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Abstract: In this paper, we analyze classical variants of the Spectral Clus-
tering (SC) algorithm in the Dynamic Stochastic Block Model (DSBM).
Existing results show that, in the relatively sparse case where the expected
degree grows logarithmically with the number of nodes, guarantees in the
static case can be extended to the dynamic case and yield improved error
bounds when the DSBM is sufficiently smooth in time, that is, the commu-
nities do not change too much between two time steps. We improve over
these results by drawing a new link between the sparsity and the smooth-
ness of the DSBM: the smoother the DSBM is, the more sparse it can be,
while still guaranteeing consistent recovery. In particular, a mild condition
on the smoothness allows to treat the sparse case with bounded degree.
These guarantees are valid for the SC applied to the adjacency matrix
or the normalized Laplacian. As a by-product of our analysis, we obtain
to our knowledge the best spectral concentration bound available for the
normalized Laplacian of matrices with independent Bernoulli entries.
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1. Introduction

In recent years, the study of dynamic networks has appeared as a topic of
great interest to model complex phenomenons that evolve with time, such as
interactions in social networks, the spread of infectious diseases or opinions, or
information packets in computer networks. In light of this, many random graphs
models, traditionally static (non-dynamic), have been extended to the dynamic
case, see [16, 20] for reviews. One of the most popular use of dynamic networks
consists in detecting and tracking communities of well-connected nodes, for in-
stance users of a social network [49, 47, 44], also known as clustering. In this con-
text, the classical Stochastic Block Model (SBM) [19], in which nodes intra- and
inter-communities are linked independently with some prescribed probabilities,
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has been extended to dynamic settings under the name of Dynamic Stochastic
Block Model (DSBM) in a myriad of ways. In this paper, we consider one of
the first, and most popular, extension [49] as a discrete Hidden Markov Model
(HMM) as well as one of its simplification, where node memberships follow a
Markov chain with respect to time, and connections are generated by a classical
SBM conditionally on the memberships. We will also consider a slight simplifi-
cation as in [37], where the authors remove the Markov Chain assumption and
consider deterministic community memberships at each time steps. Many other
models have been proposed since, to take into account evolving connection prob-
abilities [47, 30, 37], varying number of nodes [46], connections that depend on
their previous states [46], mixed-membership SBM [18] or multi-graphs [17].

The literature on clustering nodes in a graph is vast, with a variety of meth-
ods. Arguably, the most popular class of algorithms in practice is that of Spectral
Clustering (SC) methods [32, 42], which consist in applying a classical cluster-
ing algorithm for vectorial data, often the well-known k-means algorithm [28],
to the eigenvectors of a matrix related to the structure of the graph such as
the adjacency matrix or (normalized) Laplacian. In a dynamic context, we will
consider in this paper one of the simplest adaptation of SC, which consists
in feeding a version of the adjacency matrix smoothed in time to the classical
SC algorithm, in hope of implicitly enforcing smoothness of the communities.
This can be an averaged version of the adjacency matrix over a finite win-
dow [18, 37], or computed through recursive updates with a certain “forgetting
factor” [8, 9, 45], which is somehow more amenable to streaming computing.
Other works explicitely enforce smoothness between the communities or be-
tween the eigenvectors considered in SC through efficient updates [33, 12, 27].

Beyond SC, many other methods have been proposed, such as Maximum
Likelihood or variational approaches, which are consistent for the SBM and
DSBM [6, 30, 29], Bayesian approaches [49], learning-based approaches [2], or
neural networks [5]. Many variants of the SC itself exist, often to accelerate
computation [41]. We focus here on the traditional SC.

Guarantees for Spectral Clustering There is a vast literature on the the-
oretical analysis of SC, and guarantees come in many different flavors. Several
works analyze the algorithm when the graph is, in some sense, well-clustered [36],
in terms of spectral convergence of the normalized Laplacian when the number
of nodes goes to infinity [43, 13, 14, 40], or using random matrix theory [11].

It is well-known that a key quantity to analyze SC algorithms is the density
of edges with respect to the number of nodes. In the specific case of independent
Bernoulli edges like the SBM and DSBM, this correspond to the mean proba-
bility of connection, which will be denoted by αn in this paper, where n is the
number of nodes in the graph. The dense case αn ∼ 1 is generally simple to
analyze [24]. At the other end of the spectrum, the so-called sparse case αn ∼ 1

n
is much more complex, since the graph is not even guaranteed to be connected
with high probability [1].

Modern analyses of the sparse case are often inspired by statistical physics [21,
31, 1], and are interested with the computation of a detectability threshold, that
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is, the characterization of regimes of parameters in which there exists (or not)
an algorithm that asymptotically performs better than random guess. However,
this approach does not concern the classic SC algorithm (which will generally fail
[21]), and the case where the number of communities K is larger than 2 is still
largely open. In the dynamic case, a conjecture on the detectability threshold is
given in [15]. In parallel, other works study the sparse case by regularizing the
adjacency matrix or normalized Laplacian of the graph before the SC algorithm
[23, 24, 7].

In [25], Lei and Rinaldo provide strong, non-asymptotic consistency guar-
antees for the classic SC algorithm on the adjacency matrix (without regular-
ization) in the relatively sparse case αn � logn

n , showing that the proportion
of misclassified nodes tends to 0 with a probability that goes to 1 when the
number of nodes n increases. Their recovery results are valid for any K, poten-
tially growing slowly with n. In [37], Pensky and Zhang extend this analysis to
a particular DSBM, referred to as “deterministic” DSBM in the sequel, for the
SC algorithm applied to the adjacency matrix smoothed over a finite window.
In this case, another key quantity is the temporal smoothness of the model εn,
that is, the proportion of nodes that may change community between two time
steps (the smaller εn is, the smoother the model). They showed that, in the

relatively sparse case, if the model was sufficiently smooth in εn = o
(

1
logn

)
,

then the error bound of the static case can be improved. However their anal-
ysis still takes place in the relatively sparse case even when εn is very low. In
[4, 35], the authors consider constant cluster membership εn = 0, but changing
probabilities of connection.

Contributions In this paper, we follow the analyses of [25] and [37] and
significantly extend them in several ways.

– Our main contribution is to draw a new link between the sparsity αn and
smoothness εn in the analysis of the DSBM: we show that, the smoother
the model, the sparser it can be, while still guaranteeing consistency. In
particular, a mildly strengthened condition εn ∼ 1

log2 n
allows to give con-

sistent guarantees in the sparse case αn ∼ 1
n .

– We extend the result to the normalized Laplacian. As a by-product, in the
static case, we obtain, to our knowledge, the best spectral concentration
bound available (of order 1√

logn
) in the relatively sparse case αn ∼ logn

n .

– We also improve the rate of the error bounds with respect to the number of
communities K when the probabilities of connection between communities
decrease with K, in both the static [25] and dynamic [37] cases.

– Finally, we extend our results to the Markov DSBM introduced in [49],
and the SC algorithm with an “exponentially smoothed” matrix, used in
[8, 45] and appropriate in a streaming computing framework.

