rules apply and lead to the
expression of Finite Difference Monte Carlo SUGAR esti-
mator given in Formula (22).

��
Assumption 5 (Lipschitzian w.r.t. Λ) Let x̂( y;Λ) be an esti-
mator of x̄, depending on observations y, and parametrized
by the hyperparameters Λ. The mapping Λ �→ x̂( y;Λ) is
uniformly L2-Lipschitz continuous with constant L2 being
independent of y.

Remark 6 As argued in [23], when the estimator x̂( y;Λ) can
be expressed as a (composition of) proximal operator(s) of
gauge(s) of compact set(s)1, Assumption5 holds. Thus, in the
case of (3) when G = H, Φ = IH, and ‖UΛx‖qq = λ‖x‖qq ,
for any q ≥ 1 the Lipschitzianity w.r.t. Λ is ensured. More-
over, in the case of Tikhonov regularization, i.e., q = 2 and
‖UΛx‖qq = λ‖Dx‖22 in (3), if Φ = IH and D∗D is diagonal-
izablewith strictly positive eigenvalues, thenAssumption5 is
verified.Apart from these twowell-knownexamples, proving
the validity of Assumption5 in the general case of penalized
least square is a difficult problem and is foreseen for future
work.

Theorem 3 Consider the observation Model (1), the opera-
tor A defined in (9) together with Gaussianity1, Full-rank2,
Integrability3, Lipschitzianity w.r.t. y4, and Lipschitzianity
w.r.t. Λ5 Assumptions.
Then, the generalizedFiniteDifferenceMonteCarloSUGAR,
∂Λ
̂Rν,ε( y;Λ) defined in Eq. (22), is an asymptotically unbi-

ased estimate of the gradient of the risk as ν → 0, that is

∂ΛR[̂x](Λ) = lim
ν→0

Eζ ,ε∂Λ
̂Rν,ε( y;Λ|S). (23)

Proof The proof of Theorem3 is postponed to AppendixC.
��

Remark 7 Finite Difference Monte Carlo estimator of the
gradient of the risk, ∂Λ

̂Rν,ε( y;Λ|S), defined in Eq. (22),
involves the Jacobian ∂Λ x̂( y;Λ) ∈ R

N×L which could be
a very large matrix, raising difficulties for practical use.
Nevertheless, in most applications, the regularization hyper-
parameters Λ ∈ R

L , have a “low” dimensionality L =
1 For C ⊂ G a non-empty closed convex set containing 0G , the gauge
of C is defined as γC( y) � inf {ω > 0 | y ∈ ωC}.
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O(1) � N . Thus, it is reasonable to expect that the Jacobian
matrix ∂Λ x̂( y;Λ) ∈ R

N×L can be stored and manipu-
lated, with similar memory and computational costs than for
x̂( y;Λ) (see Sect. 3.2).

Remark 8 Note that, even though, under i.i.d. noise assump-
tion, [23] proposed an asymptotically unbiased FDMC
SUGAR estimator, the proof derived in Appendix A of their
paper is limited to FD SUGAR estimator and does not dis-
cuss the case when Monte Carlo strategy is used. Hence, the
proof of Theorem3, when applied with a scalar covariance
matrix S = σ 2 I P , extends Theorem 1 of [23] to the situa-
tion in which Finite Difference and Monte Carlo strategies
are combined.

3.2 Sequential Estimators and Forward Iterative
Differentiation

The evaluation of ∂Λ
̂Rν,ε( y;Λ) from Formula (22) requires

the Jacobian ∂Λ x̂( y;Λ). Yet, when no closed-form expres-
sion of estimator x̂( y;Λ) is available, computing the gradient
∂Λ x̂( y;Λ) might be a complicated task. A large class of
estimators x̂( y;Λ) lacking closed-form expression are those
obtained as the limit of iterates as

x̂( y;Λ) = lim
k→∞ x[k]( y;Λ), (24)

for instance, when x̂( y;Λ) is defined as the solution of a
minimization problem, e.g., (3).
In the case when x̂( y;Λ) is a sequential estimator, given
an observation y, it is only possible to sample the function
Λ �→ x̂( y;Λ), for a discrete set of regularization hyperpa-
rameters {Λ1,Λ2, . . .}, running the minimization algorithm
for each hyperparameters Λ1,Λ2, . . .. It is a classical fact in
signal processing that no robust estimator of the differential
can be built from samples of the function; thus,more sophisti-
cated tools are needed. Provided some smoothness conditions
on the iterations of the minimization algorithm, iterative
differentiation strategy [23] gives access to a sequence of
Jacobian ∂Λ x̂[k]( y;Λ), relying on chain rule differentiation
presented in Proposition2.

Considering Problem (3), splitting algorithms [4,19,49]
are advocated to perform the minimization. We chose the
primal-dual scheme proposed in [16], Algorithm 2, tak-
ing advantage of closed-form expressions of the proximal
operators [60] of both the data-fidelity term and the penal-
ization2. Chambolle–Pock algorithm, particularized to (3),
is presented in Algorithm1. Further, Φ being full-rank
(Assumption2), denoting bySp(Φ∗Φ) the spectrumofΦ∗Φ,

2 see http://proximity-operator.net for numerous proximal operator
closed-form expressions.

γ = 2min Sp(Φ∗Φ) is strictly positive. Hence, the data-
fidelity in (3) term turns out to be γ -strongly convex, and the
primal-dual algorithm can be accelerated thank to Step (34)
of Algorithm1, following [16]. The iterative differentiation
strategy providing ∂Λx[k]( y;Λ) is presented in the second
part of Algorithm1. Other iterative differentiation schemes
are detailed in [23].

Proposition 2 Let Ψ : R
N×L → R

N be a differentiable
function of variables (x,Λ) ∈ H×R

L , and let
(

x[k])
k∈N be

the sequential estimator defined by iterations of the form

x[k+1] = Ψ (x[k];Λ). (25)

The gradient of x[k] with respect to Λ can be computed mak-
ing use of the chain rule differentiation

∂Λx[k+1] = ∂Λ

(

Ψ (x[k];Λ)
)

(26)

= ∂xΨ (x[k];Λ)[∂Λx[k]] + ∂ΛΨ (x[k];Λ),

where ∂xΨ (x;Λ)[δ] denotes the differential of Ψ with
respect to variable x applied on vector δ, and ∂ΛΨ (x;Λ)

the gradient of Ψ with respect to Λ. The differentiability of
Ψ should be understood in the weak sense.

Remark 9 Two particular cases are often encountered in iter-
ative differentiation (see Algorithm1):
(i) Linear operator Ψ (x;Λ) � UΛx. Assuming that
(x �→ UΛx)Λ is a family of linear operators, with a differ-
entiable parametrization by Λ, the chain rule writes

∂Λx[k+1] = UΛ∂Λx[k] + (∂ΛUΛ) x[k], (27)

since the differential of the linear operatorUΛ with respect to
x is itself. See (37) and (39), in Algorithm1 for applications
of the chain rule with linear operators.
(ii) Proximal operator Ψ (x;Λ) � proxτ‖·‖2,1(x). The
proximal operator being independent of Λ, the chain rule
simplifies to

∂Λx[k+1] = ∂xproxτ‖·‖2,1(x
[k])[∂Λx[k]]

with the differential of the so-called �2−�1 soft-thresholding
proxτ‖·‖2,1 with respect to x = (x1, x2), applied on δ =
(δ1, δ2) having the closed-form expression

∂xproxτ‖·‖2,1(x)[δ] =
⎧

⎨

⎩

0 if ‖x‖2 ≤ τ

δ − τ
‖x‖2

(

δ − 〈δ,x〉
‖x‖22

x
)

else.

(28)

See (38) and (40), inAlgorithm1 for applications of the chain
rule with proximal operators.
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Algorithm1 Accelerated primal-dual scheme for solving (3)
with iterative differentiation with respect to regularization
parameters Λ.

Routines: x̂( y; Λ) = PD( y,Λ)

(̂x( y; Λ), ∂Λ x̂( y; Λ)) = ∂PD( y,Λ)

Inputs: Observations y
Regularization hyperparameters Λ

Strong-convexity modulus of data-fidelity term
γ = 2min Sp(Φ∗Φ)

Initialization:Descent steps τ [0] = (τ
[0]
1 , τ

[0]
2 )

such that τ [0]
1 τ

[0]
2 ‖UΛ‖2 < 1

Primal, auxiliary and dual variables
x[0] ∈ H, w[0] = x[0], z[0] ∈ Q

Preliminaries: Jacobian with respect to Λ

∂Λx[0], ∂Λw[0], ∂Λ z[0]

for k = 1 to Kmax do

{Accelerated Primal-Dual}

z̃[k] = z[k] + τ
[k]
1 UΛw[k] (30)

z[k+1] = prox
τ

[k]
1

(‖·‖qq
)∗
(

z̃[k]
)

(31)

x̃[k] = x[k] − τ
[k]
2 U∗

Λ z[k+1] (32)

x[k+1] = prox
τ

[k]
2 ‖ y−Φ·‖22

(

x̃[k]) (33)

θ [k] =
(

1 + 2γ τ
[k]
2

)− 1
2

, (34)

τ
[k+1]
1 = τ

[k]
1 /θ [k], τ

[k+1]
2 = θ [k]τ [k]

2 (35)

w[k+1] = x[k] + θ [k] (x[k+1] − x[k]) (36)

{Accelerated Differentiated Primal-Dual}

∂Λ z̃[k] = ∂Λ z[k] + τ
[k]
1 UΛ∂Λw[k] + τ

[k]
1

∂UΛ

∂Λ
w[k] (37)

∂Λ z[k+1] = ∂̃zproxτ
[k]
1

(‖·‖qq
)∗
(

z̃[k]
) [

∂Λ z̃[k]
]

(38)

∂Λ x̃[k] = ∂Λx[k] − τ
[k]
2 U∗

Λ∂Λ z[k+1] − τ
[k]
2

∂UΛ

∂Λ
z[k+1] (39)

∂Λx[k+1] = ∂x̃proxτ
[k]
2 ‖ y−Φ·‖22

(

x̃[k]) [∂Λ x̃[k]] (40)

∂Λw[k+1] = ∂Λx[k] + θ [k] (∂Λx[k+1] − ∂Λx[k]) (41)

end for

Outputs: Finite-time solution of Problem (3)
x̂( y; Λ) � x̂[Kmax]
Finite-time Jacobian w.r.t. hyperparameters
∂Λ x̂( y; Λ) � ∂Λ x̂[Kmax]

Definition 2 (Generalized SURE and SUGAR for sequen-
tial estimators) Let x̂(
;Λ) be a sequential estimator in the
sense of (24). The associated risk estimate ̂Rν,ε( y;Λ|S) and
gradient of the risk estimate ∂Λ

̂Rν,ε( y;Λ|S) are computed
running Algorithm1 twice: first with input y (observations),
second with input y + νε (perturbed observations). Then,
generalized SURE is computed from Formula (17), and
generalized SUGAR from Formula (22). These steps are
summarized into routines, respectively, called “SURE” and
“SUGAR”, detailed in Algorithm2.

Algorithm 2 Generalized SURE and SUGAR for sequential
x̂( y;Λ).

