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Abstract

We aim to deepen the theoretical understanding of Graph Neural Networks (GNNs) on
large graphs, with a focus on their expressive power. Existing analyses relate this notion
to the graph isomorphism problem, which is mostly relevant for graphs of small sizes,
or studied graph classification or regression tasks, while prediction tasks on nodes
are far more relevant on large graphs. Recently, several works showed that, on very
general random graphs models, GNNs converge to certains functions as the number
of nodes grows. In this paper, we provide a more complete and intuitive description
of the function space generated by equivariant GNNs for node-tasks, through general
notions of convergence that encompass several previous examples. We emphasize
the role of input node features, and study the impact of node Positional Encodings
(PEs), a recent line of work that has been shown to yield state-of-the-art results in
practice. Through the study of several examples of PEs on large random graphs, we
extend previously known universality results to significantly more general models. Our
theoretical results hint at some normalization tricks, which is shown numerically to
have a positive impact on GNN generalization on synthetic and real data. Our proofs
contain new concentration inequalities of independent interest.

1 Introduction

Machine learning on graphs with Graph Neural Networks (GNNs) [53, 5] is now a well-established
domain, with application fields ranging from combinatorial optimization [6] to recommender systems
[50, 11], physics [45, 1], chemistry [16], epidemiology [37], physical networks such as power grids
[41], and many more. Despite this, there is still much that is not properly understood about GNNs, both
empirically and theoretically, and their performances are not always consistent [52, 22], compared to
simple baselines in some cases. It is generally admitted that a better theoretical understanding of GNNs,
especially of their fundamental limitations, is necessary to design better models in the future.

Theoretical studies of GNNs have largely focused on their expressive power, kickstarted by a seminal
study [54] that relates their ability to distinguish non-isomorphic graphs to the historical Weisfeiler–
Lehman (WL) test [51]. Following this, many works have defined improved versions of GNNs to be
“more powerful than WL” [34, 35, 26, 49, 38], often by augmenting GNNs with various features, or
by implementing “higher-order” versions of the basic message-passing paradigm. Among the simplest
and most effective idea to “augment” GNNs is the use of Positional Encodings (PE) as input to the
GNN, inspired by the vocabulary of Transformers [48]. The idea is to equip nodes with carefully crafted
input features that would help break some of the indeterminancy in the subsequent message-passing
framework. In early works, unique and/or random node identifiers have been used [32, 47], but they
technically break the permutation-invariance/equivariance – consistency with a reordering of the nodes
in the graph – of the GNN. Most PEs in the current literature are based on eigenvectors of the adjacency
matrix or Laplacian of the graph [12, 13] (with recent variants to handle the sign/basis indeterminancy
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[31]), random-walks [13], node metrics [56, 30], or subgraphs [4]. Some of these have been shown to
have an expressive power beyond WL [30, 4, 31].

In some contexts however, WL-based analyses have limitations: they pertain to tasks on graphs (e.g.
graph classification or regression) and have limited to no connections to tasks on nodes; and they are
mostly relevant for small-scale graphs, as medium or large graphs have a negligible chance of being
exactly isomorphic to one another, but exhibit different characteristics (e.g. community structures) that
might be useful for learning. At the other end of the spectrum, the properties of GNNs on large graphs
have been analysed in the context of latent positions Random Graphs (RGs) [24, 25, 43, 44, 29, 2, 36],
a family of models slightly more general than graphons [33]. Such statistical models of large graphs
are classically used in graph theory [18, 9] to model various data such as epidemiological [27, 39],
biological [17], social [20], or protein-protein interaction [19] networks, and are still an active area
of research [9]. For GNNs, the use of such models has shed light on their stability to deformations
of the model [44, 29, 24], expressive power [25], generalisation [15, 36], or some phenomena such as
oversmoothing [23, 3]. One basic idea is that, as the number of nodes in a random graph grows, GNNs
converge to “continuous” equivalents [24, 8], whose properties are somewhat easier to characterize than
their discrete counterpart. As prediction tasks on nodes are far more common and relevant on large
graphs modelled by random graphs, this paper will focus on permutation-equivariant GNNs, rather than
permutation-invariant. In the limit, it has been shown that their output converge to functions over some
latent space to label the nodes, but the descriptions of this space of functions and its properties are still
very much incomplete. A partial answer was given in [25], in which some universality properties are
given for specific models of GNNs, but for limited models of random graphs with no random edges, and
specific models of GNNs that no not include node features or PEs. We will in particular extend some of
their results to random edges, with the proper choice of PEs.

Contributions. In this paper, we significantly extend existing results by providing a complete descrip-
tion of the function space generated by permutation-equivariant GNNs (Theorem 1), in terms of
simple stability rules, and show that it is equivalent to previous implicit definitions that were based on con-
vergence bounds. We outline the role of the input node features, and particularly of Positional Encodings
(PEs). We then study the several representative examples of PEs on large random graphs. In particular,
we analyze SignNet [31] (eigenvector-based) PEs (Theorem 2), and distance-based PEs [30] (Theorem 3).
We derive simple normalization rules that are necessary for convergence, and illustrate them on real data.
Finally, our proofs contain new universality results for square-integrable functions and new concentration
inequalities that are of independent interest. All technical proofs are available in the Appendix. The code
to reproduce the figures can be found at https://github.com/nkeriven/random-graph-gnn.

2 Background on Random Graphs and Graph Neural Networks

Let us start with generic notations and definitions. The norm ∥·∥ is the Euclidean norm for vectors and
the operator norm for matrices and compact operators between Hilbert spaces. The latent space X is
a compact metric set with a probability distribution P over it. Square-integrable functions from X to
Rq w.r.t. P are denoted by L2

q , and are equipped with the Hilbertian norm ∥f∥2L2

def.
=
∫
X ∥f(x)∥2 dP (x).

The (disjoint) union of multidimensional functions L2
⊔

def.
=
⊔

q∈N∗ L2
q is a metric space for a metric

defined as ∥f − g∥L2 if f, g ∈ L2
q for some q, and 1 otherwise. Continuous Lipschitz functions between

metric spaces X → Y are denoted by CLip(X ,Y). For X = {x1, . . . , xn} where xi ∈ X , we define the
sampling of f : X → Rd as ιXf = [f(xi)]

n
i=1 ∈ Rn×d. Given Z ∈ Rn×d, the Frobenius norm is ∥Z∥F

and we define the normalized Frobenius norm as ∥Z∥MSE = n− 1
2 ∥Z∥F. The notation comes from the

fact that ∥ιX(f − f⋆)∥2MSE = n−1
∑

i ∥f(xi)− f⋆(xi)∥2 which is akin to a Mean Square Error.

Latent position Random Graphs. In this paper, we consider latent position random graphs [20, 28,
33], a family of models that includes Stochastic Block Models (SBM), graphons, random geometric
graphs, and many other examples. They are the primary models used for the study of GNNs in the
literature [24, 25, 29, 43]. We generate a graph G = (X,A,Z), where X ∈ Rn×d are unobserved latent
variables, A ∈ {0, 1}n×n its symmetric adjacency matrix, and Z ∈ Rn×p are (optional) observed node
features. The latent variables and adjacency matrix are generated as such:

∀i, xi
iid∼ P, ∀i < j, aij ∼ Bernoulli(αnw(xi, xj)) independently (1)
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where w : X × X → [0, 1] is a continuous connectivity kernel and αn is the sparsity-level of the graph,
such that the expected degrees are in O

(
n2αn

)
. Non-dense graph can be obtain with αn = o(1), here

we will go down to the relatively sparse case αn ≳ (log n)/n, a classical choice in the literature [28, 24].
Note that the continuity hypothesis of the kernel w is not really restrictive: neither X nor the support of
the distribution P need be connected. For instance, SBMs can be obtained by taking X to be a finite set.
We do not specify a model for the node features yet, see Sec. 4.

Graph shift matrix and operator. When the number of nodes n grows on random graphs, it is known
that certain discrete operators associated to the graph converge to their continuous version, as well
as the GNNs that employ them [24, 8]. Here, some of our results will be valid under quite general
assumptions, hence we use generic notations for our graph representations. When the results are only
valid for particular examples, this will be specifically expressed.

We consider a graph shift matrix [46] S = S(G) ∈ Rn×n, which can be either directly the adjacency
matrix of the graph or various notions of graph Laplacians. We define an associated graph shift operator
S : L2

⊔ → L2
⊔ such that the restriction S|L2

q
is a compact linear operator of L2

q onto itself. Note that we
reserve “matrix” and “operator” respectively for the discrete and continuous versions. The results in
Sec. 3 will be valid under generic convergence assumptions from S to S, while the results of Sec. 4 will
focus on the following two representative examples.

Example 1 (Normalized adjacency matrix and kernel operator). Here S = Ã = (nαn)
−1A and

Sf = Af =
∫
w(·, x)dP (x). This choice requires to know, or estimate, the sparsity level αn. In this

case, our results will hold whenever αn ≳ (log n)/n with an arbitrary multiplicative constant.

Note that this choice requires to know (or estimate) the parameter αn, otherwise we will not have
convergence between S and S, which can be limiting. This is not the case of the next example.

Example 2 (Normalized Laplacian matrix1 and operator). Here S = L = D
−1/2
A AD

−1/2
A where DA =

diag(A1n) is the degree matrix of G, and Sf = Lf =
∫ w(·,x)√

d(·)d(x)
dP (x) where d(·) =

∫
w(·, x)dP (x)

is the degree function. Whenever we opt for this choice, we assume that dmin
def.
= infX d(x) > 0, and

our results will hold whenever αn ⩾ C(log n)/n with a multiplicative constant C that depends (in a
non-trivial way) on w, see Thm. 9 in App. D.

To sometimes unify notations, when we adopt these examples, we define wS such that wS(x, y) = w(x, y)

in the adjacency case and wS(x, y) =
w(x,y)√
d(x)d(y)

in the normalized Laplacian case. Therefore for these

two examples the continuous operator has a single expression Sf =
∫
wS(·, x)dP (x).

Graph Neural Network. As mentioned in the introduction, we focus on equivariant GNNs that can
compute functions over nodes, as this makes the most sense on large graphs that RGs seek to model.
Recall that we observe a graph shift operator S and node features Z ∈ Rn×p, and we return a vector per
nodes Φ(S,Z) ∈ Rn×dL . We adopt a traditional GNN that uses the graph shift matrix S: given input
features Z(0) ∈ Rn×d0 ,

Z(ℓ) = ρ
(
Z(ℓ−1)θ

(ℓ−1)
0 + SZ(ℓ−1)θ

(ℓ−1)
1 + 1n(b

(ℓ))⊤
)
∈ Rn×dℓ ,

Φθ(S,Z
(0)) = Z(L−1)θ(L−1) + 1n(b

(L))⊤ (2)

where ρ is the ReLU function applied element-wise, and θ
(ℓ)
i ∈ Rdℓ×dℓ+1 , b(ℓ) ∈ Rdℓ are learnable

parameters gathered in θ ∈ Θ. We denote by Θ the set of all possible parameters. For all classic choices
of S, our definition of GNNs are a special case of message-passing NN (MPNN), which can be defined
with a more general “aggregation” function. For the two examples above (adjacency and Laplacian), the
aggregation function used is a sum, or a normalized sum.