Outline In Section 2, we introduce notations, the SBM and DSBM, and recall
the SC algorithm. In Section 3, we draw a link between recovery guarantees for
SC and the concentration of the input matrix in spectral norm, similar to [25]



Sparse and smooth: Spectral clustering in the DSBM 1333

but extended to the normalized Laplacian. In Section 4 and 5, we expose our
main concentration results respectively for the adjacency matrix and normalized
Laplacian. Proofs are given in Section 6, with technical computations deferred
to the Appendix. We provide some outlooks in Section 7.

2. Framework and notations

The set of the first n integers is denoted by [n] = {1, . . . , n}. For any vector
d ∈ R

n, we define diag(d) ∈ R
n×n to be the diagonal matrix whose elements

are given by d. For a varying parameter αn, the notation αn ∼ f(n) indicates
that, as n → ∞, the quantity αn/f(n) tends to a non-zero constant, αn �
f(n) indicates that there is a universal constant C such that αn � Cf(n), and
similarly for αn � f(n).

An undirected graph G = (V,E) is formed by a set of nodes V and edges
E ⊂ V × V . For a graph with n nodes, we often adopt V = [n], and we define
its (symmetric) adjacency matrix A ∈ {0, 1}n×n

such that for i, j ∈ [n],

Aij =

{
1 if {i, j} ∈ E,

0 otherwise.

We also define the (diagonal) degree matrix D(A) by

D(A) = diag ((di)
n
i=1) where di =

n∑
j=1

Aij .

For any symmetric matrix A such that
∑

j Aij �= 0 for all i, the normalized
Laplacian L(A) is defined as

L(A) = D(A)−
1
2AD(A)−

1
2 .

We note that, typically in the litterature [10], the normalized Laplacian is de-

fined as the symmetric matrix Id −D(A)−
1
2AD(A)−

1
2 . However, SC is mainly

concerned with the eigenvectors of the Laplacian, which are the same for both
variants.

Stochastic Block Model Let us start by introducing the classical static
SBM. We take the following notations: n the number of nodes, K the number
of communities. Each node belongs to exactly one community. We denote by
Θ ∈ Mn,K ⊂ {0, 1}n×K

the 0−1 matrix representing the memberships of nodes,
where for each node i, Θik = 1 indicates that it belongs to the kth community,
and is 0 otherwise, and Mn,K is the set of all such membership matrices. Given
Θ, for i < j, we have

Aij | {Θik = 1,Θj� = 1} ∼ Ber(Bk�),

where B ∈ [0, 1]K×K is a symmetric connectivity matrix, and Ber(p) indicates
a Bernoulli random variable with parameter p. Finally, we define P = ΘBΘ� ∈
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R
n×n the matrix storing the probabilities of connection between two nodes off

its diagonal, and we have

E(A) = P − diag(P ).

Typically, B has high diagonal terms and low off-diagonal terms. We will con-
sider B of the form

B = αnB0, (1)

for some αn ∈ (0, 1) and B0 ∈ [0, 1]K×K whose elements are denoted by b
(0)
k� . It

is known that the rate αn when n → ∞ is the main key quantity when analyzing
the properties of random graphs. Typical settings include αn ∼ 1 (dense graphs),
αn ∼ 1/n (sparse graphs), or middle grounds such as αn ∼ logn

n , usually referred
to “relatively sparse” graphs. As we will see, it is known that strong guarantees
of consistency can be given in the relatively sparse case, while the sparse case
it hard to analyze and only partially understood.

For some maximum and minimum community sizes nmax � n
K and nmin � n

K ,

we define the set of admissible community sizes N
def.
= {(nk)

K
k=1 | nmin � nk �

nmax,
∑

k nk = n}, and

n̄max
def.
= max

(n�)�∈N,k�K

∑
�

n�b
(0)
k� , n̄min

def.
= min

(n�)�∈N,k�K

∑
�

n�b
(0)
k� . (2)

These quantities are such that the expected degree will be comprised between
αnn̄min and αnn̄max. For simplicity, we will sometimes express our results with
B0 equal to:

B0 = (1− τ)IdK + τ1K1�K . (3)

In other words, B contains αn on its diagonal and ταn outside. For this expres-
sion of B0, we have n̄max = (1−τ)nmax+nτ , and similarly for n̄min. Interestingly,
in the case of balanced communities nmax, nmin ∼ n

K , we have then

n̄min, n̄max ∼
{
n if τ ∼ 1,
n
K if τ ∼ 1

K .

Dynamic SBM The Dynamic SBM (DSBM) is a random model for generat-
ing adjacency matrices A0, . . . , At at each time step. Each Ai will be generated
according to a classical SBM with constant number of nodes n, number of com-
munities K and connectivity matrix B, but changing node memberships Θt.
Note that several works consider changing number of nodes [46] or changing
connectivity matrix [37], but for simplicity we assume that they are constant
in time here. Note that, using simple triangular inequalities as in [37], it would
not be difficult to integrate a changing connectivity matrix B into our results.
We will consider two potential models on the Θt.

– The simplest one, adopted in [37], is to consider that Θ0, . . . ,Θt are deter-
ministic variables. In this case, we will assume that only a number s � n of
nodes change communities between each time step t−1 and t, and denote
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εn = s/n this relative proportion of nodes. We will also assume that at all
time steps, the communities sizes are comprised between some nmin and
nmax, which will typically be of the order of n/K for balanced communi-
ties. As a shorthand, we will simply refer to this model as deterministic
DSBM (keeping in mind that the At are still random).

– In the second model, similar to [49] we assume that the nodes memberships
follow a Markov chain, such that between two time steps, all nodes have
a probability 1− εn to stay in the same community, and εn to go into any
other community, that is:

∀i, k, P ((Θt)ik = 1 | (Θt−1)ik = 1) = 1− εn,

∀� �= k, P ((Θt)i� = 1 | (Θt−1)ik = 1) =
εn

K − 1
.

Then, conditionally on Θt, the At are drawn independently according to a
SBM. The global model is thus a Hidden Markov Model (HMM). We will
simply refer to this case as Markov DSBM. Note that, in this case, it is
rather difficult to quantify, in a non-asymptotic manner, the probability
of having bounded community sizes globally holding for all time steps.
Hence n̄max, n̄min will not intervene in our analysis of this case.

Goal and error measure The goal of a clustering algorithm is to give an
estimator Θ̂ of the node memberships Θ, up to permutation of the communities
labels. We consider the following measure of discrepancy between Θ and an
estimator Θ̂ [25]:

E(Θ̂,Θ) = min
Q∈Pk

1

n
‖Θ̂Q−Θ‖0, (4)

where Pk is the set of permutation matrices of [k] and ‖·‖0 counts the number
of non-zero elements of a matrix. While other error measures are possible, as
we will see one can generally relate them to a spectral concentration property,
which will be the main focus of this paper.

In the dynamic case, a possible goal is to estimate Θ1, . . . ,Θt for all time steps
simultaneously [45, 37]. Here we consider a slightly different goal: at a given time
step t, we seek to estimate Θt with the best precision possible, by exploiting past
data. In general, this will give rise to methods that are computationally lighter
than simultaneous estimation of all the Θt’s, and more amenable to streaming
computing, where one maintains an estimator without having to keep all past
data in memory. Naturally, such methods could be applied independently at
each time step to produce estimators of all the Θt’s, but this is not the primary
goal here.