Routines: ̂Rν,ε( y; Λ|S) = SURE( y,Λ,S, ν, ε)

∂Λ
̂Rν,ε( y; Λ|S) = SUGAR( y,Λ,S, ν, ε)

Inputs: Observations y
Regularization hyperparameters Λ

Covariance matrix S
Monte Carlo vector ε ∈ R

P ∼ N (0P , I P )

Finite Difference step ν > 0

{Solution of (3) from Algorithm1}

x̂( y; Λ) = PD( y,Λ) (42)

x̂( y + νε; Λ) = PD( y + νε,Λ) (43)

{Finite Difference Monte Carlo SURE (17)}

̂Rν,ε( y; Λ|S) = ‖A (Φ x̂( y; Λ) − y)‖22 (44)

+ 2

ν

〈

A∗Π (̂x( y + νε; Λ) − x̂( y; Λ)) ,Sε
〉− Tr(ASA∗)

{Solution of (3) and its differential w.r.t. Λ from Algorithm1}

(̂x( y; Λ), ∂Λ x̂( y; Λ)) = ∂PD( y,Λ) (45)

(̂x( y + νε; Λ), ∂Λ x̂( y + νε; Λ)) = ∂PD( y + νε,Λ) (46)

{Finite Difference Monte Carlo estimators (17) and (22)}

̂Rν,ε( y; Λ|S) = ‖A (Φ x̂( y; Λ) − y)‖22 (47)

+ 2

ν

〈

A∗Π (̂x( y + νε; Λ) − x̂( y; Λ)) ,Sε
〉− Tr(ASA∗)

∂Λ
̂Rν,ε( y; Λ|S) = 2 (AΦ∂Λ x̂( y; Λ))∗ A (Φ x̂( y; Λ) − y) (48)

+ 2

ν

(

A∗Π (∂Λ x̂( y + νε; Λ) − ∂Λ x̂( y; Λ))
)∗ Sε
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Output: Risk estimate ̂Rν,ε( y; Λ|S)

Gradient estimate ∂Λ
̂Rν,ε( y; Λ|S)

3.3 Automatic Risk Minimization

Theorem2 provides an asymptotically unbiased estimator of
the risk R[̂x](Λ), denoted ̂Rν,ε( y;Λ|S), based onFiniteDif-
ference Monte Carlo strategy. Hence, for sufficiently small
Finite Difference step ν > 0, we can expect that the solution
Λ† of Problem (7), minimizing the true risk, is well approxi-

mated by the hyperparameterŝΛ
†
ν,ε minimizing the estimated

risk

̂Λ
†
ν,ε( y|S) ∈ Argmin

Λ∈RL

̂Rν,ε( y;Λ|S). (49)

Then, since the dimensionality of Λ ∈ R
L is “low” enough

(see Remark7), Problem (49) is addressed performing a
quasi-Newton descent algorithm, using the estimated gradi-
ent of the risk ∂Λ

̂Rν,ε( y;Λ|S), provided by Theorem3. For
the interested reader, and in order to fix the notations, we pro-
vide in AppendixD a sketch of the quasi-Newton algorithm
of Broyden, Fletcher, Goldfarb and Shanno, particularized to
Problem (49).

Convergence conditions for quasi-Newton algorithms rely
on the behavior of second derivatives of the objective
function [48]. Most of the time, when it comes to sequen-
tial estimators, one has no information about the twice
differentiability of generalized SURE with respect to hyper-
parameters. Hence, the convergence of Algorithm3 will
be assessed numerically. Further, quasi-Newton algorithms
being known to be sensitive to initialization, special attention
needs to be paid to the initialization of both hyperparame-
ters Λ and approximated inverse Hessian H (introduced in
AppendixD), as will be detailed in Sect. 5.2.4.

Remark 10 Given a parametric estimator x̂( y;Λ), possibly
obtained by another routine than PD, Algorithm2 and Algo-
rithm3can be used, provided that one has a routine equivalent
to ∂PD, computing ∂Λ x̂( y;Λ). The reader can find other dif-
ferentiated proximal algorithms in [23].

4 Hyperparameter Tuning for Texture
Segmentation

The formalismproposed above for the automated selection of
the regularization hyperparameters is now specified to total-
variation-based texture segmentation. Section4.1 formulates
the texture segmentation problem as the minimization of
a convex objective function. Then, in Sect. 4.2, this seg-
mentation procedure is cast into the general formalism of

(a) Elliptic mask (b) X : Texture “D” (c) X : Texture “E”

Fig. 1 a Mask for piecewise textures composed of two regions:
“background” (in black) on which the texture is characterized by homo-

geneous local regularity h̄ ≡ H1 and local variance σ̄ 2 ≡ Σ
2
1 and

“foreground” (in white) on which the texture is characterized by homo-

geneous local regularity h̄ ≡ H2 and local variance σ̄ 2 ≡ Σ
2
2. b,

c Synthetic piecewise homogeneous textures used for performance
assessment, with resolution 256 × 256 pixels

Sects. 2 and 3 . The hypothesis needed to apply Theo-
rems2 and 3 is discussed one by one in the context of texture
segmentation. Finally, the practical evaluation of the estima-
tors of the risk ̂Rν,ε(
;Λ|S) and of the gradient of the risk
∂Λ
̂Rν,ε(
;Λ|S) is discussed in Sect. 4.3.

4.1 Total-Variation-Based Texture Segmentation

4.1.1 Piecewise Homogeneous Fractal Texture Model

Let X ∈ R
N1×N2 denote the texture to be segmented, consist-

ing of a real-valued discrete field defined on a grid of pixels
Ω = {1, . . . , N1} × {1, . . . , N2}. Texture X is assumed to
be formed as the union of M independent Gaussian textures,
existing on a set of disjoint supports,

Ω = Ω1 ∪ · · · ∪ ΩM ,

with Ωm ∩ Ωm′ = ∅ if m �= m′. (50)

Each homogeneous Gaussian texture, defined onΩm is char-
acterized by two global fractal features, the scaling (or Hurst)

exponent Hm and the variance Σ
2
m , that fully control its

statistics. Interested readers are referred to, e.g., [50] for the
detailed definition of Gaussian fractal textures. Figure1b, c
proposes examples of such piecewise Gaussian fractal tex-
tures, with M = 2 and mask shown in Fig. 1a.

4.1.2 Local Regularity andWavelet Leader coefficients

It was abundantly discussed in the literature (cf., e.g.,
[47,54,73–75]) that textures can be well-analyzed by local
fractal features (local regularity and local variance), that can
be accurately estimated from wavelet leader coefficients, as
extensively described and studied in, e.g., [56,75], to which
the reader is referred for a detailed presentation.

Let χ
(d)
j,n denote the coefficients of the undecimated 2D

discrete wavelet transform of image X , at octave j =
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j1, . . . , j2 and pixel n ∈ Ω , with the 2D-wavelet basis
being defined from the 4 combination (hence the orientations
d ∈ {0, 1, 2, 3}) of 1Dwaveletψ and scaling functions. Inter-
ested readers are referred to, e.g., [45] for a full definition of
the χ

(d)
j,n . Wavelet leaders, {L j,n, j = j1, . . . , j2, n ∈ Ω},

are further defined as local suprema over a spatial neighbor-
hood and across all finest scales of the χ

(d)
j,n [75]:

L j,n = sup
d = {1, 2, 3}
λ j ′,n′ ⊂ 3λ j,n

∣

∣

∣2 jχ
(d)

j ′,n′
∣

∣

∣ , (51)

where

⎧

⎨

⎩

λ j,n = [n, n + 2 j [,
3λ j,n = ∪

p∈{−2 j ,0,2 j }2
λ j,n+p.

Local regularity h̄n and local variance σ̄ 2
n at pixel n can be

defined via the local power law behavior of the wavelet lead-
ers across scales [74,75]:

L j,n = σ̄n2
j h̄nβ j,n, as 2 j → 0, (52)

where β j,n can be well approximated for large classes of
textures [73] as log-normal random variables, with log-
mean μ = 0. For piecewise fractal textures X described in
Sect. 4.1.1, local regularity h̄ ∈ R

N1×N2 and local variance
σ̄ 2 ∈ R

N1×N2 maps are piecewise constant, reflecting the
global scaling exponent H and variance Σ2 of the homoge-
neous textures as:

(∀m ∈ {1, . . . , M}) (∀n ∈ Ωm
)

h̄n ≡ Hm and σ̄ 2
n ≡ Σ

2
mF(Hm, ψ), (53)

with F(Hm, ψ) a deterministic function studied in [70] and
not of interest here.
Taking the logarithm of Eq. (52) leads to the following linear
formulation

� j,n = v̄n + j h̄n + ζ j,n, as 2 j → 0 (54)

with log-leaders � j,n = log2(L j,n), log-variance v̄n =
log2 σ̄n and zero-mean Gaussian noise ζ j,n = log2(β j,n). In
the following, the leader coefficients at scale 2 j are denoted

 j ∈ R

N1N2 , and the complete collection of leaders is stored
in 
 ∈ R

J N1N2 .

4.1.3 Total Variation Regularization and Iterative
Thresholding

The linear regression estimator inspired by (54)

(

̂hLR(
)

v̂LR(
)

)

= argmin
(

h
v

)

∈R2N1N2

j2
∑

j= j1

‖ jh + v − 
 j‖22 (55)

achieves poor performance in estimating piecewise constant
local regularity and local power, henceprecluding an accurate
segmentation of the piecewise homogeneous textures. Thus,
a functional for joint attribute estimation and segmentation
was proposed in [50], leading to the following Penalized
Least Squares (3):

(

̂h(
;Λ)

v̂(
;Λ)

)

∈ Argmin
(

h
v

)

∈R2N1N2

j2
∑

j= j1

‖ jh + v − 
 j‖22

+ λhTV(h) + λvTV(v), (56)

where TV stands for the well-known isotropic total variation,
defined as a mixed �2,1-norm composed with spatial gradient
operators

TV(h) =
∑

n∈Ω

√

(D1h)2n + (D2h)2n =
∑

n∈Ω

‖(Dh)n‖2, (57)

where D1 : RN1N2 → R
N1N2 (resp. D2 : RN1N2 → R

N1N2 )
stand for the discrete spatial horizontal (resp. vertical) gradi-
ent operator. This TV-based penalized least square estimator
is designed to favor piecewise constancy of the estimateŝh
and v̂, making used of �1-norm, i.e., q = 1 in (3).
Finally, following [14,15], the estimate ̂h(
;Λ) is thresh-
olded to yield a posterior piecewise constant map of local
regularity T̂h(
;Λ), taking exactly M different values
̂H1(
;Λ), . . . , ̂HM (
;Λ). The resulting segmentation

Ω = ̂Ω1(
;Λ) ∪ · · · ∪ ̂ΩM (
;Λ) (58)

is deduced from T̂h(
;Λ), defining

(∀m ∈ {1, . . . , M}) ,

̂Ωm(
;Λ) =
{

n ∈ Ω

∣

∣

∣

(

T̂h(
;Λ)
)

n ≡ ̂Hm(
;Λ)
}

. (59)

This is illustrated in Fig. 2, for a two-region synthetic texture
with ground truth piecewise constant local regularity h̄ in
Fig. 2a.
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h̄(a) Ground truth (b) Estim. h( ;Λ) (c) Th( ;Λ)

Fig. 2 Example of the thresholding of the estimatêh(
; Λ) to obtain
a two-level estimate T̂h(
; Λ) (and hence a two-region segmentation)
where 
 denotes the wavelet leaders associated with the Texture X : “E”
displayed in Fig. 1c

4.2 Reformulation in Terms of Model (1)

4.2.1 Observation y

Tocast the log-linear behavior (54) into the generalmodel (1),
vectorized quantities for v̄, h̄ and 
 are used. The N1 × N2

maps h̄ and v̄ are reshapped into vectors x̄ ∈ R
N , with N =

2N1N2, ordering the pixels in the lexicographic order. The
log-leaders 
 = (
 j

)

j1≤ j≤ j2
, composed of J � j2 − j1 + 1

octaves of resolution N1 × N2 are vectorized, octaves by
octaves, with lexical ordering of pixels, 
 ∈ R

P , with P =
J N1N2.