We note that here we employ the ReLU function as a non-linearity, as some of our results will use
its specific properties. Multi-Layer Perceptrons (MLP, densely connected networks) using the ReLU
activation, and with potentially more than one hidden layer, will be denoted by fMLP

γ , where γ gathers
their parameters.

1Note that the normalized Laplacian is traditionally defined as Id− L, here it does not change our definition of
GNNs since they include residual connections
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Following recent literature [12, 13], we consider inputing Positional Encoding (PE) at each node. Such
PE are generally computed using only the graph structure and concatenated to existing node features Z,
here we simply introduce a generic notation:

Z(0) = PEγ(S,Z) ∈ Rn×d0 (3)

with some parameter γ ∈ Γ. In our notations, the PE module uses the node features Z, generally by
concatenating them to its output. For short, we may denote the whole architecture with PE and GNN as
Φθ,γ(S,Z)

def.
= Φθ(S,PEγ(S,Z)). It is not difficult to see that if the PE computation is equivariant, then

the whole GNN is equivariant: denoting by σ a permutation matrix of {1, . . . , n},

∀σ, Φθ,γ(σSσ
⊤, σZ) = σΦθ,γ(S,Z) ⇔ ∀σ, PEγ(σSσ

⊤, σZ) = σPEγ(S,Z).

All the examples of PEs examined in Sec. 4 are equivariant.

3 Function spaces of Graph Neural Networks

In this section, we provide a complete and intuitive description of the function space approximated by
equivariant GNNs applied on RGs. All technical proofs are provided in App. A. It has been shown
[24, 25, 8, 29] that GNNs converge to functions over the latent space: when the node features are a
sampling of a certain function ιXf (0), then the output of the GNN is close to being a sampling of another
function ιXf (L). Assuming the node features or PEs approximate some function set B ⊂ L2

⊔, we define
the space of functions that a GNN can approximate as follows.
Definition 1. Given a base set B ⊂ L2

⊔, the set of functions approximated by GNNs FGNN(B) is formed
by all the functions f ∈ L2

⊔ such that: for all ε > 0, there are θ ∈ Θ, f (0) ∈ B such that

P
(∥∥Φθ(S, ιXf (0))− ιXf

∥∥
MSE ⩾ ε

)
−−−−→
n→∞

0. (4)

In other words, FGNN(B) are the functions whose sampling can be ε-approximated by the output of a
GNN, with probability going to 1 as n grows. Note that if the quantifiers of θ, f (0) and ε were reversed,
the MSE would converge to 0 in probability. Here this is not the case: θ, f (0) may depend on ε, which is
akin to an approximation level. Similar to the permutation equivariance of GNNs, there is a notion of
continuous equivariance for functions well-approximated by GNNs [24, 25, 8], where the permutations
are replaced by bijections over the latent space X . We adopt the notations FGNN(B) = FGNN(B, w, P ).
For all continuous bijections ϕ over X , we define wϕ(x, y) = w(ϕ(x), ϕ(y)), Pϕ = ϕ−1♯P where ♯ is
the push-forward operation, and Bϕ = {f ◦ ϕ | f ∈ B}. Then, we have the following result.
Proposition 1. Let S = S(A) be a graph shift operator that only depends on the adjacency matrix of
the graph in a permutation-equivariant manner. Then, for all continuous bijections ϕ : X → X ,

FGNN(Bϕ, wϕ, Pϕ) = {f ◦ ϕ | f ∈ FGNN(B, w, P )} .

That is, if one “permutes” the kernel w, the distribution P and the base set B, then the function space
FGNN contains exactly the permuted version of the original space.

The goal of this section is to provide a more intuitive description of the space FGNN, which we will do
under some basic convergence assumption from S to S. GNNs (2) basically include two components:
dense connections and MLPs that can approximate any continuous function by the universality theorem
[40], and applications of S. Hence, we define the following function space.
Definition 2. We define FS(B) ⊂ L2

⊔ the (minimal) S-extension of a base set B ⊂ L2
⊔ by the following

rules:

(i) Base space: B ⊂ FS(B);

(ii) Stability by composition with continuous functions: for all f ∈ FS(B) with a p-dimensional
output and g ∈ CLip(Rp,Rq), it holds2 that g ◦ f ∈ FS(B);

(iii) Stability by graph operator: for all f ∈ FS(B), it holds that Sf ∈ FS(B);
2Note that, since g is Lipschitz, when f ∈ L2

⊔ we indeed have g ◦ f ∈ L2
⊔.
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(iv) Linear span: for all q, FS(B) ∩ L2
q is a vector space;

(v) Closure: FS(B) is closed in L2
⊔;

(vi) Minimality: for all G ⊂ L2
⊔ satisfying all the properties above, FS ⊂ G.

In words, FS take a base set B, and extend it to be stable by composition with Lipschitz functions,
application of the graph operator, and linear combination (of its elements with the same dimensionality).
Our result will use the following assumption, which is naturally true for our running examples.
Assumption 1. With probability going to 1, ∥S∥ is bounded. Moreover, for all f ∈ L2

⊔,

∥SιXf − ιXSf∥MSE
P−−−−→

n→∞
0

where P−→ indicates convergence in probability.
Proposition 2. Assumption 1 is true for the adjacency matrix (ex. 1) and normalized Laplacian (ex. 2).

Under this assumption, the main result of this section states that the functions well-approximated by
GNNs are exactly the S-extension of the base input features B.
Theorem 1. Under Assumption 1, for all B ⊂ L2

⊔, we have:

FGNN(B) = FS(B)

Given the definition of GNNs (2) and construction of FS, Theorem 1 appears quite natural. Its proof,
provided in App. A.3, is however far from trivial. The inclusion FS(B) ⊂ FGNN(B) is similar in spirit
to previous convergence results [24], since one has to construct a GNN that approximates a particular
function. It involves however a new extended universality theorem for MLPs for square-integrable
functions (Lemma 3 in App. A.3), which uses the special properties of ReLU. The reverse inclusion
FGNN(B) ⊂ FS(B) is quite different from previous work on GNN convergence: given f ∈ FGNN(B)
whose only property is to be well-approximated by GNNs, one must construct a sequence of functions in
FS(B) that converge to f , and uses the closure of FS(B). The need to work within square-integrable
function is here obvious, as we only have convergence of the MSE, an approximation of the L2-norm.
For instance, this inclusion would not be true in the space of continuous functions.

Using composition with continuous functions, if FS(B) contains a continuous bijection ϕ : X → Im(ϕ),
then FS(B) contains all continuous functions, and by density all square integrable functions. That is, the
equivariant GNNs are then universal over X : they can generate any function to label the nodes. Another
criterion using the Stone-Weierstrass theorem (e.g. [21]), similar to the proofs in [25], is the following.
Proposition 3. Assume that for all x ̸= x′ in X , there is a continuous function f ∈ FS(B) ∩ CLip(X ,R)
such that f(x) ̸= f(x′). Then, FS(B) = L2

⊔.

In the rest of the paper, we study several examples of PEs and corresponding set B, that will generalize
the results of [25]. We expect many other interesting characteristics of FS to be derived in the future.

4 Node features and Positional encodings

In the previous section, we have provided a complete description of the function space generated by
equivariant GNNs when fed samplings of functions as node features, and the set of B is thus crucial for
the properties of FS(B). For instance, in the absence of node features and PEs, it is classical to input
constant features to GNNs [25], such that the space of interest is FS(1). However, similar to the failure
of the WL test on regular graphs, if S1 ∝ 1 (e.g. constant degree function), then FS(1) contains only
constant functions! The role of PEs is often to mitigate such situations.
Definition 3. The set of functions approximated by PEs FPE is formed by all the functions f ∈ L2

⊔
such that: for all ε > 0, there is γ ∈ Γ such that

P
(
∥PEγ(S,Z)− ιXf∥MSE ⩾ ε

)
−−−−→
n→∞

0 . (5)

Note that, as before, γ may depend on ε. When passing PEs as input to GNNs, FPE serves as the
base space B, and the space of interest to characterize the functions well approximated by the whole
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architecture Φθ,γ is therefore FS(FPE). In fact, by simple Lipschitz property: for any f ∈ FS(FPE)
and ε > 0, there are θ ∈ Θ, γ ∈ Γ such that

P
(
∥Φθ,γ(S,Z)− ιXf∥MSE ⩾ ε

)
−−−−→
n→∞

0

In the rest of the section, we therefore aim to characterize FPE for several representative examples. We
first briefly comment on observed node features, then move on to PEs. Proofs are in App. B.

4.1 Node features

A first, simple example, is when observed node features are actually a sampling of some function
Z = ιXf (0). This is a convenient choice that is often adopted in the literature [24, 25, 23, 8, 29]. In
this case, by adopting the identity PEγ(S,Z) = Z, it is immediate that FPE = {f (0)}. A more realistic
example is the presence of centered noise:

Z = ιXf (0) + ν ∈ Rn×d0 (6)

where ν = [ν1, . . . , νn] and the νi are i.i.d. noise vectors with Eνi = 0 and Cov(νi) = Cν . This time,
FPE cannot contain directly f (0), as the Law of Large Numbers (LLN) gives∥∥Z − ιXf (0)

∥∥2
MSE = ∥ν∥2MSE

P−−−−→
n→∞

Tr(Cν) > 0

However, when applying the graph shift matrix at least once, one obtains convergent PEs.
Proposition 4. Consider the adjacency matrix (ex. 1) or normalized Laplacian (ex. 2). If the node
features are a noisy sampling (6) and the PE are defined PEγ(S,Z) = SZ, then, FPE = {Sf (0)}.

Of course this may not be the only possibility for removing noise from node features, and moreover it is
not clear how realistic the node features model (6) actually is. The study of more refined models linking
graph structure and node features is a major path for future work.

4.2 Positional Encodings

In this section, we consider classical PEs computed solely from the graph structure and show how they
articulate with our framework. We consider two examples that are the most-often used in the literature:
PEs as eigenvectors of the graph shift matrix [12, 13] (actually a recent variant that account for sign
indeterminancy [31]), and PE based on distance-encoding [30] (again a variant that, as we will see,
generalize other architectures [49]). For most of the results below, we will focus on two representative
cases of kernels, that include many practical examples. We remark that these yield sufficient conditions
to establish our results, but by no mean necessary. Other cases could be examined in future work.
Example a (Stochastic Block Models). In this case, the space of latent variables X = {1, . . . ,K}
is finite, each element correspond to a community label. The kernel w is represented by a matrix
C

def.
= [w(ℓ, k)] ∈ RK×K

+ that gives the probability of connection between communities ℓ and k, and
P ∈ RK

+ is a probability vector of size K that sum to 1.
Example b (P.s.d. kernel). Here we assume that w is positive semi-definite (p.s.d.). This includes for
instance the Gaussian kernel.