Spectral Clustering (SC) algorithm Spectral Clustering [32] is nowadays
one of the leading methods to identify communities in an unsupervised setting.
The basic idea is to solve the K-means problem [28] on the K leading eigenvec-
tors EK of either the adjacency matrix or (normalized) Laplacian. Solving the
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Algorithm 1: Spectral Clustering algorithm

Data: Matrix M ∈ R
n×n (typically adjacency or normalized Laplacian), number of

communities K, approximation ratio δ > 0.
Result: Estimated communities Θ̂ ∈ R

n×K .
1 Compute the K leading eigenvectors EK of M .

2 Obtain a (1 + δ)-approximation (Θ̂, Ĉ) of (5).

3 Return Θ̂.

K-means, i.e., obtaining

(Θ̄, C̄) ∈ Argmin
Θ∈Mn,K ,C∈RK×K

‖ΘC − EK‖2F , (5)

is known to be NP-hard, but several approximation algorithms, such as [22], are
known to produce 1 + δ approximate solutions (Θ̂, Ĉ)

‖Θ̂Ĉ − EK‖2F � (1 + δ)‖Θ̄C̄ − EK‖2F .

The SC is summarized in Algorithm 1.
In the dynamic case, a typical approach to exploit past data is to replace the

adjacency matrix At with a version “smoothed” in time Asmooth
t , and feed either

P̂ = Asmooth
t or the corresponding Laplacian L̂ = L(Asmooth

t ) to the classical
SC algorithm. In [37], the authors consider the smoothed adjacency matrix as
an average over its last r values:

Aunif
t =

1

r

r−1∑
k=0

At−k. (6)

Note that, in the original paper, the authors sometimes consider non-uniform
weights due to potential changes in time of the connectivity matrix Bt, but in
our case we consider a fixed B, and thus uniform weights 1

r . In this paper, we
will also consider the “exponentially smoothed” estimator proposed by [8, 9, 48],
which is computed recursively as:

Aexp
t = (1− λ)Aexp

t−1 + λAt. (7)

for some “forgetting factor” λ ∈ (0, 1], and Aexp
0 = A0. Compared to the uniform

estimator (6), this kind of estimator is somewhat more amenable to streaming
and online computing, since only the current Aexp

t needs to be stored in memory
instead of the last r values At, At−1, . . . , At−r+1. Note however that Aexp

t may
be denser than a typical adjacency matrix, so the memory gain is sometimes
mitigated depending on the case. Note that in fact Aunif and Aexp can be both
written as a weighted sum Asmooth

t =
∑t

k=0 βkAt−k, and our results are actually
valid for any weights βk satisfying some assumptions, see eq. (25). Uniform and
exponential weights are most commonly used in practice.
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Fig 1. Performance results for SC on synthetic data.

In Fig. 1, we illustrate the performance of the SC algorithm on a synthetic
DSBM example. As expected [39], the normalized Laplacian L(Aexp

t ) gener-
ally performs better than Aexp

t . Interestingly, the optimal forgetting factor λ is
slightly different from one to the other, and the normalized Laplacian reaches
a higher performance altogether. We then compare Aunif

t and Aexp
t . As we will

see in the sequel, taking r ∼ 1
λ often results in the same performance for both

estimators. However, a clear advantage of the exponential estimator is that it
is not limited to discrete window sizes, but has a continuous forgetting factor.
As such, Aexp

t with the optimal λ often reaches a better performance than Aunif
t

with the optimal r.

3. From Spectral Clustering to spectral norm concentration

As described in [25], a key quantity for analyzing SC algorithm is the concen-
tration of the adjacency matrix around its expectation in spectral norm. As a
first contribution, we prove the following lemma, which is a generalisation of
this result to the normalized Laplacian.

Lemma 1. Let P = ΘBΘ� correspond to some SBM with K communities,
where nmax, n

′
max and nmin are respectively the largest, second-largest and small-

est community size. Assume B = αnB0 for any B0 with smallest eigenvalue γ.
Let P̂ be an estimator of P , and Θ̂ be the output of Algorithm 1 on P̂ with a
(1 + δ)-approximate k-means algorithm. Then

E(Θ̂,Θ) � (1 + δ)
n′
maxK

nα2
nn

2
minγ

2
‖P̂ − P‖2 , (8)
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Similarly, if L̂ is an estimator of L(P ) and Θ̂ is the output of Algorithm 1 on
L̂, it holds that

E(Θ̂,Θ) � (1 + δ)
n′
maxKn̄2

max

nn2
minγ

2
‖L̂− L(P )‖2 . (9)

When B0 is defined as (3), we have γ = 1− τ .

The proof of this lemma is deferred to Appendix A.1. The first bound (8)
was proved in [25], we extend it to the Laplacian case. Note that L̂ could be an
estimator of L(P ) without being of the form L̂ = L(M) for some matrix M .

Using this lemma, in the static SBM case, the goal is to find estimators P̂ or L̂
that concentrate around P or L(P ) in spectral norm. In the dynamic case, where
the goal is to estimate the communities at a particular time t, we seek the best
estimators for Pt or L(Pt). As outlined in the previous section, we will consider
smoothed versions of the adjacency matrix Asmooth

t , and prove concentration of
Asmooth

t around Pt and L(Asmooth
t ) around L(Pt).

Remark 1. Assuming that all community sizes are of the order of n
K and τ is

fixed, the error in the adjacency case (8) scales as K2

n2α2
n
‖P̂ − P‖2, and in the

normalized Laplacian case the error (9) scales as K2‖L̂ − L(P )‖2. Also note

that, when n̄max ∼ n
K , then the error (9) is as ‖L̂ − L(P )‖2. This does not

explicitely depend on αn or K, however these quantities will naturally appear
in the concentration of the Laplacian.

The next sections will therefore be devoted in analyzing the spectral con-
centration rates of the various estimators. Table 1 summarize our results and
compare them with previous works. As we will see in the next section, our main
contribution is to weaken the hypothesis on the sparsity αn, and relate it to
the smoothness of the DSBM εn. We also provide the best bound available for
the normalized Laplacian in the static case, and the first bound in the dynamic
case.

In Figure 2, we illustrate numerically the spectral concentration of Aexp
t and

L(Aexp
t ), and their actual clustering performance, with respect to the forgetting

factor λ. We see that there is a slight discrepancy between the λ that minimizes
the spectral bound, and the one that yields the best clustering result. As we will
see in the next sections, the λ that minimizes the spectral error is theoretically
of the order of

√
αnnεn. This rate is indeed verified numerically for the spectral

error, however the actual best clustering performance deviates slightly. This
indicates that spectral norm concentration probably does not yield sharp bounds
in examining the performance of k-means and SC. We consider this to be an
open, difficult question, as many analyses of k-means rely on spectral properties.
This is left for future investigations.

4. Spectral concentration of the adjacency matrix

We start by recalling the result of [25] in the static case and prove an interesting
improvement in some cases, then we examine the result for DSBM of [37] and
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Fig 2. SC on synthetic data. Comparison between the forgetting factor λ that minimizes the
spectral error, and the one that yields the best clustering result.
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Table 1

Concentration rates in spectral norm of the adjacency matrix and normalized Laplacian, in
the static or dynamic case, with respect to the sparsity parameter αn, and the factor

ρn
def.
= min(1,

√
nαnεn) which includes the smoothness εn. The last column indicate

convergence of the error using Lemma 1. This table does not include methods with
regularization [24].