Equation (54) can then be cast into general model (1) as:

Observations y = 
 ∈ R
P , P = J N1N2 (60)

Ground truth x̄ =
(

h̄
v̄

)

∈ R
N , N = 2N1N2 (61)

Linear degradation Φ :
⎧

⎨

⎩

R
N → R

P
(

h̄
v̄

)

�→ (

j h̄ + v̄
)

j1≤ j≤ j2
.

(62)

4.2.2 Full-Rank Operator8

Proposition3 asserts that Φ∗Φ is invertible (Assumption2).

Proposition 3 The linear operator Φ defined in (62) is
bounded, and its adjoint is written as

Φ∗ :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

R
P → R

N

(


 j
)

j1≤ j≤ j2
�→
⎛

⎜

⎝

∑ j2
j= j1

j
 j

∑ j2
j= j1


 j

⎞

⎟

⎠

(63)

Further, Φ is full-rank, and the following inversion formula
holds

(

Φ∗Φ
)−1 = 1

F2F0 − F2
1

(

F0 IN/2 −F1 IN/2

−F1 IN/2 F2 IN/2

)

, (64)

Fα �
j2
∑

j= j1

jα, α ∈ {0, 1, 2}.

Proof Formula (63) is obtained from straightforward com-
putations. Then, combining (62) and (63), leads to

Φ∗Φ =
(

F2 IN/2 F1 IN/2

F1 IN/2 F0 IN/2

)

(65)

which is finally inverted using the 2 × 2 cofactor matrix
formula. ��

4.2.3 Projection Operator

Performing texture segmentation the discriminant attribute
is the local regularity h, while local power v is an auxiliary
feature. Hence, the projected quadratic risk (10) customized
to texture segmentation reads:

R[̂h](Λ) � Eζ

∥

∥̂h(
;Λ) − h̄
∥

∥

2
2 , (66)

witĥh(
;Λ) defined in (56).
Then, the particularized projection operator inDefinition1

takes the matrix form

Π �
(

IN/2 ZN/2

ZN/2 ZN/2

)

so that Π

(

h̄
v̄

)

=
(

h̄
0N/2

)

(67)

where IN/2 (resp. ZN/2) denotes the identity (resp. null)
matrix of size N/2× N/2 and 0N/2 the null vector of RN/2.

4.2.4 Regularity of the Estimates

Proposition 4 Problem (56) has a unique solution

(

̂h(
;Λ)

v̂(
;Λ)

)

.

This solution is continuous and weakly differentiable w.r.t.

 and integrable against the Gaussian probability density
function (Assumption3). Further, both ̂h(
;Λ) and v̂(
;Λ)

are uniformly L1-Lipschitz w.r.t. 
 (Assumption4).

Proof As shown in [50], the objective function

(h, v) �→
j2
∑

j= j1

‖ jh + v − 
 j‖22
︸ ︷︷ ︸

∥

∥

∥

∥

Φ

(

h
v

)

−


∥

∥

∥

∥

2

2

+λhTV(h) + λvTV(v) (68)

is convex, being the sumof convex terms. Further, computing
the eigenvalues of Φ∗Φ shows that the least squares data
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fidelity term is γ -strongly convex, with

γ = 2min Sp(Φ∗Φ) > 0 (69)

where Sp(Φ∗Φ) stand for the spectrum of the (bounded)
linear operatorΦ∗Φ. Hence, the objective function (68) has a
unique minimum, being the unique solution of Problem (56),
as mentioned in Remark1.
Further, (56) falls under the general formulation of Penalized
Least Squares (3), which can be written

x̂( y;Λ) = argmin
x∈H

‖ y − Φx‖2W + JΛ(x), (70)

where JΛ(x) = ‖UΛx‖1 is built from a linear operator UΛ

depending on regularization parameters λh and λv as

Λ =
(

λh
λv

)

∈ R
2+, and (71)

UΛ =
⎧

⎨

⎩

R
2N1N2 → R

2N1N2 × R
2N1N2

(

h
v

)

�→
((

λhD1h
λvD1v

)

,

(

λhD2h
λvD2v

))

.
(72)

JΛ is convex, proper and lower semicontinuous, then follow-
ing [69], (70) can be rewritten as a constrained optimization
problem

(̂x( y;Λ), ẑ( y;Λ)) = argmin
x∈H,z∈G

‖ y − z‖2W + JΛ(x),

such that z = Φx (73)

⇐⇒ ẑ( y;Λ) = argmin
z∈G

‖ y − z‖2W + (ΦJΛ) (z)

(74)

⇐⇒ ẑ( y;Λ) = prox(1/2)ΦJΛ
( y) (75)

where

(ΦJΛ) (z) � min{x|Φx=z}JΛ(x) (76)

denotes the pre-image of JΛ under Φ, which is as well con-
vex, proper and lower semicontinuous.
Then, from (75), the estimator ẑ( y;Λ) is non-expansive, i.e.,
1-Lipschitz, because the proximal operators share that same
property. Moreover, from (73), ẑ( y;Λ) = Φ x̂( y;Λ), and
since Φ is full-rank according to Proposition3

x̂( y;Λ) = (Φ∗Φ
)−1

Φ ∗̂z( y;Λ). (77)

Φ being bounded, we conclude that the estimator x̂( y;Λ)

is uniformly L1-Lipschitz, with L1 = ‖Φ‖−1 justifying
Assumption4, (i).
Being uniformly L1-Lipschitz, x̂( y;Λ) is continuous and
weakly differentiable (see Theorem 5 of Section 4.2.3

in [31]). As a consequence, both
〈

A∗Π x̂( y;Λ), ζ
〉

and
∂Λ x̂( y;Λ) are integrable against the Gaussian density and
Assumption3 holds.
Finally, setting y = 0P , for any Λ ∈ R

L , x̂(0P ;Λ) = 0N
reaches theminimum.The solution beingunique fromPropo-
sition3, 0N is the unique solution and Assumption4, (ii) is
verified.
Further, it is reasonable to expect that the uniform Lip-
schitzianity with respect to hyperparameters results of
Remark6, extend to the estimator ̂h(
;Λ), defined in (56).
Yet, to the best of our knowledge, no direct proof that Lip-
schitzianity Assumption5 holds for general penalized least
squares exists. This issue is a scientific question in itself and
will be addressed in future work. ��

4.3 Practical Computation of̂R�," and@3̂R�,"

This section addresses all technical issues encountered in
running Algorithm2, in the context of texture segmentation
described above.

4.3.1 Covariance Structure of the Observations

The additive noise ζ j,n appearing in Eq. (54) being Gaussian,
Gaussianity Assumption1 holds. The covariancematrixS of
noise ζ reads

S j ′,n′
j,n � E ζ j,nζ j ′,n′ = C j ′

j Ξ
j ′
j (n − n′), (78)

where

C j ′
j � E ζ j,nζ j ′,n, C j ′

j independent of n (79)

quantifies the inter-scale covariance, andΞ
j ′
j encapsulate the

stationary spatial correlations, with correlation length pro-
portional to max(2 j , 2 j ′).

4.3.2 Matrix ProductS"

Following Remark4, in general, the direct product Sε

required for the practical evaluation of Finite Difference
Monte Carlo SURE (17) is intractable because of the large
size of matrix S. Yet, in the case of log-leaders, the spatial
correlations presenting the Toeplitz structure (78), the prod-
uct Sε can be computed efficiently, making (17) usable in
practice.
Indeed, given ε ∈ R

J N1N2 = (ε j
) j2
j= j1

, with ε j ∈ R
N1N2 ,

(Sε) j,n =
j2
∑

j ′= j1

∑

n′∈Ω

S j ′,n′
j,n ε j ′,n′
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=
j2
∑

j ′= j1

C j ′
j

∑

n′∈Ω

Ξ
j ′
j (n − n′)ε j ′,n′

=
j2
∑

j ′= j1

C j ′
j Ξ j, j ′ ∗ ε j . (80)

which is the sum of J convolution products, denoted ∗, of
high-dimensional vector ε ∈ R

N1N2 with “low-dimensional”

finite support window C j ′
j Ξ j, j ′ . Hence, evaluating Sε

appears to be far less costly than a general product of matrix
of size P × P by a vector of size P .

4.3.3 Operator A

In the same vein, the matrices Φ∗ (63),
(

Φ∗Φ
)−1 (64) and

Π (67) turn out to be very sparse, since they act independently
on each pixel. Thus, the same sparse (pixel-wise) structure
follows for

A = Π
(

Φ∗Φ
)−1

Φ∗

= 1

F0F2 − F2
1

(

(F0 + j1F1)IN/2 · · · (F0 + j2F1)IN/2
ZN/2 · · · ZN/2

)

.

(81)

Hence, the products A∗Π x̂( y;Λ) and A∗Π∂Λ x̂( y;Λ),
appearing in the Finite Difference Monte Carlo risk (17) and
gradient of the risk (22) estimators, are very cheap to com-
pute, involving O(N ) operations.

4.3.4 Evaluation of Tr(ASA∗)

The evaluation of risk estimate ̂Rν,ε(
;Λ|S), at Step (45)
of generalized SURE and SUGAR Algorithm2 requires the
computation of the trace of an N×N matrix, with N possibly
of order 106, e.g., in image processing.
In the present application, combining the structure of covari-
ance matrix S (78) and the sparse expression of A (81),
provides a compact expression of the third term of gener-
alized SURE (17) detailed in Proposition5, which can be
evaluated with very little computational effort.

Proposition 5 Consider texture’s leader coefficients (54),
whose covariance matrix S evidences the sparse structure
described in (78). Define the linear operator A from For-
mula (9), using operator Φ (62) and projector Π (67). Then,
the third term of Stein estimator of the risk (17) reads

Tr(ASA∗) (82)

= N/2
(

F0F2 − F2
1

)2

⎛

⎝

∑

j, j ′

(

F2
1 C j ′

j − 2F0F1 j
′C j ′

j + F2
0 j j ′C j ′

j

)

⎞

⎠ ,

where the quantities {Fα, α = 0, 1, 2} are defined in (64)
and C j ′

j denotes the covariance between scales 2 j and 2 j ′ ,
as defined in (79).