For any symmetric matrix (resp. self-adjoint compact operator) M , we denote by λM
i its eigenvalues

and uM
i its eigenvectors (resp. eigenfunctions), with any arbitrary choice of sign or basis here. Since in

all our examples operators are either p.s.d. or finite-rank, the eigenvalues are ordered as such: first the
non-zero eigenvalues by decreasing order (from positive to negative), then all zero eigenvalues.

4.2.1 Eigenvectors and SignNet

It has been proposed [12, 13] to feed the first q eigenvectors of the graph into the GNN, for a fixed
q. A potential problem with this approach is the sign ambiguity of the eigenvectors, or even the basis
ambiguity in case of eigenvalues with multiplicities. Here we consider only the sign ambiguity for
simplicity: we will assume that the first eigenvalue of S are distinct. The sign ambiguity was alleviated
in [31] by taking a sign-invariant function: considering an eigenvector uS

i of S,

(Qf)(uS
i )

def.
= f(uS

i ) + f(−uS
i ) ∈ Rn×p (7)
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Figure 1: Illustration of the role of the SignNet architecture and of the renormalization by
√
n of the eigenvectors on

synthetic data, with a latent space X = [−1, 1] (x-axis), a Gaussian kernel w, and uniform distribution P . Blue dots
represent a graph from the training set, orange dot a test graph that is twice bigger. From left to right: eigenvectors
with renormalization (with a different sign for the two graphs), eigenvectors without, PEs with, and PEs without,
with the regression test errors of a GNN trained using these PE with or without renormalization. We observe that
SignNet indeed fixed the sign ambiguity. The absence of renormalization yields unconsistent PEs across graphs of
different sizes, which results in a high test error on test graphs than training graphs.

where f : R → Rp is a function applied to each coordinate of uS
i to preserve permutation-equivariance.

The resulting function is sign-invariant, and one can parameterized f . Given the first q eigenvectors uS
i

and a collection of MLPs fMLP
γi

: R → Rpi for some output dimensions pi, the PE considered in this
subsection concatenates the outputs:

PEγ(S) = [(QfMLP
γi

)(
√
nuS

i )]
q
i=1 ∈ Rn×p (8)

where p =
∑q

i=1 pi and the MLP are applied element-wise. The parameter γ gathers the γi. The equation
(8) involves a renormalization of the eigenvectors uS by the square root of the size of the graph

√
n:

indeed, as uS
i is normalized in Rn, this is necessary for consistency across different graph sizes. See

Sec. 4.2.3 for a discussion and some numerical illustrations.

As can be expected, the eigenvectors of S generally converge to the eigenfunctions of S, under a spectral
gap assumption. We provide the theorem below which handles all of our running examples. We suppose
that the relevant eigenvalues have single multiplicities, to only have sign ambiguity.

Theorem 2. Consider either SBM (ex. a) or p.s.d. kernel (ex. b), and either adjacency matrix (ex. 1) or
normalized Laplacian (ex. 2). Fix q, assume the first q+1 eigenvalues λS

1 , . . . , λ
S
q+1 of S are two-by-two

distinct. We define
FEig

def.
=
{
[(Qfi) ◦ uS

i ]
q
i=1 | fi ∈ CLip(R,Rpi), pi ∈ N∗} (9)

Then FPE = FEig.

Hence FPE contains the eigenfunctions of S, modified by the SignNet architecture to account for the
sign indeterminancy. We further discuss this space in Sec. 4.2.3. An illustration is provided in Fig. 1.

4.2.2 Distance-encoding PEs

In [30], the authors propose to define PEs through the aggregation of a set of “distances” ξ(i, j) from
each node i to a set j ∈ VT of target nodes (typically, labelled nodes in semi-supervised learning, or
anchor nodes selected randomly [56]):

(PEγ)i,: = AGG({ξ(i, j) | j ∈ VT })

where AGG is an aggregation function that acts on (multi-)sets, and ξ(i, j) is selected in [30] as random-
walk based distances ξ(i, j) = [(AD−1

A )ij , . . . , ((AD−1
A )q)ij ] ∈ Rq. For simplicity, since here we do

not consider any particular set of target nodes, we just consider VT = V the set of all nodes. Moreover,
to use our convergence results, we replace the random walk matrix with our graph shift matrix S. As
aggregation, we opt for the deep-set architecture [58], which applies an MLP on each ξ(i, j) then a sum.
Deep sets can approximate any permutation-invariant function. As we will see below, with the proper
normalization to ensure convergence, we obtain:

PEγ = 1
n

∑
j f

MLP
γ (n · [Sej , . . . , Sqej ]) ∈ Rn×q

where fMLP
γ : Rq → Rp is applied row-wise and ej ∈ Rn are one-hot basis vectors. We note that a

similar architecture was proposed in a different line of work: it was called Structured Message Passing
by [49], or Structured GNN by [25]. In these works, the inspiration is to give nodes unique identifiers,
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e.g., one-hot encodings ei. However, this process is not equivariant. To restore equivariance, [49]
propose a deep-set pooling in the “node-id” dimension PEγ(S) =

∑
j Φγ(S, ej), where Φγ is itself

a permutation-equivariant GNN, and the equivariance of PEγ is restored. By choosing Φγ(S, ej) =
n−1fMLP

γ (n · [Sej , . . . , Sqej ]) (which is a valid choice for a message-passing GNN), we obtain exactly
distance-encoding PEs above.

In [25], powerful universality results were shown for this choice of architecture in the case of non-random
edges aij = w(xi, xj) and q = 1. With our notations, they implicitely studied PE functions of the
following form:

∫
f(w(·, x))dP (x). This allows to modify the values of the kernel before computing the

degree function, and can therefore break potential indeterminancy such as constant degrees. Unfortunately,
their proof technique and the concentration inequalities they use are not true anymore for Bernoulli
random edges, which are far more realistic than deterministic weighted edges. Here we show that for a
large class of kernels, concentration can be restored when we add an MLP filter on the eigenvalues of S
with ReLU. Our definition of distance-encoding PEs is therefore:

PEγ = 1
n

∑
j f

MLP
γ1

(
n · [Sγ2

ej , . . . , S
q
γ2
ej ]
)

(10)

where Sγ2

def.
= hfMLP

γ2
(S) is a filter that applies an MLP fMLP

γ2
on the eigenvalues of S.

Theorem 3. Consider either SBM (ex. a) or p.s.d. kernel (ex. b), and either adjacency matrix (ex. 1) or
normalized Laplacian (ex. 2). Consider the PE (10). We define

FDist
def.
=

{∫
f([Sδx(·), . . . ,Sqδx(·)])dP (x) | f ∈ CLip([0, 1]

q,Rp), p ∈ N∗
}

(11)

where Sδx
def.
= {z 7→ wS(z, x)} by abuse of notation. Then FDist ⊂ FPE.

Note that here we only have an inclusion FDist ⊂ FPE instead of an equality as in Thm. 2: indeed, we
show that the PE (10) can approximate functions in FDist, but they may converge to other functions.
Nevertheless, as a consequence of our analysis, all the universality results of [25, Sec. 5.3] are valid with
the choice of PE (10), see Appendix C for a reminder using our notations. This is a strict, and non-trivial
improvement over [25], as their results were only derived for non-random edges. For this, Theorem 3
relies mostly on a new concentration inequality for Bernoulli matrices with ReLU filters in Frobenius
norm, that we give below since it is of independent interest.

Theorem 4. Consider either SBM (ex. a) or p.s.d. kernel (ex. b), and either adjacency matrix (ex. 1) or
normalized Laplacian (ex. 2). Define the Gram matrix W = [wS(xi, xj)/n]ij . For all ε > 0, there is an
MLP filter Sγ = hfMLP

γ
(S) such that

P(∥Sγ −W∥F ⩾ ε) → 0.

0.05 0.00 0.05 0.10 0.15
0.05

0.00

0.05

0.10

0.15 No filter
Learned filter
Ideal filter

Figure 2: Illustration of Theo-
rem 4 on synthetic data where W
is known, with a Gaussian ker-
nel. Unfiltered eigenvalues of S
are represented by blue crosses, fil-
tered ones obtained by minimiz-
ing minγ2 ∥Sγ2 −W∥F by orange
dots, and the ideal ReLU-filter used
in the proof of Thms. 3 and 4 is rep-
resented by a red line.

The proof of this theorem, given in appendix B.3, is inspired by the
so-called USVT estimator [7]. One notes that the use of an MLP graph
filter is quite unconventional. A more classical choice is polynomial
filters: this avoids the diagonalization of S by computing

∑
k akS

k,
it is for instance the basis for the ChebNet architecture [10]. For the
purpose of Theorems 3 and 4, polynomial filters do not work, and
ReLU is of crucial importance: indeed, we need the filter to zero-out
O (n) eigenvalues uniformly in some interval [−τ, τ ]. This cannot be
done with polynomials with a fixed number of parameters and growing
n → ∞. On the other hand, when choosing f as an MLP with ReLU,
due to the shape of this non-linearity, fMLP

γ2
can be uniformly 0 on a

whole domain. Of course, polynomial filters offer great computational
advantages, and perform well in practice, despite their flaw in our
asymptotic analysis. Moreover, ReLU is technically non-differentiable.
Designing filters that offer both computational advantages and exact
approximation is still an open question. In practice, we observe that
the ReLU-filter does learn to approximate its expected shape, when we
minimize the reconstruction error ∥Sγ −W∥F on synthetic data where W is known, see Fig. 2.
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4.2.3 Discussion

Approximation power. As mentioned above, in the absence of node features, one may opt for constant
input, but this may lead to degenerate situations. PEs aim to counteract that, by increasing GNNs’
approximation power. We quickly verify that this is indeed the case for our two examples.

Proposition 5. There are cases where FS(1)⊂FS(FEig) or FS(1)⊂FS(FDist) with strict inclusions.

Moreover, as mentioned in the previous section, existing universality results [25] can be generalized in
our case, see App. C. Another interesting question is somewhat the opposite: given the already rich class
of functions generated by PEs, are GNNs really more powerful?

Proposition 6. There are cases where FEig ⊂ FS(FEig) or FDist ⊂ FS(FDist), with strict inclusions.

The proof, which is not so trivial, invokes functions with at least one round of message-passing after the
computation of PEs, so the additional approximation power does not come only from MLPs. Intuitively, it
seems natural that message-passing rounds are useful for other reasons, e.g. noise reduction or smoothing
[23]. We leave these complementary lines of investigation for future work.

Renormalization. A striking point in our variants of PEs is the presence of various normalization
factors by the graph size n to ensure convergence: the equation (8) involves a renormalization of the
eigenvectors uS by the square root of the size of the graph

√
n, while (10) involves a multiplicative factor

n inside the MLP fMLP
γ1

(the 1/n outside of the sum is more classical). Our analysis shows that these
normalization factors are necessary for convergence when n → ∞, and more generally for consistency
across different graph sizes.