Static Dynamic

Adjacency Laplacian Adjacency Laplacian Hypothesis E → 0

[34] logn O (1) αn � logn
n

Yes

[25]
√
αnn αn � logn

n
Yes

[37]
√
αnn

√
αnnρn αn � logn

n
Yes

[3]
√
logn αn � 1

n
No

Us
√
αnn

1√
αnn

√
αnnρn

√
ρn
αnn

αn
ρn

� logn
n

Yes

state our main contribution, that is, a weakening of the sparsity hypothesis for
this case.

4.1. Static case

In their landmark paper [25], Lei and Rinaldo analyze the relatively sparse case
αn � logn

n and show that, with probability at least 1− n−ν for some ν > 0, the
adjacency matrix concentrates as

‖A− P‖ � √
nαn. (10)

Therefore, by Lemma 1, using A as an estimator for P in an SC algorithm leads

to an error E(Θ̂,Θ) � K2

αnn
, such that E(Θ̂,Θ) → 0 whenever K = o(

√
nαn).

As a minor contribution, we remark that it is not hard to prove the following
Proposition that improves over their result in the regime where αn is slightly
larger than logn

n and B0 is defined as (3).

Proposition 1. Consider a static SBM where B0 is defined as (3), assume that
the community sizes n1, . . . , nK are comprised between nmin and nmax, and that

αn � logn

n̄min
. (11)

Then, for all ν > 0, there exists a constant Cν such that, with probability at
least 1−

∑
k n

−ν
k , it holds that

‖A− P‖ � Cν

√
n̄maxαn. (12)

Proof. Denote by S1, . . . , SK ⊂ [n] the subset of indices of each community,
assume without lost of generality that the nodes are ordered such that the Sk

are consecutive in [n], that is, S1 = {1, . . . , n1}, S2 = {n1+1, . . . , n1+n2}, and
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so on. Define Ak = ASk,Sk
∈ {0, 1}nk×nk the adjacency matrix of the subgraph

of nodes from the kth community. Note that by our assumption on B we have
Pk = PSk,Sk

= αn1nk
1�nk

. Denote A′ ∈ {0, 1}n×n
the block matrix containing

the Ak on its diagonal of blocks, similarly P ′, and A′′ = A− A′, P ′′ = P − P ′.
We have

‖A− P‖ � ‖A′ − P ′‖+ ‖A′′ − P ′′‖ = max
k

‖Ak − Pk‖+ ‖A′′ − P ′′‖,

where the equality is valid because A′−P ′ is a block diagonal matrix. From Lei
and Rinaldo’s result above, for each k, if αn � lognk

nk
, then with probability at

least 1−n−ν
k it holds that ‖Ak−Pk‖ � √

nkαn, such that ‖A′−P ′‖ � √
nmaxαn.

For the second term, we note that A′′ is an adjacency matrix generated by
the SBM corresponding to P ′′, whose maximal probability is ταn. Hence, if
ταn � logn

n , then with probability 1 − n−ν we have ‖A′′ − P ′′‖ � √
τnαn. We

conclude with a union bound.

This proposition provides a better error rate than [25] when τ goes to 0 with
K, at the price of requiring a higher αn. For instance, when the communities
sizes are balanced nk ∼ n

K , and we have τ ∼ 1
K and αn ∼ K logn

n , Lei and

Rinaldo’s rate (10) yields E(Θ̂,Θ) � K
logn and converge only for K = o(log n),

while using Proposition 1 we get E(Θ̂,Θ) � 1
logn . The latter does not depend

on K, which brings a strict improvement compared to (10). Recall however
that τ and αn do depend on K, and that there must be a ν > 0 such that
Kν+1n−ν → 0 to obtain a probability rate that goes to 1.

4.2. Dynamic case

In [37], Pensky and Zhang analyze the dynamic case with Lei and Rinaldo’s
proof technique. They consider the deterministic DSBM model in the almost
sparse case αn � logn

n and the uniform estimator (6). Defining a factor

ρ(PZ)
n = min(1,

√
nαnεn), (13)

they show that, for an optimal choice of window size r ∼ 1

ρ
(PZ)
n

, it holds that

‖Aunif
t − Pt‖ �

√
nαnρ

(PZ)
n . (14)

which is valid for t sufficiently large to avoid degenerate situations, in conditions
similar to that of Theorem 1 below. In particular, the concentration is better if

ρ
(PZ)
n = o(1), that is:

εn = o

(
1

αnn

)
. (15)

In other words, there is an improvement if we assume sufficient smoothness in

time, which then leads to a better error rate E(Θ̂,Θ) � K2ρ(PZ)
n

αnn
when using
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Aunif
t in the SC algorithm. Note that, with this proof technique, a constant

smoothness εn ∼ 1 does not improve the error rate (see remark 2).
We remark that, despite the assumption on the smoothness and the availabil-

ity of more data, the result above still assumes the relative sparse case. However,
with sufficient smoothness, it should be possible to weaken the hypothesis made
on the sparsity αn, since intuitively, if there is more data available where the
communities are almost the same as the present time step, the density of edges
should not need to be as large. We solve this in the following theorem, which is
the central contribution of this paper.

Theorem 1. Consider the deterministic DSBM with any B0. Define

ρn
def.
= min

(
1,
√
n̄maxαnεn

)
. (16)

Assume t � tmin
def.
=

log( ρn
αnn )

2 log(1−ρn)
, and

αn

ρn
� logn

n
. (17)

Consider either the uniform estimator Asmooth
t = Aunif

t with r ∼ 1
ρn

or the

exponential estimator Asmooth
t = Aexp

t with λ ∼ ρn.
For all ν > 0, there is a universal constant Cν such that, with probability at

least 1− n−ν , it holds that

‖Asmooth
t − Pt‖ � Cν

√
nαnρn. (18)

This result is proved in section 6.2. In this theorem, we improve over [37] in

several ways. First, we improve ρ
(PZ)
n to ρn by replacing n with n̄max � n. In

the case where
∑

�(B0)k� stays bounded, for instance if it is defined as (3) with
τ ∼ 1

K , we have n̄max ∼ n
K and this improves the bound (18) compared to (14).

We also extend the result to the exponential estimator with the right choice of
forgetting factor. In fact, it can be seen in the proof that this result is valid
for a more general class of estimators based on weighted averages to which the
uniform and exponential estimators belong, see Section 6.

More importantly, the main feature of our result is the weaker condition (17),
which relates the sparsity and the smoothness of the DSBM. Strinkingly, if

εn ∼ n/n̄max

log2 n
, (19)

which is a slight strengthening of (15), then our result is valid in the sparse
regime αn ∼ 1

n , which is a significant improvement compared to previous works.

In any case, if we have exactly αn

ρn
∼ logn

n , then as previously Lemma 1 yields

that E(Θ̂,Θ) → 0 when K = o(
√
logn). At the limit, when εn → 0 (and the

number of steps tmin grows accordingly), the results stay valid for even sparser
graphs αn → 0, as long as (17) holds.
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Proposition 2. The result of Theorem 1 stays valid under the Markov DSBM,
by replacing n̄max with n everywhere, and ρn by

ρn = min(1,max(
√
nαnεn,

√
αn(n log n)1/4)) . (20)

In this case, “with probability at least 1−n−ν” refers to joint probability on both
the At and the Θt.