Proof Proof is postponed to AppendixE. ��

5 Hyperparameter Tuning Performance
Assessment

The aim of this section is to assess quantitatively, by means
of numerical simulations, the performance in the estimation
of the optimal hyperparameters. To that end, Sect. 5.1 will
detail the numerical simulation setup and Sect. 5.2 will con-
centrate on several algorithmic issues. Section5.3 will show
on the prominent role of covariance matrix S, evaluating the
impact of partial vs. full covariance matrix in Sect. 5.3.2 and
comparing true vs. estimated covariancematrix in Sect. 5.3.3.
Section5.4 will further assess quantitatively how well opti-
mal hyperparameters are estimated in the absenceof available
ground truth, with respect to different quality metrics.

5.1 Numerical Simulation Set-Up

5.1.1 Textures

For sake of simplicity, we consider the two-region case M =
2, with elliptic mask displayed in Fig. 1a. Synthetic textures
of resolution N1 × N2 = 256 × 256, characterized by two
attributes configurations:

– Configuration “D”, “difficult”, one realization being dis-
played in Fig. 1b

(

H1,Σ
2
1

)

= (0.5, 0.6) (background),
(

H2,Σ
2
2

)

= (0.75, 0.7) (central ellipse).

– Configuration “E”, “easy”, one realization being dis-
played in Fig. 1c

(

H1,Σ
2
1

)

= (0.5, 0.6) (background),
(

H2,Σ
2
2

)

= (0.9, 1.1) (central ellipse).

are generated from a Matlab routine designed by ourselves
(see [50]).

5.1.2 Multiscale Analysis

A 2D undecimated wavelet transform of the textured image
is computed at scale 2 j , with mother wavelet obtained as a

123



Journal of Mathematical Imaging and Vision

tensor product of 1D least asymmetric Daubechies wavelets,
with 3 vanishing moments, see [45] for more details.

5.1.3 Performance Evaluation

Following [50,52], for a given textured image X , and the
derived log-leaders

(


 j
) j2
j= j1

, two performance indices are
used:

– The one-sample quadratic risk on local regularity, com-
puted from one sample of log-leaders 
 computed on the
single image X

R(
;Λ) �
∥

∥̂h(
;Λ) − h̄
∥

∥

2
2 , (83)

with estimator̂h(
;Λ) defined in (56) and ground truth
h̄ defined in (53).

– The segmentation error, defined as the percentage of
incorrectly classified pixels

P(
;Λ) �
∣

∣Ω1 ∩ ̂Ω2(
;Λ)
∣

∣+ ∣∣ ̂Ω1(
;Λ) ∩ Ω2
∣

∣ , (84)

where ∪m ̂Ωm(
;Λ) is the estimated partition (58),
obtained from TV-based texture segmentation, as
described in Sect. 4.1.3.

Remark 11 The experiments presented in Sects. 5.3 and 5.4
are performed on two-region synthetic textures, but the auto-
mated selection strategy is perfectly appropriate for general
M-region segmentation. Since the selectionof optimal hyper-
parameters relies on the minimization of Generalized SURE,
which only involves the regularized estimatêh(
;Λ), it can
be performed in the exact same way. The only minor change
appears in the thresholding post-processing step of Eq. (59)
providing the final segmentation, inwhichM might be differ-
ent from two (see Sect. 5.5 for an illustration of three-region
segmentation).

Remark 12 By definition of the quadratic risk (66) and one-
sample quadratic risk (83), EζR(
;Λ) = R[̂h](Λ). In
practice, however, only one realization of 
 is available;
hence, the quadratic risk R[̂h](Λ) is not accessible. Thus,
in the following experiments, the one-sample quadratic risk
R(
;Λ), defined in (83), is used as a reference towhich Stein
risk estimator ̂Rν,ε(
;Λ|S) will be compared.

5.2 Algorithmic Set-Up

5.2.1 Primal Dual with Iterative Differentiation

Problem (56) is solved using the accelerated primal-dual
algorithm1, with primal variable x � (h, v), taking advan-
tage of strong-convexity of the data fidelity term. The

maximal number of iterations is set to Kmax = 5 105, and
a threshold on the normalized duality gap is set to 10−4 (see
[50]).

5.2.2 Scaling Range

The estimation of piecewise constant local attributes requires
to focus on fine scales. Thus, ideally, the least square
term (55)would involve the twofinest scales of themultiscale
representation, and range from j1 = 1 to j2 = 2. Yet, the effi-
ciency of acceleration strategy of Algorithm1 increases with
the strong-convexity modulus γ (69), displayed in Table1,
which is observed to increase with j2, as j1 = 1 is fixed.
Thus, a trade-off between locality and convergence speed
leads to select j2 = 3.

5.2.3 Finite Difference Monte Carlo Parameters

The Monte Carlo vector ε ∈ R
P , P = J N1N2, is drawn

randomly, according to a i.i.d. zero-mean normalized Gaus-
sianN (0P , I P ). We adapt the heuristic of [23] or the Finite
Difference step ν to the case of correlated noise as

ν = 2

Pα
max

(
√

C j
j , j ∈ {1, . . . , J }

)

, α = 0.3, (85)

where C j
j is the variance of the log-leaders 
 j at scale 2 j .

The derivatives with respect to hyperparameters of the esti-
mates, ∂Λ

̂h, ∂Λv̂, are obtained by iterative differentiation of
primal dualAlgorithm1, customized to texture segmentation.

5.2.4 BFGS Quasi-Newton Initialization and Parameters

To perform the risk minimization sketched in Algorithm3,
we used the GRadient-based Algorithm for Non-Smooth
Optimization, implemented in GRANSO toolbox3, from the
BFGS quasi-Newton algorithm proposed in [21]. It con-
sists of a low-memory BFGS algorithmwith box constraints,
enabling to enforce positive λh and λv . The maximal num-
ber of iterations of BFGS Algorithm3 is set to Tmax = 250,
while the stopping criterion on the gradient norm is set to
10−6.
As mentioned in Sect. 3.3, the initialization of quasi-Newton
algorithmsmight drastically impact their convergence.Hence,
we propose a model-based strategy for initializing Λ and H .
The initialization of λh and λv is performed by balancing
the data fidelity term and the penalization appearing in func-
tional (68). The data fidelity term grows like the variance of

3 http://www.timmitchell.com/software/GRANSO/.
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Table 1 Strong-convexity modulus γ of data-fidelity term of (68), computed from Formula (69), for fixed j1 = 1 and varied j2

j2 = 2 j2 = 3 j2 = 4 j2 = 5 j2 = 6

γ 0.29 0.72 1.20 1.69 2.20

The bold entry corresponds to the range of scales used in the experiments of Sect. 5

the noise

E

j2
∑

j= j1

‖ j h̄ + v̄ − 
 j‖22 = tr(S), (86)

and the penalization term can be evaluated using the linear
regression estimates

(

̂hLR, v̂LR
)

introduced in (55). Thus, the
initial hyperparameters Λ for BFGS Algorithm3 are set to

Λ[0] =
(

λ
[0]
h , λ[0]

v

)

, (87)

where λ
[0]
h = tr(S)

2 TV(̂hLR(
))
, and λ[0]

v = tr(S)

2 TV(̂vLR(
))
.

The inverse Hessian matrix H [0] ∈ R
2×2, is initialized to

enforce Λ[1] = (1 ± κ)Λ[0]. It is chosen diagonal with
coefficients

H [0] = diag

(∣

∣

∣

∣

∣

κλ
[0]
h

∂λh
̂Rν,ε(
;Λ[0]|S)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

κλ
[0]
v

∂λv
̂Rν,ε(
;Λ[0]|S)

∣

∣

∣

∣

∣

)

.

(88)

In practice, we used κ = 0.5 for all experiments. It
is observed that this choice of H [0] avoids the first itera-
tion falling away from natural hyperparameters scaling (87),
whichwould induce huge computational cost to reach to opti-
mal hyperparameters.

5.3 Covariance of Leaders

In the present section, the accuracy of the proposed Gen-
eralized SURE for the estimation of the quadratic risk is
investigated, dependingon the covariance structure taken into
account.We are both interested in the fair reproduction of the
profile of the quadratic risk as well as in the efficiency of grid
search strategy on Generalized SURE estimators to estimate
the optimal hyperparameters Λ† defined at Eq. (7).

5.3.1 Covariance Estimation Procedure

No closed-form formula exists to compute exactly the covari-
ance matrix S from the texture’s attributes. Hence, from one
sample 
, computed from a single texture X , the estimated
covariancematrix, denoted̂S , is computed using classic sam-

ple covariance estimator:

̂S j ′,n′
j,n � 1

|Ω|
∑

n∈Ω

� j,n� j ′,n+δn (89)

−
⎛

⎝

1

|Ω|
∑

n∈Ω

� j,n

⎞

⎠

⎛

⎝

1

|Ω|
∑

n∈Ω

� j ′,n

⎞

⎠ ,

for spatial lag δn � n′ − n, leading to inter-scale covariance

̂C j ′
j = ̂S j ′,n

j,n (90)

and spatial correlations

̂Ξ
j ′
j (δn) =

̂S j ′,n′
j,n

̂C j ′
j

. (91)

Then, for Textures “D” and “E”, a true covariance matrix
S is obtained numerically by averaging the above-estimated

covariance matrix ̂S(q)
over Q = 5000 texture samples as:

S �
〈

̂S(q)
〉Q

q=1
, (92)

the samples being generated with the mathematical model of
[50].

Remark 13 The above estimation procedure provides covari-

ance matrices ̂S(q)
and S which are full. Hence, they do

not benefit from the sparse structure described in Sect. 5.3.3
required to applyFormula (80).However,when δn = n′−n is
larger than max(2 j , 2 j ′), the estimated correlations between

� j,n and � j ′,n′ , corresponding to ̂S j ′,n′
j,n , are negligible. Thus,

the expected sparse structure described in Section 4.3.1
is enforced setting negligible coefficients to zero, finally
enabling to use Formula (84) in the practical evaluation of
Generalized SURE and SUGAR.

5.3.2 Impact of Partial Versus Full Covariance on Estimated
Risk

We now assess the impact of using two partial versions of
the full true covariance matrix S, described in (92):
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1. VariancematrixSvar neglecting both inter-scale and spa-
tial correlations, reduces to the variances C j

j of the 
 j ’s,
and hence is diagonal

Svar
j ′,n′
j,n = C j

j δ j, j ′δn,n′ . (93)

2. Inter-scale covariancematrixS int, neglecting spatial cor-

relations, reduces to cross-correlations C j ′
j between the


 j ’s and the 
 j ′ ’s at the same location

Sint
j ′,n′
j,n = C j ′

j δn,n′ . (94)

A grid of 20×20 regularization parametersΛ = (λv, λh),
logarithmically spaced between 5 ·10−4 and 102 is explored.
For each couple of parameters, we compute the quadratic
risk, the generalized SURE estimator from either the partial
or full matrix and the segmentation error rate. The result-
ing maps are displayed in Fig. 3. Then, grid searches are
performed to compute the minimum of each maps, denoted
̂Λ
GRID

.
For Texture “D,” both ̂Rν,ε(
;Λ|Svar) (Fig. 3e) and

̂Rν,ε(
;Λ|S int) (Fig. 3i) fail to reproduce R(
;Λ) (Fig. 3a).