In practice, this is generally not used. Indeed, if the training and testing graphs have roughly the same
“range” of sizes n ∈ [nmin, nmax], then a GNN model can learn the proper normalization to perform,
which is not the point of view of our analysis n → ∞. While in-depth benchmarking of PEs has been
done in the literature [13] and is out-of-scope of this paper, we give a small numerical illustration of
the effect of normalization in Table 1. We consider a synthetic dataset with a classic classification
problem on (unobserved) latent variables xi and a Gaussian kernel W . To emphasize the effect of the
normalization, we also examine a situation where the test graphs are much larger than the training graphs
while following the same model, which we denote by out-of-dist. Concerning real data, since there
are practically no datasets for node-classification with several graphs of sufficiently different size to test
the renormalization, we artificially extract many subgraphs from a single large graph (Citeseer) with
labelled nodes to create such a dataset, denoted by Citeseer-subgraphs. We also directly look at two
graph-classification datasets with many graphs of different sizes. Note that, to emphasize the effect of
PEs, we discard eventual node features and use only the graph structure.

On synthetic data exactly formed of random graphs of vastly different sizes, the renormalization is of
course necessary to obtain good performance, as predicted by our theory: without it, the PEs do not
converge when n grows. On real data, we see that renormalization generally improve performance, and
this is more true for IMDB-BINARY, which contains a larger range of graph sizes, and distance-based
PEs. Note that here we use relatively small GNNs that are not state-of-the-art (in particular since we do
not use node features), as well as a different train/test split than most papers (K = 5 CV-folds instead of
K = 10): indeed, we do not want our models to learn the proper normalization on the limited range of
sizes n in the dataset, so we limit their number of parameters and use a smaller training set. We do not
expect our simple renormalization process to make a significant difference on large-scale benchmarks
with state-of-the-art models [13], but this is a pointer in an interesting direction to be explored in the
future. In particular, this type of normalization may be useful in real-world scenarii where the test graphs
are far larger than the labelled training graphs.

5 Conclusion

On large random graphs, the manner in which GNNs label nodes can be modelled by functions. The
analysis of the resulting function spaces is still in its infancy, and of a very different nature to the studies
of graph-tasks, both discrete [54] or in the limit [36]. In this paper, we clarified significantly the nature
of the space of functions well-approximated by GNNs on large-graphs, showing that it can be defined by
a few extension rules within the space of square-integrable functions. We then showed the usefulness
of Positional Encodings by analyzing two popular examples, established new universality results, as
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Dataset Eigenvectors Distance-encoding
w/ norm. w/o norm. w/ norm. w/o norm.

Synthetic 68.61 65.59 67.31 62.49
Synthetic (out-of-dist) 67.87 62.51 66.80 63.33
CiteSeer-subgraphs 49.45 49.43 48.99 37.09
IMDB-BINARY [55] (graph-classif.) 67.80 66.10 71.10 63.95
COLLAB [55] (graph-classif.) 73.74 74.77 75.65 75.02

Table 1: Test accuracy for GNNs with different PEs, with or without renormalization by the graph size n. Results
for 5-fold cross-validation averaged over 3 experiments.

well as some concentration inequalities of independent interest. Our theory hinted at some process for
consistency across graphs of different sizes that can help generalization in practice.

This paper, which in large part consisted in properly defining the objects of interest, is without doubt
only a first step in their analysis. Future studies might look at specific settings and derive more useful
properties of the space FS, more powerful PEs, a better understanding of their limitations, or more
realistic models for node features. In particular, a better connection with the existing WL-based theory
for finite small graphs, and associated “powerful” architectures, is a major path for future work.
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A Proofs of Sec. 3

A.1 Proof of Prop. 1

Denote G the distribution of (X,A) with (w,P ) and Gϕ for (wϕ, Pϕ). Note that if X,A ∼ Gϕ, then
ϕ(X), A ∼ G, and recall that S = S(A) only depends on A.

Consider f ∈ FGNN(B, w, P ), ε > 0, and θ, f (0) such that PG
(∥∥Φθ(S, ιXf (0))− ιXf

∥∥
MSE ⩾ ε

)
→ 0.

Then, denoting by ϕ(X) = {ϕ(x1, . . . , ϕ(xn)},

PGϕ

(∥∥∥Φθ(S, ιX(f (0) ◦ ϕ))− ιX(f ◦ ϕ)
∥∥∥

MSE
⩾ ε
)
= PGϕ

(∥∥∥Φθ(S, ιϕ(X)f
(0))− ιϕ(X)f

∥∥∥
MSE

⩾ ε
)

= PG

(∥∥∥Φθ(S, ιXf (0))− ιXf
∥∥∥

MSE
⩾ ε
)
→ 0

which shows that f ◦ ϕ ∈ FGNN(Bϕ, wϕ, Pϕ) and one inclusion. The other inclusion is immediate by
doing the same reasoning for ϕ−1.

A.2 Proof of Prop. 2

Define W = [wS(xi, xj)/n] the Gram matrix. Using Theorem 9, for both our examples we have

∥S −W∥ P−−−−→
n→∞

0

Since ∥W∥ ⩽ supx,y |wS(x, y)| is bounded, it shows that ∥S∥ is bounded with probability going to 1.

Let f ∈ L2
q and any ε > 0. Since continuous functions are dense in square-integrable functions on

compact spaces (see e.g. [14, Sec. 8.2]), let g ∈ CLip(X ,Rq) such that ∥f − g∥L2 ⩽ ε. We have

∥WιXg − ιXSg∥2MSE =
1

n

∑
i

∥∥∥∥∥∥ 1n
∑
j

wS(xi, xj)g(xj)−
∫

wS(xi, x)g(x)dP (x)

∥∥∥∥∥∥
2

⩽

∥∥∥∥∥∥ 1n
∑
j

wS(·, xj)f(xj)−
∫

wS(·, x)g(x)dP (x)

∥∥∥∥∥∥
2

∞

P−−−−→
n→∞

0

where we have used Lemma 8 and the fact that g is bounded.

Finally,

∥SιXf − ιXSf∥MSE ⩽ ∥SιXf −WιXf∥MSE + ∥WιXf −WιXg∥MSE

+ ∥WιXg − ιXSg∥MSE + ∥ιXSg − ιXSf∥MSE

Using ∥AB∥F ⩽ ∥A∥ ∥B∥F and the LLN, and the fact that ∥f∥L2 , ∥W∥, ∥S∥ are bounded, with
probability going to 1,

∥SιXf − ιXSf∥MSE ⩽ ∥S −W∥ ∥ιXf∥MSE + ∥W∥ ∥ιX(f − g)∥MSE

+ ∥WιXg − ιXSg∥MSE + ∥ιXS(g − f)∥MSE

≲ ∥S −W∥ ∥f∥L2 + ∥W∥ ∥f − g∥L2 + 0 + ∥S∥ ∥g − f∥L2 ≲ ε

which, since ε was chosen arbitrarily, concludes the proof.

A.3 Proof of Theorem 1

The proof uses intermediate results. Recall the definition of GNNs: given input node features Z(0) ∈
Rn×d0 ,

Z(ℓ) = ρ
(
Z(ℓ−1)θ

(ℓ−1)
0 + SZ(ℓ−1)θ

(ℓ−1)
1 + 1n(b

(ℓ))⊤
)
∈ Rn×dℓ ,

Φθ(S,Z
(0)) = Z(L−1)θ(L−1) + 1n(b

(L))⊤
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We can define a continuous equivalent of GNNs, called c-GNNs in the literature [24], using the operator
S. Given f (0) ∈ L2

d0
,

f (ℓ) = ρ
(
(θ

(ℓ−1)
0 )⊤f (ℓ−1) + (θ

(ℓ−1)
1 )⊤Sf (ℓ−1) + b(ℓ)

)
∈ L2

dℓ
,

Φθ(S, f
(0)) = (θ(L−1))⊤f (L−1) + b(L)

Then, under our assumption on the operators (S,S), discrete GNNs converge to continuous GNNs.

Lemma 1. Suppose Assumption 1 holds. For all f ∈ L2
⊔ and θ,

∥Φθ(S, ιXf)− ιXΦθ(S, f)∥MSE
P−−−−→

n→∞
0

Proof. Writing Z(0) = ιXf and f (0) = f , we show by recursion on the layers that∥∥Z(ℓ) − ιXf (ℓ)
∥∥

MSE
P−−−−→

n→∞
0.

For ℓ = 0, we have exactly
∥∥Z(0) − ιXf (0)

∥∥
MSE = 0. Assuming the convergence holds for ℓ− 1, we

have, ∥∥∥Z(ℓ) − ιXf (ℓ)
∥∥∥

MSE
=
∥∥∥ρ(Z(ℓ−1)θ

(ℓ−1)
0 + SZ(ℓ−1)θ

(ℓ−1)
1 + 1n(b

(ℓ))⊤
)

− ιXρ
(
(θ

(ℓ−1)
0 )⊤f (ℓ−1) + (θ

(ℓ−1)
1 )⊤Sf (ℓ−1) + b(ℓ)

)∥∥∥
MSE

≲
∥∥∥Z(ℓ−1)θ

(ℓ−1)
0 + SZ(ℓ−1)θ

(ℓ−1)
1

− (ιXf (ℓ−1))θ
(ℓ−1)
0 + (ιXSf (ℓ−1))θ

(ℓ−1)
1

∥∥∥
MSE

⩽
(∥∥∥θ(ℓ−1)

0

∥∥∥+ ∥∥∥θ(ℓ−1)
1

∥∥∥ ∥S∥)∥∥∥Z(ℓ−1) − ιXf (ℓ−1)
∥∥∥

MSE

+
∥∥∥(SιX − ιXS)f (ℓ−1)

∥∥∥
MSE

using the Lipschitz property of ρ in the first line, and ∥AB∥F ⩽ ∥A∥ ∥B∥F after. The first term converges
to 0 by recursion hypothesis since ∥S∥ is bounded with probability going to 1, and the second converges
to 0 by Assumption 1. This concludes the proof.

Lemma 2. Given a base space B ⊂ L2
⊔, denote by Fc(B) ⊂ L2

⊔ the following space of all functions f
of the form:

f (0) ∈ B

f (ℓ+1) = g
(ℓ)
1 ◦ f (ℓ) + g

(ℓ)
2 ◦ Sf (ℓ) where g

(ℓ)
1 , g

(ℓ)
2 ∈ CLip(Rdℓ ,Rdℓ+1)

f = f (L) ∈ L2
dL

(12)

for all k, L, di. Then Fc(B) is dense in FS(B).

Proof. By definition, Fc ⊂ FS since its contruction uses only rules that leave FS stable. Conversely, Fc

satisfies all the rules of stability of FS so by minimality FS ⊂ Fc.