The above result (proved in section 6.2.3) shows that the Markov DSBM
yields the exact same error bounds than the deterministic DSBM model, but
since we do not assume a maximal community size here, n̄max is replaced with
n. Furthermore, it seems that the rate of the deterministic case is reached when
εn �

√
logn/n, or, in other words, when n is sufficiently large when εn gets

small. Indeed, as εn gets small, concentration bounds on the Markov chain need
to hold over an increasingly large number of steps, and in results n needs to grow
accordingly. Nevertheless, the condition εn �

√
logn/n is much weaker than the

rate (19) for instance, such that the sparse regime with sufficient smoothness is
still valid. In this particular Markov model, it may still be possible to improve
these results in the limit εn → 0, which we leave for future investigations.

Remark 2. As already observed in [37], with this proof technique, a constant
εn, or in other words, a fraction of changing nodes s that grows linearly with
n, does not result in an improvement of the rate of the error bounds compared
to the static case. Following the statistical physic approach in the sparse static
case [21, 31, 1], a conjecture on the detectability threshold in the sparse case
and εn ∼ 1 has been formulated in [15], but the proof is still open. Note that,
as mentioned before, even in the static case, this analysis does not cover classic
SC algorithm, or the case K > 2.

5. Spectral concentration of the normalized Laplacian

As mentioned in the introduction, the spectral concentration of the normalized
Laplacian has been less studied than the adjacency matrix, even in the static
case. Many works study the asymptotic spectral convergence of the normalized
Laplacian in the dense case [43], but few examine non-asymptotic bounds.

5.1. Static case

Among the few existing bounds, [34] proves a concentration in O (1) in the
relatively sparse case, and [38] proves a concentation in Frobenius norm but
with the stronger condition αn � 1√

logn
. An important corollary of our study

of the dynamic case is to significantly improve over these results, and obtain, to
our knowledge, the best bound available in the relatively sparse case. We state
the following proposition for any Bernoulli matrix (not necessarily SBM).

Proposition 3 (Normalized Laplacian, static case). Let A be a symmetric ma-
trix with independent entries aij ∼ Ber(pij). Assume pij � αn, and that there
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is n̄min, n̄max such that for all i, αnn̄min �
∑

j pij � αnn̄max, and μB = n̄max

n̄min
.

For all ν > 0, there are constants Cν , C
′
ν such that: if

αn � C ′
νμB

logn

n̄min
, (21)

then with probability at least 1− n−ν we have

‖L(A)− L(P )‖ � CνμB
√
n

n̄min
√
αn

.

Proof. This is a direct consequence of Theorem 4 in Section 6.

In other words, when n̄min ∼ n (for instance when all the pij/αn are bounded
below), then in the relatively sparse case the spectral concentration of the
normalized Laplacian is in 1√

logn
, which is a strict improvement over existing

bounds.
Let us comment a bit on the condition (21). When n̄min = o(n) or μ−1

B = o(1),
it is stronger than the relatively sparse case. The attentive reader would also
remark the subtle interplay of the quantifiers with the rate ν: in the analysis
of the adjacency matrix in the previous section, any multiplicative constant be-
tween αn and logn

n was acceptable, and the rate ν only forced a multiplicative
constant Cν in the final error bound. Here, the rate ν also imposes a multiplica-
tive constant C ′

ν in the sparsity hypothesis, which is essential to avoid having
too many nodes with small degrees [25, 7].

5.2. Dynamic case

To our knowledge, the normalized Laplacian in the DSBM has never been stud-
ied theoretically. Our result is the following.

Theorem 2. Consider the deterministic DSBM with B satisfying (3), and ei-
ther the uniform estimator Asmooth

t = Aunif
t with r ∼ 1

ρn
or the exponential

estimator Asmooth
t = Aexp

t with λ = ρn. Assume t � tmin.
For all ν > 0, there exist universal constants Cν , C

′
ν > 0 such that: if

αn

ρn
� C ′

νμB
logn

n̄min
, (22)

then with probability at least 1− n−ν , it holds that

‖L(Asmooth
t )− L(Pt)‖ � CνμB

√
nρn

n̄2
minαn

. (23)

This result is proved in section 6.3. In the case of balanced communities, the
result of Theorem 2 combined with Lemma 1 yields the same error rate than in
the case of the adjacency matrix with Theorem 1 and Lemma 1, even in terms
of K when n̄min, n̄max ∼ n

K . Thus all the observations of the previous section
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remain valid, including the fact that Asmooth may belong to a more general class
of estimator (see Section 6). However in the Laplacian case, the condition (22)
is slightly stronger than (17), similar to the static case. In practice though, it
is well-known that the normalized Laplacian generally performs better (Fig. 1).
This is not fully explained by our theory and left for future work. Finally, note
that we only provide the result in the deterministic DSBM case, indeed, the use
of the normalized Laplacian requires the existence of a minimal community size
n̄min, which is not always guaranteed in the Markov DSBM.

6. Proofs

In this section, we provide the proof of our main results, largely inspired by
[25] and [37]. The technical computations are given in appendix. Despite some
similarity with [25] and [37], we strove to make the proofs self-contained.

6.1. Preliminaries

We place ourselves at a particular time t. Both estimators Aunif
t and Aexp

t can
be written as a weighted sum

Asmooth
t =

t∑
k=0

βkAt−k , (24)

where β0 = . . . = βr−1 = 1
r and βk = 0 for k � r in the uniform case, and

βk = λ(1 − λ)k for k < t and βt = (1 − λ)t in the exponential case. As we will
see, our results will be valid for any estimator of the form (24), with weights
βk � 0 that satisfy: there are constants βmax, Cβ , C

′
β > 0 such that:

t∑
k=0

βk = 1, βk � βmax,

t∑
k=0

β2
k � Cββmax, (25)

t∑
k=0

βk min(1,
√
kεn) � C ′

β

√
εn

βmax
.

In words, the weights must naturally sum to 1 and be bounded; the sum of their
squares must be small; and they must decrease faster than

√
k, which is roughly

the rate at which the past communities Θt−k deviate from Θt. It is not difficult
to show that the uniform and exponential estimator satisfy these conditions.

Lemma 2. The weights in the uniform estimator (6) satisfy (25) with βmax =
1
r , Cβ = C ′

β = 1. If t � tmin = min(log(εn/βmax),log βmax)
2 log(1−βmax)

, the weights in the

exponential estimator (7) satisfy (25) with βmax = λ, Cβ = 3
2 , C

′
β = 2.

Proof. The computations are trivial in the uniform case, where the last condition

is implied by the stronger property
∑

k βk

√
k � √

r =
√

1
βmax

. In the exponential
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case, we have βmax = λ, and

∑
k

β2
k = λ2

t−1∑
k=0

(1− λ)2k + (1− λ)2t � λ2
∞∑
k=0

(1− λ)2k + λ � 3

2
λ,

where the first inequality is valid since t � log βmax

2 log(1−βmax)
, and thus Cβ = 3

2 . Next,

we have

t∑
k=0

βk min(1,
√

kεn) �
√
εnλ

∞∑
k=0

√
k(1− λ)k + (1− λ)t.