Hence, the selected hyperparameters ̂Λ
GRID
ν,ε (
|Svar) (‘�’)

and ̂Λ
GRID
ν,ε (
|S int) (‘�’) do not coincide with the optimal

ΛR (‘+’). The corresponding segmentations,

T̂h(
;̂ΛGRID
ν,ε (
|Svar)) (Fig. 3f) and T̂h(
;̂ΛGRID

ν,ε (
|S int))

(Fig. 3j), differ significantly from the targeted T̂h(
;ΛR)

(Fig. 3b).
On the opposite, ̂Rν,ε(
;Λ|S) (Fig. 3m) perfectly matches
R(
;Λ) (Fig. 3a). Thanks to the exact computation of the
constant term Tr(ASA∗) in Proposition5, the order of mag-
nitude R(
;Λ) is well reproduced by
̂Rν,ε(
;Λ|S), as observed on the colorbars in Fig. 3. Fur-

ther, ̂Λ
GRID
ν,ε (
|S int) (‘�’) coincides with ΛR (‘+’), leading

to segmentation T̂h(
;̂ΛGRID
ν,ε (
|S)) (Fig. 3n) similar to

T̂h(
;ΛR) (Fig. 3b).
Similar observations can be made for Texture “E” at
columns 3, 4 of Fig. 3.

Altogether, these two examples illustrate that the full
covariance is necessary so that ̂Rν,ε(
;Λ|S) provides an
accurate estimate of R(
;Λ). Moreover, ΛR appears to
be well approximated by the optimal hyperparameters
ΛGRID

ν,ε (
|S), obtained using full covariance.

5.3.3 Impact of Estimating the Covariance Matrix

In practice, on has access to only the estimated covari-
ance matrix ̂S. This section compares generalized SURE
computed from estimated covariance ̂S to SURE computed
assuming the knowledge of true covariance S.

For Texture “D”, ̂Rν,ε(
;Λ|̂S) (Fig. 4b) is identical to
̂Rν,ε(
;Λ|S) (Fig. 4a). Further, optimal hyperparameters
̂Λ
GRID
ν,ε (
|̂S) (‘�’) perfectly matches
̂Λ
GRID
ν,ε (
|S) (‘�’) and lead to similar segmentations, T̂h

(
;̂ΛGRID
ν,ε (
|̂S)) (Fig. 4f) and T̂h(
;̂ΛGRID

ν,ε (
|S)) (Fig. 4e).
These observations are precisely quantified in Table2 in
terms of values of R(
;Λ) and percentage of misclassified
pixels. The same observations can be made for Texture “E”.

Altogether, Fig. 4 and the quantitative results reported in
Table2 show that ̂Rν,ε(
;Λ|̂S) provides an accurate estimate

of R(
;Λ), and that ̂Λ
GRID
ν,ε (
|̂S) is a good estimate of ΛR.

5.4 Automated Selection of Hyperparameters

Section5.3 has shown the relevance of Algorithm3 by com-
paring its performance against those obtained from a grid
search on hyperparameters Λ. Section5.4 will now test the
practical effectiveness of the proposed procedure by assess-
ing the convergence of the quasi-Newton algorithm and
corresponding performance in hyperparameter selection and
segmentation, avoiding the recourse to any ground truth and
hence to the greedy and unfeasible grid search.

5.4.1 Effective Convergence of Quasi-Newton Algorithm

The convergence of quasi-Newton Algorithm3 is assessed
empirically comparing automatically selected hyperparam-

eters ̂Λ
BFGS
ν,ε with optimal hyperparameters found from

exhaustive grid search ̂Λ
GRID
ν,ε .

Figure4a, b illustrates that ̂Λ
BFGS
ν,ε (
|S) (‘�’) and ̂Λ

BFGS
ν,ε

(
|̂S) (‘�’), respectively, match ̂Λ
GRID
ν,ε (
|S) (‘�’) and

̂Λ
GRID
ν,ε (
|̂S) (‘�’) in the case of Texture “D”. Similar con-

clusions can be drawn from Fig. 4c, d for Texture “E”.
Figure4 and the quantitative results provided in Table2

show the convergence of Algorithm3 using S (resp. ̂S)
toward the minimum of ̂Rν,ε(
;Λ|S) (resp. ̂Rν,ε(
;Λ|̂S)).

5.4.2 Computational Cost

For a given image of 256 × 256 pixels, the exploration of
the considered 20 × 20 regularization parameters grid was
performed in 38 h using Matlab2020b on a standard desk
computer, equipped of an Intel® Core™ i5 processor with a
maximum frequency of 2.30 Hz. Algorithm3 for automated
tuning of hyperparameters, required 37 calls of Algorithm1
(compared to 400 calls for grid search) and converged in
almost 1 h when run on the same computer. Thus, the quasi-
Newton strategy enables to reach similar performance in
minimizing the generalized SURE with a computation time
divided by a factor of 40.
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Texture “D” Texture “E”

(a) R( ;Λ) R ‘+’ (c) R( ;Λ) R ‘+’

(e) Rν,ε( ;Λ|Svar) R.(·|Svar) ‘ ’ (g) Rν,ε( ;Λ|Svar) R.(·|Svar) ‘ ’

(i) Rν,ε( ;Λ|Sint) R.(·|Sint) ‘ ’ (k) Rν,ε( ;Λ|Sint) R.(·|Sint) ‘ ’

Rν,ε( ;Λ|S) R.(·|S) ‘ ’ (o) Rν,ε( ;Λ|S) R.(·|S) ‘ ’

(q) P( ;Λ) P ‘∗’ (s) P( ;Λ)

(b) Min. (d) Min.

(f) Min. (h) Min.

(j) Min. (l) Min.

(m) (n) Min. (p) Min.

(r)Min. (t) Min. P ‘∗’

Fig. 3 Error maps for TV-based texture segmentation on a grid of
Λ = (λh, λv), and segmentation obtained with associated optimal
hyperparameters for piecewise Textures “D” (column 1, 2) and “E”

(column 3, 4). Estimated risks ̂Rνε(
; Λ|S) computed either with vari-
ance matrixSvar (second row), inter-scale covariance matrixS int (third
row), or full covariance matrix S (fourth row) are compared
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Texture “D” Texture “E”

(a)Rν,ε( ;Λ|S) (b)Rν,ε( ;Λ|S) (c)Rν,ε( ;Λ|S) (d)Rν,ε( ;Λ|S)

R.(·|S) ‘ ’ R.(·|S) ‘ ’ R.(·|S) ‘ ’ R.(·|S) ‘ ’

’ ’ ’ ’

(m)RS
ν,ε( ;Λ|S) (n)RS

ν,ε( ;Λ|S) (o)RS
ν,ε( ;Λ|S) (p)RS

ν,ε( ;Λ|S)

RS
. (·|S) ‘ ’ RS

. (·|S) ‘ ’ RS
. (·|S) ‘ ’

(e)Min. (f)Min. (g)Min. (h)Min.

(i)Auto. selec. ‘ (j)Auto. selec. ‘ (k)Auto. selec. ‘ (l)Auto. selec. ‘

(q)Min. (r)Min. (s)Min. (t)Min. RS
. (·|S) ‘ ’

Fig. 4 Generalized SURE computed either from true covariance
matrix S (92), or from estimated covariance matrix ̂S (89) for Tex-
tures “D” and “E” (first row). Segmentations obtained minimizing
the above generalized SURE (second row). Segmentations obtained
with automated selection of hyperparameters from Algorithm3, using

generalized SUGAR with either true covariance matrix or estimated
covariance matrix (third row). Generalized SURE computed and mini-
mized on a subsampled grid for the true and the estimated covariance
matrices (fourth row). Segmentations obtained minimizing the above
generalized SURE on the subsampled grid (fifth row)
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Table 2 Grid search v.s. BFGS Algorithm3 performance in terms of quadratic errorR(
; Λ) and segmentation error P(
; Λ) for the two different
Textures “D” and “E”

Hyperparameter Λ Texture “D” Texture “E”

R(
; Λ) P(
; Λ) (%) R(
; Λ) P(
; Λ) (%)

ΛR ‘+’ 2.32 103 7.79 2.66 103 5.34

̂Λ
GRID
ν,ε (
|S) ‘�’ 2.35 103 5.51 2.83 103 9.58

̂Λ
GRID
ν,ε (
|̂S) ‘�’ 2.35 103 5.51 2.96 103 4.61

̂Λ
BFGS
ν,ε (
|S) ‘�’ 2.36 103 4.66 2.83 103 3.71

̂Λ
BFGS
ν,ε (
|̂S) ‘�’ 2.36 103 6.22 2.83 103 3.27

̂Λ
S-GRID
ν,ε (
|S) ‘�’ 2.37 103 4.42 2.73 103 4.27

̂Λ
S-GRID
ν,ε (
|̂S) ‘�’ 3.05 103 47.9 3.85 103 3.58

Further, to assess the performance at fixed computational
cost, a grid search is performed on a subsampled grid, chosen
so that it has the same number of points as the number of calls
of Algorithm1 required for the quasi-Newton Algorithm3 to
converge. The obtained optimal hyperparameter are referred

as ̂Λ
S-GRID

(for subsampled grid). Associated performance
is displayed in the two bottom rows of Table2. The asso-
ciated subsampled grids and segmentations are displayed
in Fig. 4. We observe that the performance is significantly
degraded, especially for Texture “D,” corresponding to a dif-
ficult segmentation problem in which the subsampling of the
generalized SURE grid compute from the estimated covari-
ance matrix has dramatic effect, leading to a segmentation
error rate of 47.9%.

We conclude that the automated hyperparameter tuning
strategy performs an efficient and fast minimization of gener-
alized SURE, independently of whether it is computed from
the true or the estimated covariance matrix.

5.4.3 Automated Selection of3 and Segmentation
Performance

Ten realizations of Textures “D” and “E” are generated fol-
lowing the procedure described in Sect. 5.1.1. For each of
them,Algorithm3 is run twice, first usingS and second using
̂S.

Since here nogrid search is performed, theminimumvalue
of quadratic risk is unknown. The performance will hence be
measured in terms of normalized one-sample quadratic risk
˜R defined as

˜R(
|S) = R(
;̂ΛBFGS
ν,ε (
|S))

‖̂hLR(
) − h̄‖22
= ‖̂hBFGSν,ε (
|S) − h̄‖22

‖̂hLR(
) − h̄‖22
,

(95)

measuring the improvement of the estimation achieved using
TV-based texture segmentation (56) with hyperparameters

automatically selected by Algorithm3, compared to the clas-
sical least square estimatêhLR.

Averaged performance over ten realizations, presented
in Table3, shows that the quadratic risk R obtained is
decreased by a factor of 16 for Texture “D” and of 14 for
Texture “E”. The corresponding segmentation error is as low
as 6% for Texture “D”, and 3% for Texture “E”. Further, the
use of estimated covariancematrix does not degrade achieved
performance compared to using true covariance matrix.

Table4 reports the averaged values of the optimal hyper-
parameters selected by the automated strategy. First, it proves
that the selected hyperparameters obtained using either the
true covariance matrix S or the estimated one ̂S are similar.
Then, it shows a limited variability in the selected hyperpa-
rameters, which demonstrates the robustness of the proposed
hyperparameter tuning strategy.

Hence, Algorithm3, using the estimated covariance ̂S,
computed from (89), provides an efficient, parameter-free,
automated and data-driven texture segmentation procedure.