Lemma 3 (Universality in L2). Let f ∈ L2
q and g ∈ CLip(Rq,Rp), for all ε > 0, there exists an MLP

fMLP
γ that uses ReLU, with two hidden layers, such that∥∥g ◦ f − fMLP

γ ◦ f
∥∥
L2 ⩽ ε (13)

Proof. Denote by Lg the Lipschitz constant of g. Let Ck = [−k, k]q, and Xk = {x ∈ X | f(x) ∈ Ck},
and ξk =

∫
Xk

∥f(x)∥2 dP (x). We have ξk positive and increasing, and limk→∞ ξk = ∥f∥2L2
. Define kε

such that ξkε ⩾ ∥f∥2L2 − ε2

1+L2
g+∥g(0)∥2 , such that

∫
X c

kε

∥f(x)∥2 dP (x) ⩽ ε2

1+L2
g+∥g(0)∥2 .
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Since Ckε is compact, by the universality theorem [21, 40], there is an MLP fMLP
γ′ such that

supy∈Ckε

∣∣g(y)− fMLP
γ′ (y)

∣∣ ⩽ ε. Moreover, using the property of ReLU, it is easy to see that the
following function can be implemented by an MLP:

fMLP
γ′′ (t) =


−kε for t ⩽ −kε
t for −kε ⩽ t ⩽ kε
kε for t ⩾ kε

Then, we define fMLP
γ = fMLP

γ′′ ◦ fMLP
γ′ , where fMLP

γ′′ is applied coordinate-wise. As a result, we have
fMLP
γ (y) = fMLP

γ′ (y) on Ckε , and
∥∥fMLP

γ (y)
∥∥
∞ ⩽ kε outside. Then, we have∥∥g ◦ f − fMLP

γ ◦ f
∥∥2
L2 =

∫ ∥∥g ◦ f(x)− fMLP
γ ◦ f(x)

∥∥2 dP (x)

⩽
∫
Xkε

∥∥g ◦ f(x)− fMLP
γ ◦ f(x)

∥∥2 dP (x)

+ 2
(∫

X c
kε

∥g ◦ f∥2 dP (x) +

∫
X c

kε

∥∥fMLP
γ ◦ f

∥∥2 dP (x)
)

For the first term, since on Xkε
we have f(x) ∈ Ckε

, we use the approximation property and we have∫
Xkε

∥∥g ◦ f(x)− fMLP
γ ◦ f(x)

∥∥2 dP (x) ⩽ ε2

For the second term, since ∥f(x)∥2 ⩾ dk2ε ⩾ 1 on X c
kε

, we have∫
X c

kε

∥g ◦ f∥2 dP (x) ⩽ 2

∫
X c

kε

∥g ◦ f − g(0)∥2 dP (x) + ∥g(0)∥2
∫
X c

kε

1dP (x)

⩽ 2(L2
g + ∥g(0)∥2)

∫
X c

kε

∥f∥2 dP (x) ⩽ 2ε2

And for the third term, given the property of the built MLP,∫
X c

kε

∥∥fMLP
γ ◦ f

∥∥2 dP (x) ⩽
∫
X c

kε

dk2εdP (x)

⩽
∫
X c

kε

∥f∥2 dP (x) ⩽ ε2

which concludes the proof.

Lemma 4. Let f ∈ Fc(B). For all ε > 0, there exists θ and f (0) ∈ B such that∥∥∥Φθ(S, f
(0))− f

∥∥∥ ⩽ ε (14)

Proof. Let f ∈ Fc(B) be constructed as (12). Denote by L
g
(ℓ)
i

the Lipschitz constant of g
(ℓ)
i ∈

CLip(Rdℓ ,Rdℓ+1). Let ε > 0.

We build the following continuous GNN: f̄ (0) = f (0), and

f̄ (ℓ+1) = fMLP
θ
(ℓ)
1

◦ f̄ (ℓ) + fMLP
θ
(ℓ)
2

◦ Sf̄ (ℓ)

Φθ(S, f̄
(0)) = f̄ (L)

for well-chosen MLPs. We design them by increasing layer indices: assuming the MLPs up to layer ℓ− 1

are choosen (i.e. f̄ (ℓ) is chosen), we use Lemma 3 and choose θ
(ℓ)
i (which depends on θ(0), . . . , θ(ℓ−1)

then) such that∥∥∥(g(ℓ)1 − fMLP
θ
(ℓ)
1

)
◦ f̄ (ℓ)

∥∥∥
L2

+
∥∥∥(g(ℓ)2 − fMLP

θ
(ℓ)
2

)
◦ Sf̄ (ℓ)

∥∥∥
L2

⩽ ε(ℓ)
def.
=

ε

L
∏L−1

q=ℓ+1

(
L
g
(ℓ)
1

+ L
g
(ℓ)
2

∥S∥
)
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Then we get∥∥∥f (ℓ+1) − f̄ (ℓ+1)
∥∥∥
L2

⩽
∥∥∥g(ℓ)1 ◦ f (ℓ) − fMLP

θ
(ℓ)
1

◦ f̄ (ℓ)
∥∥∥
L2

+
∥∥∥g(ℓ)2 ◦ Sf (ℓ) − fMLP

θ
(ℓ)
2

◦ Sf̄ (ℓ)
∥∥∥
L2

⩽
∥∥∥g(ℓ)1 ◦ f (ℓ) − g

(ℓ)
1 ◦ f̄ (ℓ)

∥∥∥
L2

+
∥∥∥g(ℓ)2 ◦ Sf (ℓ) − g

(ℓ)
2 ◦ Sf̄ (ℓ)

∥∥∥
L2

+ ε(ℓ)

⩽
(
L
g
(ℓ)
1

+ L
g
(ℓ)
2

∥S∥
)∥∥∥f (ℓ) − f̄ (ℓ)

∥∥∥
L2

+ ε(ℓ)

Hence by a simple recursion and since f (0) = f̄ (0) we have

∥∥∥f (L) − f̄ (L)
∥∥∥
L2

⩽
L−1∑
ℓ=0

 L−1∏
q=ℓ+1

(
L
g
(ℓ)
1

+ L
g
(ℓ)
2

∥S∥
) ε(ℓ) ⩽ ε

by our choice of ε(ℓ), which concludes the proof.

Proof of Theorem 1. We start with the inclusion FS ⊆ FGNN. Let f ∈ FS(B) and ε > 0. By Lemma 2,
there is fc ∈ Fc(B) constructed as (12) such that ∥f − fc∥L2 ⩽ ε/3, and we use the weak law of
large numbers to obtain that P(∥ιX(f − fc)∥MSE ⩾ ε/3) −−−−→

n→∞
0.. By Lemma 4, there exists θ such

that
∥∥Φθ(S, f

(0))− fc
∥∥
L2 ⩽ ε/3. Again by the LLN, we have that P(

∥∥ιX(Φθ(S, f
(0))− fc)

∥∥
MSE ⩾

ε/3) → 0. Finally, by Lemma 1), we also have

P
(∥∥∥Φθ(S, ιXf (0))− ιXΦθ(S, f

(0))
∥∥∥

MSE
⩾ ε/3

)
−−−−→
n→∞

0.

Using a triangular inequality, we have∥∥∥Φθ(ιXf (0))− ιXf
∥∥∥

MSE
⩽
∥∥∥Φθ(ιXf (0))− ιXΦθ(f

(0))
∥∥∥

MSE
+
∥∥∥ιX(Φθ(f

(0))− fc)
∥∥∥

MSE

+ ∥ιX(fc − f)∥MSE .

We conclude by a union bound, and f ∈ FGNN(B).

For the reverse inclusion, let f ∈ FGNN(B). By hypothesis, for all m ∈ N, there are θ ∈ Θ, f (0) ∈ B
such that

P
(∥∥∥Φθ(S, ιXf (0))− ιXf

∥∥∥
MSE

⩾ 1/m
)
−−−−→
n→∞

0

By Lemma 1,
P
(∥∥∥Φθ(S, ιXf (0))− ιXΦθ(S, f

(0))
∥∥∥

MSE
⩾ 1/m

)
−−−−→
n→∞

0

By the LLN,

P
(∣∣∣∥∥∥ιX(f − Φθ(S, f

(0)))
∥∥∥

MSE
−
∥∥∥f − Φθ(S, f

(0))
∥∥∥
L2

∣∣∣ ⩾ 1/m
)
→ 0

Hence, b a union bound and triangular inequality, we obtain the deterministic bound∥∥f − Φθ(S, f
(0))
∥∥
L2 ⩽ 3/m. Since Φθ(S, f

(0)) ∈ FS(B) and FS(S) is closed, by taking m → ∞ we
have f ∈ FS(B).

A.4 Proof of Prop. 3

Remark that FS(B) ∩ CLip(X ,R) is in fact a subalgebra of CLip(X ,R). Indeed it is a vector space,
and moreover it is stable by multiplication: for f, g ∈ FS(B) ∩ CLip(X ,R), by stability of FS(B) by
composition with continuous functions we have that x 7→ [f(x), 0], x 7→ [0, g(x)] are in FS(B), then
(x 7→ [f(x), g(x)]) ∈ FS(B) by linearity (that is, FS is stable by concatenation), and since (x, y) 7→ xy
is continuous, (x 7→ f(x)g(x)) ∈ FS(B) ∩ CLip(X ,R).
Hence FS(B) ∩ CLip(X ,R) is a subalgebra of CLip(X ,R) and since it separates points by hypothesis,
by the Stone-Weierstrass theorem [21] it is dense in CLip(X ,R) for the uniform norm, and a fortiori in
⊔dCLip(X ,Rd) by concatenation. Since continuous functions are dense in square-integrable functions
[14, Sec. 8.2] and the L2 norm is dominated by the uniform norm, it results that FS(B) is dense in L2

⊔,
and even FS(B) = L2

⊔ because it is closed.
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B Proof of Sec. 4

We introduce general notations that are valid all throughout this section of appendix. In this appendix,
we will only assume:

Assumption 2. We have the following.

1. a bounded kernel wS, and either wS is p.s.d. or X is finite;

2. the operator Sf =
∫
wS(·, x)dP (x);

3. the Gram matrix W = [wS(xi, xj)/n];

4. a graph matrix S such that
∥S −W∥ → 0 (15)

in probability.

These assumptions are verified for both adjacency and normalized Laplacian: in the first case, we take
wS = w, and ∥A/(αnn)−W∥ → 0 by Theorem 9, and in the second, we take wS(x, y) =

w(x,y)√
d(x)d(y)

,

which is bounded by our assumptions on d, and p.s.d. when w is itself p.s.d., and we have indeed
∥L−W∥ → 0 by Theorem 9. We will also use the following property.

Lemma 5. FPE is closed.