Since t � log(εn/βmax)
2 log(1−βmax)

, we get (1− λ)t �
√

εn
λ and

∞∑
k=0

(1− λ)k
√
k �

√√√√ ∞∑
k=0

(1− λ)k

√√√√ ∞∑
k=0

(1− λ)kk =

√
1

λ

√
1− λ

λ2
� 1

λ3/2
.

and therefore we obtain the desired inequality with C ′
β = 2.

6.2. Concentration of adjacency matrix: proof of Theorem 1

For an estimator of the form (24), our goal is to bound ‖Asmooth
t − Pt‖. We

define P smooth
t

def.
=

∑t
k=0 βkPt−k, and divide the error in two terms:

‖Asmooth
t − Pt‖ � ‖Asmooth

t − P smooth
t ‖+ ‖P smooth

t − Pt‖. (26)

The first error term corresponds to the difference between Asmooth
t and its ex-

pectation (up to the diagonal terms). Intuitively, it decreases when the amount
of smoothing increases, that is, when r increases or λ gets close to 0, since the
sum of matrices is taken over more values. The second term is the difference
between the smoothed matrix of probability connection and its value at time t.
This time, it will increase when the amount of smoothing increases, since the
past communities will be increasingly present in P smooth

t . Once we have the two
bounds, we can balance them to obtain an optimal value for r or λ, respectively
1
ρn

and ρn.

6.2.1. Bound on the first term

The first bound will be handled by the following general concentration theorem.
This is where we are able to weaken the hypothesis on the sparsity.

Theorem 3. Let A1, . . . , At ∈ {0, 1}n×n be t symmetric Bernoulli matrices

whose elements a
(k)
ij are independent random variables:

a
(k)
ij ∼ Ber(p

(k)
ij ), a

(k)
ji = a

(k)
ij , a

(k)
ii = 0.
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Assume p
(k)
ij � αn. Consider non-negative weights βk that satisfy (25). Denoting

A =
∑t

k=0 βkAt−k and P = E(A), there is a universal constant C such that for
all c > 0 we have

P

(
‖A− P‖ � C(1 + c)

√
nαnβmax

)
� e

−
(

c2/2

2Cβ+2
3
c
−log(14)

)
n

(27)

+ e
− c2/2

Cβ+2c/3
· nαn
βmax

+logn
+ n− c

4+6.

This theorem is proved in Appendix A.2. Its proof is heavily inspired by [25]
and [37]: the spectral norm is expressed as a maximization problem over the
sphere, and for each point of the sphere the obtained sum is divided into so-
called “light” terms, for which Berstein’s concentration inequality is sufficient,
and more problematic “heavy” terms, that require a complex concentration
method. We obtain our weaker sparsity hypothesis in a small but crucial part
of this second step, the so-called bounded degree lemma.

Lemma 3 (Bounded degree.). Denote di,t =
∑

j(At)ij the degree of node i at

time t, di =
∑t

k=0 βkdi,t−k the smoothed degree and d̄i = Edi. Then, for all c,

P(max
i

|di − d̄i| � cnαn) � exp

(
− c2/2

Cβ + 2c/3
· nαn

βmax
+ logn

)
.

Proof. We use Bernstein’s inequality. For any fixed i we have

di =

t∑
k=0

∑
j �=i

βka
(t−k)
ij =

∑
k,j

Yjk.

where Yjk = βka
(t−k)
ij are such that E(Yjk) = βkp

(t−k)
ij � βkαn, |Yjk − EYjk| �

(αn + 1)βk � 2βmax, and V ar(Yjk) � β2
kαn such that

∑
k,j V ar(Yjk)

� Cβnαnβmax.
Therefore, applying Berstein’s inequality, we have

P(|di − d̄i| � cnαn) � exp

(
− c2n2α2

n/2

Cβnαnβmax +
2
3βmaxcnαn

)
.

Applying a union bound over the nodes i proves the result.

In the static case [25] where βmax = 1, the bounded degree lemma is exactly
where the relative sparsity hypothesis αn � logn

n is needed, otherwise the prob-
ability of failure diverges. In the dynamic case, we see that βmax (which we will
ultimately set at ρn) intervenes and gives our final hypothesis on sparsity and
smoothness.

Applying Theorem 3, we obtain that for any fixed Θ0, . . . ,Θt, if
nαn

βmax
� logn,

then for any ν > 0 there is a constant Cν such that with probability at least
1− n−ν

‖Asmooth
t − P smooth

t ‖ � ‖Asmooth
t − E(Asmooth

t )‖+ ‖diag(P smooth
t )‖
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� Cν

√
nαnβmax + αn.

Since in all considered cases we will have βmax � 1/n the second term is negli-
gible, and we obtain

‖Asmooth
t − P smooth

t ‖ �
√

nαnβmax. (28)

6.2.2. Second term

The second error term in (26) is handled slightly differently in the deterministic
and Markov DSBM, even if the final bound is the same.

Lemma 4. Consider the deterministic DSBM, with weights that satisfy (25).
It holds that

‖P smooth
t − Pt‖ � C ′

βαn

√
nn̄maxεn
βmax

. (29)

Proof. Since the weights sum to 1, we decompose

‖P smooth
t − Pt‖ �

∑
k

βk‖Pt−k − Pt‖ �
∑
k

βk‖Pt−k − Pt‖F .

where ‖·‖F is the Frobenius norm. Consider P = ΘBΘ� and P ′ = Θ′B(Θ′)�

two probability matrices such that there is a set S of nodes that have changed
communities. We have then:

‖P − P ′‖2F =
∑
i∈S

∑
j

(pij − p′ij)
2 + (pji − p′ji)

2 � 4
∑
i∈S

∑
j

p2ij + (p′ij)
2

� 8|S|α2
nn̄max.

Since
∑

j p
2
ij � α2

nn̄max and at most ks nodes have changed community between
Pt and Pt−k, with a maximum of n nodes, we have

‖Pt−k − Pt‖2F � 2α2
nn̄max min(n, ks) = 2α2

nnn̄max min(1, kεn). (30)

Using the hypothesis that we have made on
∑

k βk min(1,
√
kεn), we obtained

the desired bound.

At the end of the day, combining (26), (28) and (29) for both deterministic
and Markov DSBM model we obtain with the desired probability:

‖Asmooth
t −Pt‖ � E1(βmax)+E2(βmax) where

{
E1(β)

def.
=

√
nαnβ,

E2(β)
def.
= αn

√
nn̄maxεn

β .
(31)

As expected, E1 decreases and E2 increases when βmax decreases. A simple
function study show that the sum of the errors is minimized for βmax = ρn,
which concludes the proof of Theorem 1.
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6.2.3. Markov DSBM

Since the bound on the first term (28) is valid for any Θk, and the Ak are
conditionally independent given the Θk, by the law of total probability it is
also valid with joint probability at least 1− n−ν on both the Ak and Θk in the
Markov DSBM model. For the bound on the second term, we show that (30) is
still valid with high probability, replacing n̄max with n.

Lemma 5. Consider the Markov DSBM model. We have

P

(
∃k, ‖Pt−k − Pt‖2F � 4α2

nn
2 min(1, kε̄n)

)
� 1

ε̄n
e−2ε̄2nn.

where ε̄
def.
= max(εn,

√
logn/n).