5.5 Three-Region Segmentation

In this section, we consider a more complicated problem in
which three fractal textures are to be segmented.As discussed
in Remark11, the developed formalism is appropriate for
general M-region segmentation. The only change consists
in the post-processing step, performing a thresholding with
M levels on the estimate of local regularity obtained with
optimal hyperparameters.

Images are composed of three synthetic homogeneous tex-
tures, patched together according to the partition of Fig. 5a,
called “F” in the following. The different texture samples are
characterized by their fractal attributes, chosen as

(

H1,Σ
2
1

)

= (0.5, 0.6) (background),
(

H2,Σ
2
2

)

= (0.75, 0.7) (largest ellipse),
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Table 3 Averaged performance of TV-based texture segmentation with automated selection of hyperparameters

Texture “D” Texture “E”

Covariance matrix S ̂S S ̂S
˜R(
|·) 0.060 ± 0.003 0.057 ± 0.002 0.071 ± 0.003 0.073 ± 0.004

P(
;̂ΛBFGS
ν,ε (
|·)) (%) 5.4 ± 0.7 6.8 ± 1.5 3.3 ± 0.7 2.8 ± 0.3

Table 4 Averaged optimal hyperparameterŝΛ
BFGS

(
; ·) = (̂λBFGSh (
; ·),̂λBFGSv (
; ·)) obtained from the automated selection strategy using BFGS
quasi-Newton algorithm

Texture “D” Texture “E”

Covariance matrix S ̂S S ̂S

̂λBFGSh (
, ·) 9.6 ± 0.7 6.7 ± 0.6 7.0 ± 0.8 9.0 ± 0.3
̂λBFGSv (
, ·) 1.7 ± 0.4 1.7 ± 0.4 1.3 ± 0.4 1.2 ± 0.2

(

H3,Σ
2
3

)

= (0.9, 1.1) (smallest ellipse).

The sample of Texture “F” on which the experiments are
made is displayed in Fig. 5b.

Figure5c, d shows that the generalized SURE computed
either from the true or the estimated covariance matrices is
efficiently minimized by the BFGS quasi-Newton scheme
using the generalized SUGAR estimator. Both the facts that
there are three regions and the intricate two ellipses geometry
make the segmentation problem significantly more difficult
than the two-region segmentation of Textures “D” and “E”
presented above. Nevertheless, the obtained segmentations,
displayed in Fig. 5e, f, appear to be very satisfactory.

Further, for this more complex three-region geometry, one
could expect that the covariance matrix would not be esti-
mated as precisely as in the two-region case studied above.
Yet, Fig. 5 shows that switching from the true to the estimated
covariance does not degrade the accuracy of the generalized
SURE, neither the efficiency of automated minimization.

This illustrates the impressive robustness of the derived
automated and data-driven strategy for hyperparameter tun-
ing and its ability to handle complicated texture segmentation
problems.

6 Conclusion

This work was focused on devising a procedure for the
automated selection of the hyperparameters of parametric
estimators, such as, e.g., parametric linear filtering or penal-
ized least squares. The main result obtained here consists of
a theoretically grounded and practical operational fully auto-
mated data-driven procedure, which requires neither ground
truth nor expert-based knowledge and work satisfactorily
even when applied to a single observation of data.

To that end, Stein Unbiased Risk Estimator (SURE) was
rewritten to account for additive correlated Gaussian noise,
with any covariance structure. The main contribution com-
pared to state-of-the-art procedure relies on including the
covariance matrix of the noise only in SURE, rather than in
the data fidelity term. The benefit is twofold: handling with
a strongly convex function when penalized least square is
considered, and avoiding costly, if not intractable, inversion
of the covariance matrix. Differentiating this Generalized
SURE with respect to hyperparameters, an estimator for the
risk gradient was designed, permitting to propose a General-
ized Finite DifferenceMonte Carlo Stein UnbiasedGrAdient
Risk (SUGAR) estimate. The asymptotic unbiasedness of
Generalized SUGAR was assessed theoretically, based on
regularity assumptions on the parametric estimator.
Further, the case of sequential parametric estimators is dis-
cussed in depth in the case of primal-dual minimization
scheme for penalized least squares and a differentiated
scheme is derived.

Embedding Generalized SURE and SUGAR into a quasi-
Newton algorithm enabled to perform an automated risk
minimization. An explicit algorithm permitting to implement
the minimization was proposed.

To assess the performance of this automated hyperparam-
eter selection procedure devised in a general setting, it has
been customized to the specific problem of texture segmen-
tation, based on multiscale descriptors (wavelet leaders) and
nonsmooth total variation-based penalization. This problem
is uneasy because observations are in nature multiscale, with
inhomogeneous variance across scales and correlations both
across scales and in space at each scale. Further, variances and
correlations are unknown and need to be estimated directly
from data.

Numerical simulations, conducted on ten realizations
of synthetic piecewise fractal textures, permitted to show
that the proposed strategy yields satisfactory performance
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(b) X : Texture “F”

(c) Rν,ε( ;Λ|S) (d) Rν,ε( ;Λ|S)

R.(·|S) ‘ ’ R.(·|S) ‘ ’

’

(a) Three region mask

(e) Min. (f) Min.

(g) Auto. selec. ‘ (h) Auto. selec. ‘ ’

Fig. 5 Mask with three regions (a). Sample of Texture “F” (b). Gen-
eralized SURE computed either from true covariance matrix S (92)
(left column), or from estimated covariance matrix ̂S (89) (right col-
umn) forTexture “F” (second row). Segmentations obtainedminimizing
the above generalized SURE (third row). Segmentations obtained
with automated selection of hyperparameters from Algorithm3, using
generalized SUGAR with either true covariance matrix or estimated
covariance matrix (fourth row)

in selecting automatically the penalization hyperparameter,
leading to excellent texture segmentation, with no ad hoc
(or expert-based) tuning and without prior knowledge for
ground truth, and using one-sample estimate of the covari-
ance matrix.

The corresponding Matlab routines, developed by our-
selves and implementing these tools, have been used suc-
cessfully for applications to real-world signal denoising and
texture segmentation problems arising in nonlinear physics

[51], where hyperparameter tuning constitutes an on-going
hot topic. The developed documented gsugar toolbox is
publicly available to the research community on GitHub4.

A Proof of Theorem1

Proof The proof of Theorem1was derived in various settings
during the past years and can be seen as a consequence of
previousworks [58,59,72]. A proof sketch is presented below
so that the reader can grasp the main ideas.

For ease of computation, we first define the predictor
inDefinition3 and the ground truth prediction inDefinition4.

Definition 3 (Predictor) From the estimator of underlying
features x̂( y;Λ) one can equivalently consider a prediction
estimator

ŷ( y;Λ) � Φ x̂( y;Λ). (96)

Indeed, from Assumption2, Φ∗Φ is invertible, and the rela-
tion (96) can be inverted computing

x̂( y;Λ) = (Φ∗Φ
)−1

Φ∗ ŷ( y;Λ). (97)

Definition 4 (Prediction ground truth) The noise-free obser-
vation is written as

ȳ � Eζ y = Φ x̄. (98)

Thus, the quadratic risk defined in (10) can be expressed
using operator A defined in (9) as

R[̂x](Λ) = Eζ ‖Π x̂( y;Λ) − Π x̄‖22 (99)

(9)= Eζ ‖A (̂ y( y;Λ) − ȳ)‖22

which will be easier to manipulate in the following when
expressed in terms of noise-free (or noisy) observations ȳ
(or y) and prediction ŷ.

By construction, the matrix A, defined in (9), performs
both:

– The projection on the interest subspace I of H via the
linear operator Π.

– The transition from predicted quantities ŷ to estimated
features x̂, making use of relation (97).

From now, for sake of simplicity, we make implicit the
dependency of x̂ in ( y;Λ). In order to build an estimator of

4 https://github.com/bpascal-fr/gsugar.
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the quadratic risk, it is expanded as

R[̂x](Λ) = Eζ

[ ‖A (̂ y − y)‖22 + ‖A ( y − ȳ)‖22
+ 2〈A (̂ y − y) ,A ( y − ȳ)〉].

The, from the model (1) and the Assumption1 on the noise
probability distribution, one directly derive two useful rela-
tions:

Eζ ‖A (y − ȳ)‖22 (98)= Eζ ‖A ( y − Φ x̄)‖22 = Eζ ‖Aζ‖22
Hyp. 1= Tr(ASA∗), (100)

Eζ 〈A y,A ( y − ȳ)〉 E( y− ȳ)=0= Eζ 〈A (y − ȳ) ,A ( y − ȳ)〉
Hyp. 1= Tr(ASA∗). (101)

Injecting the definition of A (9) in terms of Φ and Π and
Relations (100) and (101) in the above expansion of the risk
leads to

R[̂x](Λ) =Eζ ‖A (Φ x̂ − y)‖22 + 2Eζ 〈A∗Π x̂, ζ 〉 − Tr(ASA∗).

The second term, Eζ 〈A∗Π x̂( y;Λ), ζ 〉, is called the
degrees of freedom [28]. From Assumption3, it is well
defined and written as

Eζ 〈A∗Π x̂( y;Λ), ζ 〉

= 1
√

(2π)P |det(S)|
∫

〈A∗Π x̂( y; Λ), ζ 〉 exp
(

−ζ∗S−1ζ

2

)

dζ ,

(102)

hence requiring generalized Stein’s lemma to be esti-
mated5.

Because of the off-diagonal terms in S−1, the integration
by parts (IP) required to transform (102) cannot be directly
justified; thus, Stein’s lemma generalization to G-valued ran-
dom variable ζ is not straightforward. Hence, we propose to
first diagonalize S−1 (which is a symmetric matrix) in a
orthonormal basis, obtaining

S−1 = V∗DV,

with V an orthonormal matrix (which columns are eigen-
vectors of S−1) and D = diag(β1, . . . , βP ) containing
(positive) eigenvalues of S−1. Then, the change of variable
ϑ = Vζ in (102) leads to

Eζ 〈A∗Π x̂( y;Λ), ζ 〉 = 1
√

(2π)P |det(S)|
5 Stein’s lemma states that, for a real random variable ζ ∼ N (0, σ 2), if
f : R → R is a function such that bothEζ [ζ f (ζ )] andEζ [ f ′(ζ )] exist,
then Eζ [ζ f (ζ )] = σ 2

Eζ [ f ′(ζ )]. Its demonstration relies on appropri-
ate integration by parts.