Proof. Let fm be a sequence in FPE that converges to a f ∈ L2
q for some q. Remark that fm ∈ L2

q for
all m big enough. Let ε > 0, and m be such that ∥fm − f∥L2 ⩽ ε/2. By the law of large numbers,
for any fixed m, ∥ιX(fm − f)∥MSE converges to ∥fm − f∥L2 ⩽ ε/2 almost surely and a fortiori in
probability, such that P(∥ιX(fm − f)∥MSE ⩾ ε/2) −−−−→

n→∞
0. By definition, there is γ ∈ Γ such that

P(∥PEγ(S,Z)− ιXfm∥MSE ⩾ ε/2) → 0. Hence, by a union bound

P(∥PEγ(S,Z)− ιXf∥MSE ⩾ ε)

⩽ P(∥PEγ(S,Z)− ιXfm∥MSE ⩾ ε/2) + P(∥ιX(fm − f)∥MSE ⩾ ε/2) −−−−→
n→∞

0

and therefore f ∈ FPE.

B.1 Proof of Prop. 4

We have ∥∥∥Z − ιXSf (0)
∥∥∥

MSE
⩽
∥∥∥SιXf (0) − ιXSf (0)

∥∥∥
MSE

+ ∥Sν∥MSE

The first term goes to 0 by Prop. 2.

For the second term, using ∥AB∥F ⩽ ∥A∥ ∥B∥F, we have

∥Sν∥MSE ⩽ ∥S −W∥ ∥ν∥MSE + ∥Wν∥MSE

The first term goes to 0 in probability since ∥ε∥MSE is bounded with probability going to 1 and
∥S −W∥ → 0 for our examples of graph operators. For the second term, we have

∥Wν∥2MSE =

d0∑
ℓ=1

1

n

∑
i

 1

n

∑
j

wS(xi, xj)νjℓ

2

⩽
∑
ℓ

∥∥∥∥∥∥ 1n
∑
j

wS(·, xj)νjℓ

∥∥∥∥∥∥
2

∞

Using Lemma 8 with the iid variable yj = (xj , νjℓ) and EwS(·, xj)νjℓ = 0 since ν and X are indepen-
dent, we obtain

∀ℓ,

∥∥∥∥∥∥ 1n
∑
j

wS(·, xj)νjℓ

∥∥∥∥∥∥
∞

P−−−−→
n→∞

0

which concludes the proof.
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B.2 Eigenvectors positional encodings: SignNet

In this whole section, the number of eigenvectors q is fixed, and we assume that λS
1 , . . . , λ

S
q+1 are

pairwise distinct. We first start by generic results that allows to go from the graph matrix S to the Gram
matrix.
Lemma 6 (Intermediate result for SignNet). Suppose that Assumption 2 holds, that λS

1 , . . . , λ
S
q+1 are

distinct, and that

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuW
i − ιXuS

i

∥∥
MSE +

∣∣λW
i − λS

i

∣∣ P−−−−→
n→∞

0. (16)

Then the result of Theorem 2 holds.

Proof. Let f ∈ FEig, written as (9). By Assumption 2, ∥S −W∥ → 0. By Kato’s inequality, we have
that supi

∣∣λS
i − λW

i

∣∣→ 0, and by hypothesis, the eigenvalues of W converge to those of S. Given the
hypotheses on the eigenvalues of S, with probability going to 1 the q+1 first eigenvalues of S have single
multiplicities. When it is the case, according to Davis-Kahan theorem (Theorem 8), for all i = 1, . . . , q
there is si ∈ {−1, 1} such that

max
i

∥∥siuS
i − uW

i

∥∥→ 0 (17)

which, combined with our hypotheses, yields

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuS
i − ιXuS

i

∥∥
MSE

P−−−−→
n→∞

0. (18)

For i = 1, . . . , q, let fi : R → Rpi be continuous functions and ε > 0. By Lemma 3, there is fMLP
γi

such
that

∥∥(fMLP
γi

− fi) ◦ uS
i

∥∥
L2 ⩽ ε/(2q). Then, call Li the (uniform) Lipschitz constant of fMLP

γi
on R. We

have ∥∥PEγ − ιX [(Qfi) ◦ uS
i ]

q
i=1

∥∥
MSE =

∥∥[(QfMLP
γi

)(
√
nuS

i )]
q
i=1 − ιX [(Qfi) ◦ uS

i ]
q
i=1

∥∥
MSE

⩽
∥∥[(QfMLP

γi
)(
√
nuS

i )]
q
i=1 − ιX [(QfMLP

γi
) ◦ uS

i ]
q
i=1

∥∥
MSE

+
∥∥ιX [(QfMLP

γi
) ◦ uS

i ]
q
i=1 − ιX [(Qfi) ◦ uS

i ]
q
i=1

∥∥
MSE

⩽
∑
i

∥∥(QfMLP
γi

)(
√
nuS

i )− ιX(QfMLP
γi

) ◦ uS
i

∥∥
MSE

+
∥∥ιX(QfMLP

γi
) ◦ uS

i − ιX(Qfi) ◦ uS
i

∥∥
MSE

⩽ 2
∑
i

min
si∈{1,−1}

∥∥fMLP
γi

(si
√
nuS

i )− ιXfMLP
γi

◦ uS
i

∥∥
MSE

+ 2
∥∥ιX(fMLP

γi
− fi) ◦ uS

i

∥∥
MSE

The first term goes to 0 in probability by what precedes, while for the second∑
i

∥∥ιX(fMLP
γi

− fi) ◦ uS
i

∥∥
MSE

P−−−−→
n→∞

∑
i

∥∥(fMLP
γi

− fi) ◦ uS
i

∥∥
L2 ⩽ ε/2

which proves that FEig ⊂ FPE, and thus FEig ⊂ FPE since FPE is closed by Lemma 5.

For the reverse inclusion, let f ∈ FPE. By hypothesis, for all m ∈ N, there is γ ∈ Γ, such that
P
(
∥PEγ − ιXf∥MSE ⩾ 1/m

)
−−−−→
n→∞

0

By what precedes, if we write PEγ = (QfMLP
γi

)(
√
nuS

i )]
q
i=1, we have∥∥PEγ − ιX [(QfMLP

γi
) ◦ uS

i ]
q
i=1

∥∥
MSE

P−−−−→
n→∞

0

By the LLN,

P
(∣∣∣∥∥ιX(f − [(QfMLP

γi
) ◦ uS

i ]
q
i=1)

∥∥
MSE

−
∥∥f − [(QfMLP

γi
) ◦ uS

i ]
q
i=1

∥∥
L2

∣∣∣ ⩾ 1/m
)
→ 0

Hence, by a union bound and triangular inequality, we obtain the deterministic bound∥∥f − [(QfMLP
γi

) ◦ uS
i ]

q
i=1

∥∥
L2 ⩽ 3/m. Since [(QfMLP

γi
) ◦ uS

i ]
q
i=1 ∈ FEig, we have f ∈ FEig.

We must now prove the hypothesis of Lemma 6. This is done separately for p.s.d. kernel and SBM.
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B.2.1 Positive semidefinite kernels

In this subsection, we assume that wS is p.s.d. The following result is adapted from [42].

Theorem 5 (Adapted from [42]). Suppose that Assumption 2 holds, that λS
1 , . . . , λ

S
q+1 are pairwise

distinct, and that wS is p.s.d. (Ex. b). Then:

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuW
i − ιXuS

i

∥∥
MSE +

∣∣λW
i − λS

i

∣∣→ 0 (19)

in probability.

Proof. Denote by H the RKHS associated with wS, and by TH : H → H the kernel integral operator.
Then, it is known [42] that the spectrum of S and TH are the same (up to 0’s), and the eigenfunctions
(normalized in H) vi of TH corresponding to positive eigenvalues satisfy:

vSi (x) =

{√
λS
i u

S
i (x) for x ∈ supp(P )

1√
λS
i

∫
wS(x, y)u

S
i (y)dP (y) else (20)

Note that λS
1 > . . . > λS

q > λS
q+1 ⩾ 0 by hypothesis. Following [42], we know that

sup
i

∣∣λW
i − λS

i

∣∣→ 0 (21)

in probability, and that in particular, with probability going to one λW
i > 0 for all i = 1, . . . , q. Assuming

this is satisfied for all i, we denote by vWi = 1√
nλW

i

∑
j wS(·, xj)u

W
i,j ∈ H. Then, using the fact that

the eigenvalues of S have single multiplicities, the proof of Theorem 12 in [42] tells us that for all
m = 1, . . . , q,

m∑
j=1

∑
i⩾m+1

〈
vSi , v

W
j

〉2
H +

∑
j⩾m+1

m∑
i=1

〈
vSi , v

W
j

〉2
H → 0 (22)

in probability. Since these are all nonnegative quantities, all partial sums go to 0. The first part (the term
for j = m) tells us that

∑
i⩾m+1

〈
vSi , v

W
m

〉2
H → 0, and the second part applied at m− 1 (again the term

with j = m) gives us
∑m−1

i=1

〈
vSi , v

W
m

〉2
H → 0. Hence for all m = 1, . . . , q,∑

i̸=m

〈
vSi , v

W
m

〉2
H → 0 (23)

Since (vSi )i and (vWi )i are orthonormal basis of H, we have
∥∥vWm ∥∥2H = 1 =

∑
i

〈
vSi , v

W
m

〉2
H, and thus〈

vSm, vWm
〉2
H → 1. By the reproducing property

〈
vSm, vWm

〉
H =

1√
λW
m

1√
n

∑
i

uW
m,iv

S
m(xi) =

√
λS
m

λW
m

1√
n

∑
i

uW
m,iu

S
m(xi)

By the convergence of λW
m we obtain that

(
1√
n

〈
uW
i , ιXuS

i

〉)2
→ 1 in probability, and choosing the

sign of uW
i such that

〈
uW
i , ιXuS

i

〉
⩾ 0, we get 1√

n

〈
uW
i , ιXuS

i

〉
→ 1. Finally

∥∥√nuW
i − ιXuS

i

∥∥2
MSE = 2

(
1− 1√

n

〈
uW
i , ιXuS

i

〉)
+
∥∥ιXuS

i

∥∥2
MSE − 1

by the LLN,
∥∥ιXuS

i

∥∥2
MSE →

∥∥uS
i

∥∥2
L2 = 1 in probability, which concludes the proof.

By combining Theorem 5 with Lemma 6, we conclude the proof in the p.s.d. case.
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B.2.2 SBM

Variants of the following result appear under (sometimes significantly) different formulations in the
literature.
Theorem 6. Suppose that Assumption 2 holds, that λS

1 , . . . , λ
S
q+1 are pairwise distinct, and that X is

finite (Ex. a). Then:

max
i=1,...,q

min
s∈{1,−1}

∥∥s√nuW
i − ιXuS

i

∥∥
MSE +

∣∣λW
i − λS

i

∣∣ P−−−−→
n→∞

0. (24)

Proof. In the SBM case, functions are represented by vectors of size K. The operator S acts as:
Sf = C diag(Pk)f , where C

def.
= [wS(k, ℓ)]kℓ. Therefore C diag(Pk)u

S
i = λS

i u
S
i , for i = 1, . . . ,K.