The proof is in Appendix A.4. Using this Lemma, if (20) is satisfied we obtain
that with probability at least 1− n−ν , (30) is satisfied for all k. Using the rest
of the proof of Lemma 4, (29) is valid in the Markov DSBM model, with n
instead of n̄max and ε̄n instead of εn. The rest of the proof is the same as the
deterministic case.

6.3. Concentration of Laplacian: proof of Theorem 2

A crucial part of handling the normalized Laplacian is to lower-bound the de-
grees of the nodes, since we later manipulate the inverse of the degree matrix.
Under our hypotheses, the minimal expected degree is of the order of αnn̄min,
so we need to bound the deviation of the degrees with respect to this quantity.
We revisit the bounded degree lemma.

Lemma 6 (Bounded degree revisited.). Under the deterministic DSBM, for all
c,

P(max
i

|di − d̄i| � cn̄minαn) � exp

(
− c2/2

Cβ + 2c/3
· n̄minαn

μBβmax
+ logn

)
.

Proof. We do the same proof as Lemma 3, but we remark that
∑

k,j V ar(Yjk) �
Cβn̄maxαnβmax, since

∑
i p

(t−k)
ij � αnn̄max for all k, i. Therefore, by Berstein’s

inequality, we have

P(|di − d̄i| � cn̄minαn) � exp

(
− c2n̄2

minα
2
n/2

Cβn̄maxαnβmax +
2
3βmaxcn̄maxαn

)
.

Applying a union bound over the nodes i proves the result.

To lower-bound di, we use Lemma 6 with 0 < c < 1, for instance c = 1
2 . The

sparsity hypothesis (22) in the theorem comes directly from this: it uses n̄min

instead of n, and the multiplicative constant C ′
ν actually depends on the desired

concentration rate ν, unlike the previous case of the adjacency matrix where ν
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could be obtained by adjusting c in Lemma 3. Let us now turn to the proof of
the theorem.

As before, we divide the bound in two parts:

‖L(Asmooth
t )− L(Pt)‖ � ‖L(Asmooth

t )− L(P smooth
t )‖+ ‖L(P smooth

t )− L(Pt)‖.
(32)

The first bound is handled with a general concentration theorem.

Theorem 4. Let A1, . . . , At ∈ {0, 1}n×n be t symmetric Bernoulli matrices

whose elements a
(k)
ij are independent random variables:

a
(k)
ij ∼ Ber(p

(k)
ij ), a

(k)
ji = a

(k)
ij , a

(k)
ii = 0.

Consider non-negative weights βk that satisfy (25). Denoting A =
∑t

k=0 βkAt−k

and P = E(A). Assume p
(k)
ij � αn, and that there is n̄min, n̄max such that for all

i, αnn̄min �
∑

j pij � αnn̄max. Then there is a universal constant C such that
for all c > 0 we have

P

(
‖L(A)− L(P )‖ � C(1 + c)μB

n̄min

√
nβmax

αn

)
(33)

� e
−
(

c2/2

2Cβ+2
3
c
−log(14)

)
n
+ e

− c2/2
Cβ+2c/3

· nαn
βmax

+logn

+ e
− 1/8

Cβ+1/3
· n̄minαn
μBβmax

+logn
+ n− c

4+6.

The proof is in Appendix A.3. Similar to the adjacency matrix case, we thus
obtain

‖L(Asmooth
t )− L(P smooth

t )‖ �‖L(Asmooth
t )− L(E(Asmooth

t ))‖
+ ‖L(E(Asmooth

t ))− L(P smooth
t )‖,

and by Lemma 11, the second term is negligible since E(Asmooth
t ) and P smooth

t

only differ by their diagonal, of the order of αn.
The second bound is handled in the same way as the adjacency matrix in the

deterministic case.

Lemma 7. Under the deterministic DSBM, we have

‖L(Pt)− L(P smooth
t )‖ �

C ′
βμB

n̄min

√
nn̄maxεn
βmax

.

The proof is in Appendix A.4.
At the end of the day, we obtain

‖L(Asmooth
t )− L(Pt)‖ � μB

n̄minαn
(E1(βmax) + E2(βmax)), (34)

which is minimized for the same choice of βmax ∼ ρn.
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7. Conclusion and outlooks

In the DSBM, it should come as no surprise that a model that is very smooth
should not need to be as dense as when treading with a single snapshot. Our
analysis is the first to show this, for classic SC, in a non-asymptotic manner.
Under a slightly stronger condition on the smoothness than that in [37], we
showed that strong consistency guarantees can be obtained even in the sparse
case. We extended the results to the normalized Laplacian and, although we
obtain the same final error rate as the adjacency matrix, our analysis also yields,
to our knowledge, the best non-asymptotic spectral bound concentration of the
normalized Laplacian for Bernoulli matrices with independent edges.

In this theoretical paper, we did not discuss how to select in practice the
various parameters of the algorithms such as the number of communities K, the
forgetting factor λ, or the window size r. This is left for future investigations,
as well as the analysis of varying K, n, or B. As we mentioned in Remark
2, an outstanding conjecture about the sparse case and εn ∼ 1 is formulated
in [15]. Finally, our new spectral concentration of the normalized Laplacian,
which shows that ‖L(A) − L(P )‖ → 0 in the relatively sparse case, may have
consequences in other asymptotic analyses of the spectral convergence of the
normalized Laplacian [43, 40, 26].

Appendix A: Proofs

A.1. Proof of Lemma 1

From [25, Section 5.4], for any matrix M ∈ R
K×K and Q = ΘMΘ�, given an

estimator Q̂ that we feed to the SC algorithm it holds that

E(Θ̂,Θ) � (1 + δ)
n′
maxK

nn2
minγ

2
M

‖Q̂−Q‖2,

where γM is the smallest eigenvalue of M .
When using the adjacency matrix P̂ = A to estimate the probability matrix

P = ΘBΘ�, we have B = αnB0, and γM = αnγ, which gives us (8). When B0

is defined as (3), we have γ = 1− τ .
In the Laplacian case, for a node i � n belonging to a community k � K,

we have di =
∑

j pij = d′k
def.
= (nk − 1)Bkk +

∑
��=k n�Bk� � αnn̄max, hence the

Laplacian of the probability matrix L(P ) can be written as:

L(P ) = D(P )−
1
2PD(P )−

1
2 = D(P )−

1
2ΘBΘ�D(P )−

1
2 = Θ

(
D

− 1
2

B BD
− 1

2

B

)
Θ�,

where DB = diag(d′k) ∈ R
K×K . Hence we can apply the result above with

M = D
− 1

2

B BD
− 1

2

B , and since

‖D
1
2

BB
−1D

1
2

B‖ � αnn̄max

αnγ
� n̄max

γ
,
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the smallest eigenvalue of D
− 1

2

B BD
− 1

2

B satisfies γM � γ
n̄max

, which leads to the
result.

A.2. Proof of Theorem 3

The proof is heavily inspired by [25]. Define Pk = E(Ak), Wk = Ak − Pk and

w
(k)
ij its elements, and their respective smoothed versions A =

∑t
k=0 βkAt−k,

P = E(A), W = A − P , and aij , pij , wij their elements. Denote by S the
Euclidean ball in R

n of radius 1. The proof strategy of [25] is to define a grid

T = {x ∈ S : 2
√
nxi ∈ Z},

and simply note that (Lemma 2.1 in [25] supplementary):

‖W‖ = sup
u∈S

|u�Wu| � 4 sup
x,y∈T

|x�Wy|.