∫

〈A∗Π x̂( y;Λ),V−1ϑ〉 exp
(

−ϑ∗Dϑ

2

)

|det(V−1)|dϑ,

with ϑ∗Dϑ =∑P
p=1 βp|ϑp|2. Thus, the integration by part

can be performed independently for each variable ϑp. Since
V is orthonormal, |det(V−1)| = 1, and using the cyclicality
of the trace leads to the following closed-form expression of
the degrees of freedom:

Eζ 〈A∗Π x̂( y;Λ), ζ 〉

= Eζ

[

Tr

(

D−1V ∂
(

A∗Π x̂( y;Λ)
)

∂ y
V−1

)]

,

= Eζ

[

Tr

(

V−1D−1V ∂
(

A∗Π x̂( y;Λ)
)

∂ y

)]

,

= Eζ

[

Tr
(SA∗Π∂ y x̂( y;Λ)

)]

��

B Finite DifferenceMonte Carlo SURE

Proof First, remark that since y �→ x̂( y;Λ) is Lipschitz
continuous from Assumption4, it is Lebesgue differentiable
almost everywhere and its Lebesgue derivative equals its
weak derivative almost everywhere. Then, based on Theo-
rem1, the only difficulty relies in dominating the degrees of
freedom, since it is the only term depending on the Finite
Difference step ν.
Applying successively both Monte Carlo and Finite Dif-
ference strategies (Sect. 2.4) leads to Eq. (16), which can
then be expressed as the following integral using Gaussian-
ity Assumption1

Tr
(SA∗Π∂ y x̂( y;Λ)

)

=
∫

RP
lim
ν→0

〈

A∗Π
x̂( y + νε; Λ) − x̂( y; Λ)

ν
,Sε

〉

e−
‖ε‖2
2 dε

(2π)P/2
.

(103)

Then, using theCauchy–Schwarz property, the fact that all
linear operators considered are bounded and Lipschitzianity
Assumption4, one obtains the following majoration

∣

∣

∣

∣

〈

A∗Π (̂x( y + νε;Λ) − x̂( y;Λ))

ν
,Sε

〉∣

∣

∣

∣

e− ‖ε‖2
2 (104)

≤ ‖A∗‖‖Π‖L1‖ε‖‖S‖‖ε‖e− ‖ε‖2
2 ,

with ‖ε‖2e− ‖ε‖2
2 integrable overRP . Further, the domination

being independent of ν the limit can be interchanged with the
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integral on variable ε which gives

Tr
(SA∗Π∂ y x̂( y;Λ)

)

(105)

= lim
ν→0

Eε

〈

A∗Π x̂( y + νε;Λ) − x̂( y;Λ)

ν
,Sε

〉

.

and

∣

∣Tr
(SA∗Π∂ y x̂( y;Λ)

)∣

∣

≤ ‖A∗‖‖Π‖L1‖S‖
∫

RP
‖ε‖2 e

− ‖ε‖2
2 dε

(2π)P/2 < ∞. (106)

Further, the majoration obtained in Eq. (106) not depending
on ζ (since L1 does not depend on y, as stated in Assump-
tion4), neither on ν, the limits on ν and the expected value
with respect to Gaussian random noise ζ can be interchanged
so that

EζTr
(SA∗Π∂ y x̂( y;Λ)

)

(107)

= lim
ν→0

Eζ ,ε

〈

A∗Π x̂( y + νε;Λ) − x̂( y;Λ)

ν
,Sε

〉

giving the asymptotic unbiasedness of the Finite Difference
Monte Carlo estimator of degrees of freedom and hence of
the Finite Difference Monte Carlo SURE (17). ��

C Finite DifferenceMonte Carlo SUGAR

Proof Weremind that FiniteDifferenceMonteCarloSUGAR
is composed of two terms, denoted (∂1) and (∂2) in the fol-
lowing:

∂Λ
̂Rν,ε( y;Λ|S) � 2 (AΦ∂Λ x̂( y;Λ))∗ A (Φ x̂ − y)

(∂1)

+2

ν

〈

A∗Π (∂Λ x̂( y + νε;Λ) − ∂Λ x̂( y;Λ)) ,Sε
〉

(∂2)

. (108)

Since the estimator x̂( y;Λ) is weakly differentiable with
respect to Λ, so is the true risk R[̂x](Λ). Thus, for any con-
tinuously differentiable test function ϕ : RL → R ∈ C1(V)

with compact support denoted V ⊂ R
L , and any component

l ∈ {1, . . . , L} of the gradient of the risk ∂ΛR[̂x](Λ)

∫

RL
(∂ΛR[̂x](Λ))l ϕ(Λ) dΛ

=
∫

V

(∂ΛR[̂x](Λ))l ϕ(Λ) dΛ

(Weak differentiability)= −
∫

V

R[̂x](Λ) (∂Λϕ(Λ))l dΛ

Definition (10)= −
∫

V

Eζ ‖Π x̂( y;Λ) − Πx‖22 (∂Λϕ(Λ))l dΛ

(Theorem1)= −
∫

V

Eζ ,ε lim
ν→0

̂Rν,ε( y;Λ|S) (∂Λϕ(Λ))l dΛ

(Theorem2)= −
∫

V

lim
ν→0

Eζ ,ε
̂Rν,ε( y;Λ|S) (∂Λϕ(Λ))l dΛ

(DC 1)= − lim
ν→0

∫

V

Eζ ,ε
̂Rν,ε( y;Λ|S) (∂Λϕ(Λ))l dΛ

(Fu 1)= − lim
ν→0

Eζ ,ε

∫

V

̂Rν,ε( y;Λ|S) (∂Λϕ(Λ))l dΛ

(Proposition1)= lim
ν→0

Eζ ,ε

∫

V

(

∂Λ
̂Rν,ε( y;Λ|S)

)

l ϕ(Λ) dΛ

(Fu 2)= lim
ν→0

∫

V

Eζ ,ε

(

∂Λ
̂Rν,ε( y;Λ|S)

)

l ϕ(Λ) dΛ

(DC 2)=
∫

V

lim
ν→0

Eζ ,ε

(

∂Λ
̂Rν,ε( y;Λ|S)

)

l ϕ(Λ) dΛ. (109)

(DC 1) In order to apply dominated convergence theorem
interchanging the limit on ν and the integral on V, since ϕ is
a test function with compact domain V, we derive a bound
of Eζ ,ε

̂Rν,ε( y;Λ|S) which is independent of both ν and Λ.
Using the probability density functions, we have

Eζ ,ε
̂Rν,ε( y;Λ|S) =

∫

ζ

∫

ε

̂Rν,ε( y;Λ|S)GS(ζ )GI (ε)dζdε

(110)

whereGS (resp.GI ) denotes theGaussian probability density
function with covariance matrix S (resp. I)

GS (ζ ) �
exp
(

−‖ζ‖2S−1/2
)

√

(2π)P |detS|

⎛

⎝resp. GI (ζ ) �
exp
(

−‖ζ‖22/2
)

√

(2π)P

⎞

⎠ .

(111)

We remind that ̂Rν,ε( y;Λ|S) is decomposed of three
terms

̂Rν,ε( y;Λ|S) � ‖A (Φ x̂ − y)‖22
(1)

+ 1

ν

〈

A∗Π (̂x( y + νε;Λ|S) − x̂( y;Λ|S)) ,Sε
〉

(2)

− Tr(ASA∗)
(3)

.

(112)

which will be bounded separately.
(1) First, combining Assumptions (i) and (ii) of Assump-
tion4, we have

‖x̂( y; Λ) − x̂(0P ; Λ)‖ ≤ L1 ‖ y − 0P‖ �⇒ ‖x̂( y; Λ)‖ ≤ L1 ‖ y‖ ,

(113)

which can be used to bound first term (1) of (112) as

‖A (Φ x̂ − y)‖ ≤ ‖A‖ ‖Φ x̂ − y‖
≤ ‖A‖ (‖Φ x̂‖ + ‖ y‖)
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≤ ‖A‖ (‖Φ‖‖x̂‖ + ‖ y‖)
≤ ‖A‖ (‖Φ‖L1‖ y‖ + ‖ y‖)
≤ ‖A‖ (‖Φ‖L1 + 1) ‖ y‖ . (114)

Since by definition ζ = y − Φx, y �→ ‖ y‖ is integrable
against the Gaussian density GS(ζ ), and the above domina-
tion being independent of ν, it enable us to apply dominated
convergence.
(2)Making use of the domination of Eq. (104), we have

∣

∣

∣

∣

〈

A∗Π (̂x( y + νε;Λ) − x̂( y;Λ))

ν
,Sε

〉∣

∣

∣

∣

(115)

≤ ‖A∗‖‖Π‖L1‖ε‖‖S‖‖ε‖,

and ‖ε‖2 being integrable against GI (ε), dominated conver-
gence applied.
(3) The third term being constant, the domination is obvious.
Putting altogether the majoration of (1), (2) and (3)

∣

∣Eζ ,ε
̂Rν,ε( y;Λ|S)

∣

∣

≤
∫

ζ

∫

ε

‖A‖ (‖Φ‖L1 + 1) ‖ y‖ GS(ζ )GI (ε)dζdε

+
∫

ζ

∫

ε

‖A∗‖‖Π‖L1‖S‖‖ε‖2 GS(ζ )GI (ε)dζdε

+
∫

ζ

∫

ε

Tr(ASA∗)GS(ζ )GI (ε)dζdε ≤ ∞, (116)

the majoration being independent of ν andΛ dominated con-
vergence applies.
(Fu 1) The above domination of Eq. (116) being independent
of Λ, then Fubini’s theorem applies.
(Fu 2) The first term of (108), denoted as (∂1), can be
easily dominated by an integrable function. Indeed, Assump-
tion5 implies that ∂Λ x̂( y;Λ) is uniformly bounded by L2,
independently of y. Then, it follows from Cauchy–Schwarz
inequality and the domination of Eq. (114)

2
∥

∥ (AΦ∂Λ x̂( y;Λ))∗ A (Φ x̂ − y)
∥

∥

≤ 2‖AΦ∂Λ x̂( y;Λ)‖‖A (Φ x̂ − y)‖,
≤ 2‖A‖‖Φ‖L2‖A‖ (ΦL1 + 1) ‖ y‖.

Hence, since ‖ y‖ is integrable against GS( y − Φx)GI (ε)

and the domination being independent of ν, both Fubini and
dominated convergence theorems apply.

The second term of (108), denoted as (∂2), corresponding
to the derivative of the estimation of degrees of freedom, can
be rewritten as

2

ν

〈

A∗Π (∂Λ x̂( y + νε;Λ) − ∂Λ x̂( y;Λ)) ,Sε
〉

� 2

ν
〈u(ζ + νε;Λ) − u(ζ ;Λ), ε〉

where we set u(z;Λ) � SA∗Π∂Λ x̂(Φx + z;Λ). Since
∂Λ x̂( y;Λ) is uniformly bounded by L2, independently of y,
and all the linear operators are assumed to be bounded, then
Λ �→ u(z;Λ) is bounded by some Lu > 0, independently
of z. Then,

Eζ ,ε

[

2

ν

〈

A∗Π (∂Λ x̂( y + νε;Λ) − ∂Λ x̂( y;Λ)) ,Sε
〉

]

(117)

=
∫

ζ

∫

ε

2

ν
〈u(ζ + νε;Λ) − u(ζ ;Λ), ε〉GS(ζ )GI (ε) dζdε

=
∫

ζ

∫

ε

2

ν
〈u(ζ + νε;Λ), ε〉GS(ζ )GI (ε) dζdε

−
∫

ζ

∫

ε

2

ν
〈u(ζ ;Λ), ε〉GS(ζ )GI (ε) dζdε

=
∫

ζ

∫

ε

2

ν
〈u(ζ ;Λ), ε〉 (GS(ζ − νε) − GS(ζ ))GI (ε) dζdε.