Note that uS
i is orthonormal in L2(P ), that is, (uS

i )
⊤ diag(Pk)u

S
i = 1 and (uS

i )
⊤ diag(Pk)u

S
j = 0.

In particular, (λS
i ,diag(

√
Pk)u

S
i ) is an eigenvalue/eigenvector pair of the symmetric matrix CP

def.
=

diag(
√
Pk)C diag(

√
Pk). Denoting by uP

i
def.
= diag(

√
Pk)u

S
i we have CP =

∑K
i=1 λ

S
i u

P
i (u

P
i )

⊤.

Since the space X is finite, each xi is equal to a community label 1 ⩽ ki ⩽ K. Define
Θ ∈ {0, 1/

√
n}n×K the community matrix, as:{

Θi,ki =
1√
n

for all 1 ⩽ i ⩽ n

Θi,j = 0 otherwise
(25)

Then the Gram matrix is
W = ΘCΘ⊤ (26)

Also note that Θ⊤Θ = diag(P̂ ), where P̂k = 1
n

∑
i 1ki=k → Pk almost surely by the LLN. Note that,

when interpreting uS
i as a function on X = {1, . . . ,K}, we have

√
nΘuS

i = ιXuS
i .

Defining ΘP = Θdiag(1/
√
Pk), we have

W = ΘPCPΘ
⊤
P =

∑
i

λS
i (ΘPu

P
i )(ΘPu

P
i )

⊤ =
∑
i

λS
i viv

⊤
i

where vi = ΘPu
P
i = ΘuS

i satisfies

∥vi∥2 = (uS
i )

⊤ diag(P̂k)u
S
i → 1, v⊤i vj = (uS

i )
⊤ diag(P̂k)u

S
j → 0 (27)

in probability. Hence the vi are almost orthonormal but not exactly. Define their orthonormalization:

ũ1 = v1, ∀i = 2, . . . ,K, ũi = vi −
i−1∑
j=1

(v⊤i uj)uj and ui =
ũi

∥ũi∥
(28)

such that u1, . . . , uK ∈ Rn are orthonormal and ui ∈ Span(v1, . . . , vi). We define G =∑K
i=1 λ

S
i uiu

⊤
i , whose eigenvalues are the λS

i and eigenvectors ui. By the properties of vi we
have sup1⩽i⩽n ∥vi − ui∥ → 0, so ∥W −G∥ → 0. Hence by Kato’s inequality we have
sup1⩽i⩽n

∣∣λW
i − λS

i

∣∣ → 0, and since the λS
1 , . . . , λ

S
q+1 have unique multiplicity, again by Davis-

Kahan theorem for all i = 1, . . . , q we have mins∈{−1,1}
∥∥suW

i − ui

∥∥ → 0, and by consequence
mins∈{−1,1}

∥∥s√nuW
i −

√
nvi
∥∥

MSE → 0. We conclude by recalling that
√
nvi =

√
nΘuS

i = ιXuS
i .

As before, we conclude by combining Theorem 6 with Lemma 6.

B.3 Distance-based encodings

Again, we start with an intermediate result, assuming some convergence in Frobenius norm that we will
then show for our cases of interest.
Lemma 7 (Intermediate result for Distance-based encodings). Suppose that Assumption 2 holds, and
that:

∀ε > 0,∃γ2,P(∥Sγ2
−W∥F ⩾ ε) → 0 (29)

Then the result of Theorem 3 holds.

21



Proof. Let f ∈ CLip([0, 1]
q,Rd) and ε > 0. By the universality theorem [40], let fMLP

γ1
such that∥∥fMLP

γ1
− f

∥∥
∞ ⩽ ε on [0, 1]q . Since it is an MLP, fMLP

γ1
is uniformly Lipschitz on Rq , call L its Lipschitz

constant. Then, let fMLP
γ2

such that

P(∥Sλ2 −W∥F ⩾ ε/L) → 0 (30)

For convenience, define M
Sγ2
j = [Sγ2

ej , . . . , (Sγ2
)qej ] ∈ Rn×q , MW

j = [Wej , . . . ,W
qej ], J(x, y) =

[Sδy(x), . . . ,S
qδy(x)] ∈ [0, 1]q .

We write

∥∥∥∥PE− ιX

∫
f(J(·, x)dP (x)

∥∥∥∥
MSE

⩽

∥∥∥∥∥∥ 1n
∑
j

fMLP
γ1

(
n ·MSγ2

j

)
− fMLP

γ1

(
n ·MW

j

)∥∥∥∥∥∥
MSE

+

∥∥∥∥∥∥ 1n
∑
j

fMLP
γ1

(
n ·MW

j

)
− ιX

∫
fMLP
γ1

(J(·, x))dP (x)

∥∥∥∥∥∥
MSE

+

∥∥∥∥ιX ∫ fMLP
γ1

(J(·, x))dP (x)− ιX

∫
f(J(·, x))dP (x)

∥∥∥∥
MSE

(31)

The third term in (31) is bounded by
∥∥fMLP

γ1
− f

∥∥
∞ ⩽ ε.

The second term in (31) is

∥∥∥∥∥∥ 1n
∑
j

fMLP
γ1

(
n ·MW

j

)
− ιX

∫
fMLP
γ1

(J(·, y))dP (x)

∥∥∥∥∥∥
MSE

⩽

∥∥∥∥∥∥ 1n
∑
j

fMLP
γ1

(
n ·MW

j

)
− ιXfMLP

γ1
(J(·, xj))

∥∥∥∥∥∥
MSE

+

∥∥∥∥∥∥ιX
 1

n

∑
j

fMLP
γ1

(J(·, xj))−
∫

fMLP
γ1

(J(·, x))dP (x)

∥∥∥∥∥∥
MSE

⩽ L

q∑
ℓ=1

sup
x,x′

∣∣∣∣∣∣ 1

nℓ−1

∑
i1,...,iℓ−1

wS(x, xi1)wS(xi1 , xi2) . . . wS(xiℓ−1
, x′)− Sℓδx′(x)

∣∣∣∣∣∣
+

∥∥∥∥∥∥ 1n
∑
j

fMLP
γ1

(J(·, xj))−
∫

fMLP
γ1

(J(·, x))dP (x)

∥∥∥∥∥∥
∞

where we have used the Lipschitz property of fMLP
γ1

and a supremum over xi, xj for the first term. The
first term converges to 0 in probability by Lemma 9, while the second goes to 0, using the boundedness
of fMLP

γ1
on [0, 1]q , by Lemma 8.
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Finally, using Schwartz inequality, the first term in (31) is bounded by∥∥∥∥∥∥n−1
∑
j

fMLP
γ1

(nM
Sγ2
j )− fMLP

γ1
(nMW

j )

∥∥∥∥∥∥
MSE

⩽
1√
n

√∑
j

∥∥∥fMLP
γ1

(nM
Sγ2
j )− fMLP

γ1
(nMW

j )
∥∥∥2

MSE

=
1

n

√∑
ij

∥∥∥fMLP
γ1

(n(M
Sγ2
j )i,:)− fMLP

γ1
(n(MW

j )i,:)
∥∥∥2

⩽ L

√∑
ij

∥∥∥(MSγ2
j )i,: − (MW

j )i,:

∥∥∥2
⩽ L

∑
ℓ

∥∥Sℓ
γ2

−W ℓ
∥∥

F
⩽ L

∑
ℓ

(
ℓ−1∑
p=1

∥Sγ2
∥pF ∥W∥ℓ−1−p

F

)
∥Sγ2

−W∥F ≲ q2ε

with probability going to 1, using (30) and the fact that ∥W∥F is bounded, and thus ∥Sγ2
∥F as well with

probability going to 1. Gathering everything, f ∈ FPE, which concludes the proof.

We then prove this property for both p.s.d. kernel and SBM. The following Theorem is similar to
Theorem 4, but under Assumption 2, which is true for ex. 1 and 2.

Theorem 7 (Theorem 4 reformulated). Suppose that Assumption 2 holds. For both p.s.d. kernel (Ex. b)
or finite X (Ex. a), for all ε > 0, there is an MLP filter Sγ = hfMLP

γ
(S) such that

∀ε > 0, ∃γ, P(∥Sγ −W∥F ⩾ ε) → 0 (32)

Proof. Note that S is trace-class (both if w is p.s.d. or in the SBM case), such that
∑

i

∣∣λS
i

∣∣ < ∞. In
particular,

∣∣λS
i

∣∣ = o(1/
√
i). In the p.s.d. case, all λS

i are nonnegative. We define λε > 0 and the support
T = {i |

∣∣λS
i

∣∣ ⩾ λε}

i)
∑

i∈T c(λS
i )

2 ⩽ ε/2, which can be satisfied since S is trace class and therefore Hilbert-Schmidt

ii)
√
2|T | supi∈T c

∣∣λS
i

∣∣ ⩽ ε/4, which can be satisfied since
∣∣λS

i

∣∣ = o(1/
√
i)

iii) infi∈T,j∈T c

∣∣λS
i − λS

j

∣∣ > 0, which can be satisfied by choosing λε in a gap in the spectrum of
S, since all eigenvalues but 0 have finite multiplicities.

We will first start by approximating W with an ideal filtered matrix Ŝ =
∑

i∈T λS
i u

S
i (u

S
i )

⊤. We define
G =

∑
i∈T λW

i uW
i (uW

i )⊤. We decompose∥∥∥Ŝ −W
∥∥∥

F
⩽
∥∥∥Ŝ −G

∥∥∥
F
+ ∥G−W∥F

For the first term, since this matrix is of rank at most 2 |T |, we have∥∥∥Ŝ −G
∥∥∥

F
⩽
√
2 |T |

∥∥∥Ŝ −G
∥∥∥

We further decompose ∥∥∥Ŝ −G
∥∥∥ ⩽

∥∥∥Ŝ − S
∥∥∥+ ∥S −W∥+ ∥W −G∥

The second term is bounded by Theorem 9, we have ∥S −W∥ → 0 in probability.

The third term is bounded by Kato inequality

sup
i∈T c

λW
i ⩽ sup

i∈T c

λS
i + sup

i

∣∣λW
i − λS

i

∣∣
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the last term goes to 0 in probability.

The first term is bounded by supi∈T c λS
i , and by Kato’s inequality

sup
i∈T c

λS
i ⩽ sup

i∈T c

λW
i + ∥S −W∥

which is a combination of both previous cases.

At the end of the day, with probability going to 1,∥∥∥Ŝ −G
∥∥∥ ⩽

√
2 |T |2 sup

i∈T c

λS
i + o(1) ⩽ ε/2 + o(1)

Finally, we have

∥G−W∥2F =
∑
i∈T c

(λW
i )2 ⩽ 2

(∑
i∈T c

(λS
i )

2 +
∑
i

(λW
i − λS

i )
2

)
The first term is bounded by ε/2, the second goes to 0 in probability: in the p.s.d. case, this is a result
of [42], by an application of Hoeffding’s inequality in the Hilbert space of Hilbert-Schmidt operators
in an RKHS; in the SBM case, there is a finite number of non-zero eigenvalues for both W and S that
converge to each other and the result follows.

Now we need to bound
∥∥∥Sγ − Ŝ

∥∥∥
F

for a well chosen MLP. Define (iT , jT ) =

argmini∈T,j∈T c

∣∣λS
i − λS

j

∣∣, τ =
|λS

iT
−λS

jT
|

4 > 0 and λ̄ =
|λS

iT
+λS

jT
|

2 . Note that we have
T = {i |

∣∣λS
i

∣∣ ⩾ λ̄+ 2τ} and T c = {i |
∣∣λS

i

∣∣ ⩽ λ̄− 2τ} Define the following fMLP : R → R:

fMLP(λ) =
λ̄+ τ

2τ

(
ρ
(
λ− λ̄+ τ

)
− ρ

(
λ− λ̄− τ

))
+ ρ

(
λ− λ̄− τ

)
(33)

+
−λ̄− τ

2τ

(
ρ
(
−λ− λ̄+ τ

)
− ρ

(
−λ− λ̄− τ

))
− ρ

(
−λ− λ̄− τ

)
(34)

where ρ is ReLU. This is a continuous piecewise linear function that is equal to λ on (−∞,−λ̄− τ ], 0
on [−λ̄+ τ, λ̄− τ ], and λ on [λ̄+ τ,+∞).

Recall that with probability going to 1, we have supi
∣∣λS

i − λS
i

∣∣ ⩽ τ , so in particular, for all i ∈ T we
have

∣∣λS
i

∣∣ ⩾ λ̄+ τ and for all i ∈ T c we have
∣∣λS

i

∣∣ ⩽ λ̄− τ . In that case, the MLP filtering is exactly
the ideal filtering and h(S) = Ŝ, which concludes the proof.

B.4 Proof of Prop. 5

The case of FDist was proven in [25, Theorem 4]. For FEig, we consider the SBM (ex. a) with adjacency
matrix (ex. 1) and

C =

(
1/2 1/4
1/4 3/8

)
, P = (1/3, 2/3)

We have S1 = (1/3, 1/3), therefore FS(1) contains only constant functions. Moreover, uS
i = (1, 1)/

√
2.

From the orthogonality equation (uS
2 )

⊤ diag(P )uS
1 = 0 we get (uS

2 )1 = 2(uS
2 )2. Hence it is possible to

choose f such that f((uS
2 )1) + f(−(uS

2 )1) ̸= f((uS
2 )2) + f(−(uS

2 )2), thus FEig contains a non-constant
function, which concludes the proof.

B.5 Proof of Prop. 6

Consider the SBM case X = {1, . . . ,K} with K even and P = 1K/K. Adopting the notations of
the section above, we have Sf = C diag(Pk)f , CP = diag(

√
Pk)C diag(

√
Pk) =

∑K
i=1 λ

S
i u

P
i (u

P
i )

⊤

with uP
i = diag(

√
Pk)u

S
i orthonormal (in Euclidean RK).

For FEig, we consider the case where

λS
1 > λS

2 > 0, λi = 0 for i ⩾ 3

(uP
1 )i =

{√
2/K if i is even

0 otherwise,
(uP

2 )i =

{
0 if i is even
C · i otherwise,
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where C is a constant such that
∥∥uP

2

∥∥ = 1. Consider eigenvectors PEs with q = 1. The space FEig
contains all the function g of the form

gi = f((uS
1 )i) + f(−(uS

1 )i)

for any f . By construction of uP
1 , these functions have the property of being 2-periodic: for all i,

gi = gi+2. Now, FS(FEig) contains e.g. the following function

S1 = KCP 1 = λS
1 (1

⊤uP
1 )u

P
1 + λS

2 (1
⊤uP

2 )u
P
2

This function is not 2-periodic: on i odd, we have (uP
2 )i ̸= (uP

2 )i+2 and therefore gi ̸= gi+2, which
concludes the proof.

For FDist, taking again q = 1, we consider K = 4 and C01 = C10 = 1, and Ckℓ = 0 otherwise. The
space FDist contains all the function g of the form

g =
1

K
f(C)1

where f is applied element-wise on C. With this choice, for any f we have g3 = g4 = f(0). However,
the space FS(FDist) contains the function

h =
1

K2
Cf(C)1

Here we have h3 = f(0)f(1)
8 + 7f(0)2

8 and h4 = f(0)2, which can be made unequal. Hence h /∈ FDist,
which concludes the proof.

C Universality

Here we recall the universality results of [25], that were derived for an architecture called Structured
GNN, in the case of non-random edges. In this paper, these results are valid for the distance-encoded PEs
(10), through Theorem 3, our definition of FDist (11). The results in [25] basically proves that FS(FDist)
satisfies the hypotheses of Prop. 3. We recall them here without proof. The following results are valid for
adjacency matrix (ex. 1), distance-encoding PE (10), and SBM (ex. a) or p.s.d. kernel (ex. b), with other
additional hypotheses in each cases.

• SBM: if X is finite, C = [w(k, ℓ)] is invertible, and P is such that for all s ∈ {−1, 0, 1}K ,
s⊤P = 0 implies s = 0, then FS(FPE) = L2

⊔.
• Additive kernel: if w(x, y) = v(u(x) + u(y)) with u, v that are continuous and injective, then
FS(FPE) = L2

⊔.
• Unidimensional radial kernel: if X = [−1, 1], w(x, y) = v(|x − y|) with continuous

injective v, and P is symmetric (that is, P ([a, b]) = P ([−b,−a]) for all intervals), then
FS(FPE) = L2

⊔ ∩ S(X ) where S are symmetric functions. If P is not symmetric, then
FS(FPE) = L2

⊔.

• Spherical kernels: If X = Sd−1 is the d-dimensional sphere, w(x, y) = v(x⊤y) with continu-
ous injective v, and P has a density p w.r.t. the uniform distribution on the sphere such that: the
unique decomposition p(x) =

∑
k⩾0

∑N(d,k)
j=1 ak,jYk,j(x) where Yk,j are spherical harmonics

is such that x 7→ [
∑N(d,k)

j=1 ak,jYk,j(x)]k is injective (see [25] and references therein), then
FS(FPE) = L2

⊔.

D Technical or third-party results

The following Lemma can be proved in a number of ways.
Lemma 8 (Lemma 4 in [24]). Let X be a compact metric space, and Y a measurable space. Consider a
bivariate measurable function U : X × Y → R that is uniformly bounded, and continuous in the first
variable. Let y1, . . . , yn be drawn i.i.d from a distribution P on Y . Then∥∥∥∥∥ 1n∑

i

η(·, yi)−
∫

η(·, y)dP (y)

∥∥∥∥∥
∞

P−−−−→
n→∞

0
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We extend the previous results to polynomials of the kernel.
Lemma 9. For any bounded, continuous kernel wS, we have for all k ⩾ 1:

sup
x,x′∈X

∣∣∣∣∣∣ 1nk

∑
i1,...,ik

wS(x, xi1)wS(xi1 , xi2) . . . wS(xik , x
′)− (Sk+1δx′)(x)

∣∣∣∣∣∣ P−−−−→
n→∞

0 (35)

Proof. We prove it by induction. For k = 1, we have

sup
x,x′∈X

∣∣∣∣∣ 1n∑
i

wS(x, xi)wS(xi, x
′)−

∫
wS(x, y)wS(y, x

′)dP (y)

∣∣∣∣∣ P−−−−→
n→∞

0 (36)

by applying Lemma 8 on X ×X , and since wS is continuous on a compact domain and therefore bounded
and Lipschitz.

Then, assuming the property for k − 1, we write

sup
x,x′∈X

∣∣∣∣∣∣ 1nk

∑
i1,...,ik

wS(x, xi1)wS(xi1 , xi2) . . . wS(xik , x
′)− (Sk+1δx′)(x)

∣∣∣∣∣∣
⩽ sup

x,x′∈X

∣∣∣∣∣∣ 1n
∑
i1

wS(x, xi1)

 1

nk−1

∑
i2,...,ik

wS(xi1 , xi2) . . . wS(xik , x
′)− (Skδx′)(xi1)

∣∣∣∣∣∣
+ sup

x,x′∈X

∣∣∣∣∣ 1n∑
i1

wS(x, xi1)(S
kδx′)(xi1)−

∫
wS(x, y)(S

kδx′)(y)dP (y)

∣∣∣∣∣
The first part converge to 0 using the boundedness of wS and the recursive hypothesis, while the second
converges to 0 using again Lemma 8.

Theorem 8 (Simplified Davis-Kahan, see [57]). Let A, Â ∈ Rd×d be symmetric with eigenvalues λi

and λ̂i ordered by decreasing order and eigenvector ui, ûi. Take p and assume that δ = min(λp−1 −
λp, λp − λp+1) > 0. Then there exists s ∈ {−1, 1} such that

∥sup − ûp∥ ⩽

∥∥∥A− Â
∥∥∥

δ
(37)

Theorem 9. Denote W = [w(xi, xj)/n]ij , W̄ =

[
w(xi,xj)

n
√

d(xi)d(xj)

]
ij

and L(M) = D
− 1

2

M MD
− 1

2

M with

DM = diag(M1)

If αn ≳ (log n)/n, then ∥∥∥∥ A

αnn
−W

∥∥∥∥ P−−−−→
n→∞

0. (38)

Moreover, if d(x) ⩾ dmin > 0 and αn ⩾ C(log n)/n where C is a constant that depends on w, then∥∥L(A)− W̄
∥∥ P−−−−→

n→∞
0. (39)

Proof. The first result is due to Lei and Rinaldo [28].

For the second result, we have from [24, Theorem 6] that

∥L(A)− L(W )∥ → 0 (40)

Then, according to Lemma 8 we have that∥∥∥∥∥d− 1

n

∑
i

w(·, xi)

∥∥∥∥∥
∞

P−−−−→
n→∞

0 (41)
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and in particular with probability going to one dWi
def.
= (DW )i ⩾ dmin/2 > 0 for all i.

Denoting by D̄ = diag(d(xi)), and noticing that W = D̄− 1
2WD̄− 1

2 and ∥W∥ ⩽ 1, we have∥∥W̄ − L(W )
∥∥ =

∥∥∥D̄− 1
2WD̄− 1

2 −D
− 1

2

W WD
− 1

2

W

∥∥∥
≲

1√
dmin

∥∥∥D̄− 1
2 −D

− 1
2

W

∥∥∥ =
1√
dmin

max
i

∣∣∣∣∣ 1√
d(xi)

− 1√
dWi

∣∣∣∣∣
=

1√
dmin

max
i

∣∣∣∣∣ d(xi)− dWi√
d(xi)dWi (

√
d(xi) +

√
dWi )

∣∣∣∣∣
≲

1

d2min

∥∥∥∥∥d− 1

n

∑
i

w(·, xi)

∥∥∥∥∥
∞

P−−−−→
n→∞

0

which concludes the proof.
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