Further, the following majoration holds

∥

∥

∥

∥

2

ν
〈u(ζ ;Λ), ε〉 (GS(ζ − νε) − GS(ζ ))GI (ε)

∥

∥

∥

∥

(118)

≤ 2

ν
Lu‖ε‖ |GS(ζ − νε) − GS(ζ )|GI (ε).

Up to a unitary variable change (see AppendixA, with ϑ =
V−1ε), we can assume that the covariancematrix is diagonal,

with diagonal terms
(

s2i
)P
i=1 so that

GS(ζ ) =
P
∏

i=1

exp
(−|ζi |2/2s2i

)

√

2πs2i

(119)

and we define the one-dimensional Gaussian densities as

gs2i
(ζi ) �

exp
(−|ζi |2/2s2i

)

√

2πs2i

. (120)

From Taylor inequality,

|gs2i (ζi − νεi ) − gs2i
(ζi )| ≤

∫

(0,νεi )

|g′
s2i

(ζi − τ)| dτ, (121)

where (0, νεi ) denotes the ordered interval, taking into
account that εi might be negative that is

(0, νεi ) =
{

[0, νεi ] if εi ≥ 0
[νεi , 0] else

(122)

then

∫

ζi

|gs2i (ζi − νεi ) − gs2i
(ζi )| dζi
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≤
∫

ζi

∫

(0,νεi )

|g′
s2i

(ζi − τ)| dτdζi

≤
∫

(0,νεi )

(∫

ζi

|g′
s2i

(ζi − τ)| dζi
)

dτ

=
(∫

R

|g′
s2i

(t)| dt
)

ν|εi | < +∞

since the derivative of the Gaussian density is integrable over
R.
Going back to the integrals over variables ζ , ε ∈ R

P of
Eq. (117)

∥

∥

∥

∥

∫

ζ

∫

ε

2

ν
〈u(ζ ;Λ), ε〉 (GS (ζ − νε) − GS (ζ )

)GI (ε) dζdε

∥

∥

∥

∥

≤
∫

ζ

∫

ε

2

ν
Lu‖ε‖ ∣∣GS (ζ − νε) − GS (ζ )

∣

∣GI (ε) dζdε (123)

=
∫

ε

2

ν
Lu‖ε‖

P
∏

i=1

(∫

ζi

|gs2i (ζi − νεi ) − gs2i
(ζi )| dζi

)

GI (ε) dε

≤
∫

ε

2

ν
Lu‖ε‖

P
∏

i=1

((∫

R

|g′
s2i

(t)| dt
)

ν|εi |
)

GI (ε) dε

|εi |≤‖ε‖≤
∫

ε
2νP−1‖Luε‖‖εP‖

P
∏

i=1

(∫

R

|g′
s2i

(t)| dt
)

GI (ε) dε

(0<ν≤1)≤
∫

ε
2Lu‖ε‖P+1

P
∏

i=1

(∫

R

|g′
s2i

(t)| dt
)

GI (ε) dε < +∞.

Indeed, ‖·‖ being the Euclidean norm (∀i) |εi | ≤ ‖ε‖.
Moreover, since we are interested in the limit ν → 0, we
can assume without loss of generality that 0 > ν ≤ 1 and
thus νP−1 ≤ 1. We conclude using the fact that any power of
‖ε‖ is integrable against GI (ε), combined to the fact that the
support V of ϕ is compact, which enable to apply Fubini’s
theorem to exchange

∫

V
and Eζ ,ε.

(DC 2) The above majoration does not depend on ν. Further,
the Lipschitzianity assumptions provides the existence P-a.s.
of

lim
ν→0

Eζ ,ε

(

∂Λ
̂Rν,ε( y;Λ|S)

)

l

then dominated convergence theorem applies to invert lim
ν→0

and
∫

V
which completes the proof. ��

D Quasi-Newton Algorithm of
Broyden–Fletcher–Goldfarb–Shanno

A sketch of quasi-Newton descent, particularized to Prob-
lem (49), is detailed in Algorithm3. It generates a sequence
(

Λ[t])
t∈N converging toward a minimizer of ̂Rν,ε( y;Λ|S).

This algorithm relies on a gradient descent step (128) involv-

ing a descent direction d[t] obtained from the product of
BFGS approximated inverse Hessian matrix H [t] and the
gradient ∂Λ

̂Rν,ε( y;Λ|S) obtained from SUGAR (see Algo-
rithm2). The descent step size α[t] is obtained from a line
search, derived in (127), which stops whenWolfe conditions
are fulfilled [21,48]. Finally, the approximated inverse Hes-
sian matrix H [t] is updated according to Definition5.

Remark 14 The line search, Step (127), is the most time con-
suming. Indeed, the routines SURE and SUGAR are called
for several hyperparameters of the form Λ[t] + αd[t], each
call requiring to run differentiated primal-dual scheme twice.

Definition 5 (Broyden, Fletcher, Goldfarb, and Shanno
update (BFGS)) Let d[t] be the descent direction and u[t] the
gradient increment at iteration t , the approximated inverse
Hessian matrix H [t] BFGS update is written as

H [t+1] =
(

I L − d[t] (u[t])�
(

u[t])� d[t]

)

H [t]
(

I L − u[t] (d[t])�
(

u[t])� d[t]

)

+ α[t] d
[t] (d[t])�
(

u[t])� d[t] . (124)

This step constitutes a routine, named “BFGS,” defined as

H [t+1] � BFGS(H [t], d[t], u[t]). (125)

For detailed discussions on lowmemory implementations
of BFGS, box constraints management, and others algorith-
mic tricks, the interested reader is referred to [12,21,48].

Algorithm 3 Automated selection of hyperparameters min-
imizing quadratic risk.

Inputs: Observations y
Covariance matrix S
Monte Carlo vector ε ∈ R

P ∼ N (0P , I P )

Finite Difference step ν > 0

Initialization: Λ[0] ∈ R
L ,

H [0] ∈ R
L×L ,

∂Λ
̂R[0] = SUGAR( y,Λ[0],S, ν, ε)

for t = 0 to Tmax − 1 do

{Descent direction from gradient of the risk estimate:}

d[t] = −H [t]∂Λ
̂R[t] (126)

{Line search to find descent step:}

α[t] ∈Argmin
α∈R

̂R(Λ[t] + αd[t]), (127)

with ̂R(Λ) = SURE( y,Λ,S, ν, ε)

{Quasi-Newton descent step on Λ:}

Λ[t+1] = Λ[t] + α[t]d[t] (128)
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{Gradient update:}

∂Λ
̂R[t+1] = SUGAR( y,Λ[t+1],S, ν, ε) (129)

{Gradient increment:}

u[t] = ∂Λ
̂R[t+1] − ∂Λ

̂R[t] (130)

{BFGS update of inverse Hessian (124):}

H [t+1] = BFGS(H [t], d[t], u[t]) (131)

end for

Outputs:Finite-time solution of Problem (49)
̂Λ
BFGS
ν,ε ( y|S) � Λ[Tmax]

Estimate with automated selection of Λ

x̂BFGSν,ε ( y|S) � PD( y,Λ[Tmax])

E Constant Term of Stein Unbiased Risk
Estimate

Proof Because of the cyclicality of the trace, one has

Tr(ASA∗) = Tr(A∗AS),

and using the definition of A � Π
(

Φ∗Φ
)−1

Φ∗,

A∗A = Φ
(

Φ∗Φ
)−1

Π∗Π
(

Φ∗Φ
)−1

Φ∗.

Then, turning to the block-matrix form to perform the prod-
ucts, one obtains

(

Φ∗Φ
)−1

Π∗Π
(

Φ∗Φ
)−1

= 1
(

F0F2 − F2
1

)2

(

F0 IN/2 −F1 IN/2

−F1 IN/2 F2 IN/2

)(

IN/2 ZN/2

ZN/2 ZN/2

)(

F0 IN/2 −F1 IN/2

−F1 IN/2 F2 IN/2

)

= 1
(

F0F2 − F2
1

)2

(

F0 IN/2 −F1 IN/2

−F1 IN/2 F2 IN/2

)(

F0ZN/2 −F1 IN/2

ZN/2 ZN/2

)

= 1
(

F0F2 − F2
1

)2

(

F2
0 IN/2 −F0F1 IN/2

−F0F1 IN/2 F2
1 IN/2

)

.

Using again cyclicality of the trace

Tr(ASA∗) (132)

= Tr
(

Φ
(

Φ∗Φ
)−1

Π∗Π
(

Φ∗Φ
)−1

Φ∗S
)

= Tr

(

Φ
1

(

F0F2 − F2
1

)2

(

F2
0 IN/2 −F0F1 IN/2

−F0F1 IN/2 F2
1 IN/2

)

Φ∗S
)

= Tr

(

1
(

F0F2 − F2
1

)2

(

F2
0 IN/2 −F0F1 IN/2

−F0F1 IN/2 F2
1 IN/2

)

Φ∗SΦ

)

Then, using the action of Φ and Φ∗, explicit in For-
mula (62), we have the matrix representation

Φ =

⎛

⎜

⎜

⎜

⎝

1IN/2 IN/2

2IN/2 IN/2
...

...

J IN/2 IN/2

⎞

⎟

⎟

⎟

⎠

∈ R
J N1N2×2N1N2. (133)

Using the decomposition of S into J 2 blocks S j ′
j =

C j ′
j Ξ

j ′
j ∈ R

N/2×N/2, we obtain

Φ∗SΦ =
(
∑

j, j ′ j j
′S j ′

j

∑

j, j ′ j
′S j ′

j
∑

j, j ′ jS j ′
j

∑

j, j ′ S j ′
j

)

, 1 ≤ j, j ′ ≤ J .

(134)

Multiplying each side of the equality (132) by
(

F0F2 − F2
1

)2
,

it follows

(

F0F2 − F2
1

)2
Tr(ASA∗)

= Tr

(

(

F2
0 IN/2 −F0F1 IN/2

−F0F1 IN/2 F2
1 IN/2

)

(
∑

j, j ′ j j
′S j ′

j

∑

j, j ′ j
′S j ′

j
∑

j, j ′ jS j ′
j

∑

j, j ′ S j ′
j

))

= Tr

(
∑

j, j ′ F
2
0 j j ′S j ′

j − F0F1 j ′S j ′
j

∑

j, j ′ F
2
0 j ′S j ′

j − F0F1S j ′
j

∑

j, j ′ F
2
1 jS j ′

j − F0F1 j j ′S j ′
j

∑

j, j ′ F
2
1S j ′

j − F0F1 j ′S j ′
j

)

= Tr

⎛

⎝

∑

j, j ′

(

F2
0 j j ′S j ′

j − F0F1 j
′S j ′

j + F2
1S j ′

j − F0F1 j
′S j ′

j

)

⎞

⎠ .

(135)

Then, one can remark that

Tr(S j ′
j ) �

∑

n∈Ω

S j ′,n
j,n =

∑

n∈Ω

C j ′
j = N

2
C j ′
j . (136)

since the filterΞ j ′
j is supposed to be normalized, in the sense

that its maximum value equals 1. Finally,

Tr(ASA∗) = N/2
(

F0F2 − F2
1

)2 (137)

∑

j, j ′

(

F2
0 j j ′C j ′

j − F0F1 j
′C j ′

j + F2
1 C j ′

j − F0F1 j
′C j ′

j

)

.

��
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