Hence we must bound this last quantity. To do this, for each given (x, y) in T ,
we divide their indices into “light” pairs:

L(x, y) = {(i, j) : |xiyj | �
√

αn

βmaxn
},

and “heavy” pairs H(x, y) are all the other indices. We naturally divide

sup
x,y∈T

|x�Wy| � sup
x,y∈T

|
∑

(i,j)∈L(x,y)

xiyjwij |+ sup
x,y∈T

|
∑

(i,j)∈H(x,y)

xiyjwij |,

and bound each of these two terms separately.

A.2.1. Bounding the light pairs

To bound the light pairs, Bernstein’s concentration inequality is sufficient.

Lemma 8 (Bounding the light pairs). We have

P

⎛
⎝ sup

x,y∈T
|

∑
(i,j)∈L(x,y)

xiyjwij | � c
√
nαnβmax

⎞
⎠ � 2e

−
(

c2/2

2Cβ+2
3
c
−log(14)

)
n

for all constants c > 0.

Proof. The proof is immediate by applying Bernstein’s inequality. Take any

(x, y) ∈ T , denote C =
√

αn

βmaxn
. Define uij = xiyj1(i,j)∈L(x,y) + xjyi1(j,i)∈L(x,y)

(which is necessary because the edges (i, j) and (j, i) are not independent). We
have

∑
(i,j)∈L(x,y)

xiyjwij =
∑

1�i<j�n

uijwij =
∑

1�i<j�n

t∑
k=0

uijβkw
(t−k)
ij ,
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where w
(t−k)
ij is a centered Bernoulli variable of parameter p

(t−k)
ij . Hence for all

i < j, 0 � k � t, let Yijk = βkuijw
(t−k)
ij be independent random variables such

that EYijk = 0, |Yijk| � 2Cβmax since uij � 2C, βk � βmax and w
(t−k)
ij � 1, and

σ2
ijk := Var(Yijk) � 2β2

k(x
2
i y

2
j+x2

jy
2
i )αn since Var(w

(t−k)
ij ) = p

(t−k)
ij (1−p

(t−k)
ij ) �

αn. Note that

∑
i<j

∑
k

σ2
ijk � 2αn(

∑
i<j

x2
i y

2
j + x2

jy
2
i ) · (

t∑
k=0

β2
k)

� 2αn(

n∑
i=1

x2
i )(

n∑
j=1

y2j )Cββmax

� 2Cβαnβmax.

Hence, applying Bernstein’s inequality:

P

⎛
⎝|

∑
(i,j)∈L(x,y)

xiyjwij | � t

⎞
⎠ � 2 exp

(
− t2/2

2Cβαnβmax +
2
3Cβmaxt

)

P

⎛
⎝|

∑
(i,j)∈L(x,y)

xiyjwij | � c
√
αnβmaxn

⎞
⎠ � 2 exp

(
−
(

c2/2

2Cβ + 2
3c

)
n

)
.

Then, we use the fact that |T | � en log(14) (see proof of Lemma 3.1 in [25]) and
a union bound to conclude.

A.2.2. Bounding the heavy pairs

To bound the heavy pairs, two main Lemmas are required: the so-called bounded
degree (Lemma 3) and bounded discrepancy lemma, presented below. As men-
tioned before, the bounded degree lemma is key in improving the sparsity hy-
pothesis, despite the simplicity of its proof. The bounded discrepancy lemma is
closer to its original proof [25], that we reproduce here for completeness.

Lemma 9 (Bounded discrepancy). For I, J ⊂ {1, . . . , n}, we define

μ(I, J) = αn|I||J |, e(I, J) =

t∑
k=0

βket−k(I, J),

where et(I, J) is the number of edges between I and J at time t. Then, for all

c, c′, with probability 1− e
− c2/2

Cβ+2c/3
· nαn
βmax

+logn − n− c′
4 +6: for all |I| � |J | at least

one the following is true:

1. e(I, J) � c′′μ(I, J) with c′′ = max(ec, 8);

2. e(I, J) log e(I,J)
μ(I,J) � c′βmax|J | log n

|J| .
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Of course by symmetry it is also valid for |J | � |I| with the same probability
(inverting the role of I and J in the bounds).

To prove it, we need the following Lemma.

Lemma 10 (Adapted from Lemma 9 in [37]). Let X1, ..., Xn be independent
variables such that Xi = Yi−EYi, where Yi is a Bernoulli random variable with
parameter pi. Define X =

∑
i wiXi where 0 � wi � wmax. Let μ be such that∑

i=1 wipi � μ. Then, for all t � 7, we have

P (X � tμ) � exp

(
− t log(1 + t)μ

2wmax

)
.

Proof. For some λ > 0 to be fixed later, have E(eλwiXi) = pie
wi(1−pi)λ + (1 −

pi)e
wipiλ. Hence

E(eλX) =
∏
i

E(eλwiXi) =
∏
i

(
pie

wi(1−pi)λ + (1− pi)e
wipiλ

)

� e−λ
∑

i wipi

∏
i

(
1 + pi(e

wiλ − 1)
)
.

Using 1 + a � ea and ex − 1 � eA−1
A x for 0 � x � A, we have

∏
i

(
1 + pi(e

wiλ − 1)
)
� exp

(
ewmaxλ − 1

wmax

∑
i

wipi

)
.

Hence, for t � 7 and λ = log(1+t)
wmax

,

P(X � tμ) � e−tμλ
E(eλX) � exp

((
ewmaxλ − 1

wmax
− λ

)∑
i

wipi − λtμ

)

= exp

(
1

wmax

(
(t− log(1 + t))

∑
i

wipi − log(1 + t)tμ

))
.

Since log(1 + t) � t and
∑

i wipi � μ,

P(X � tμ) � exp

(
μ

wmax
(t− log(1 + t)− log(1 + t)t)

)

� exp

(
μ

2wmax
t log(1 + t)

)

since t− log(1 + t) � 1
2 t log(1 + t).

The Lemma above is slightly stronger than Bernstein in this particular case:
we would have obtained O(t) instead of O(t log(1 + t)). Now we can prove the
bounded discrepancy lemma.
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Proof of Lemma 9. We assume that the bounded degree property (Lemma 3)
holds, which implies that for all I, J , it hold that:

e(I, J) =
t∑

k=0

βket−k(I, J) �
∑
k

βk min

⎛
⎝∑

i∈I

di,t−k,
∑
j∈J

dj,t−k

⎞
⎠

� min

⎛
⎝∑

i∈I

di,
∑
j∈J

dj

⎞
⎠ � cnαn min(|I|, |J |).

Following this, for any pair I, J such that |I| � n/e or |J | � n/e (where

e = exp(1) is chosen for later conveniency), then e(I,J)
μ(I,J) � cnαn min(|I|,|J|)

αn|I||J| � ce

and the result is proved.
Thus we now considers the pairs I, J where both have size less than n/e,

and such that |I| � |J | without lost of generality. For such a given pair I, J , we
decompose

e(I, J) =

t∑
k=0

∑
(i,j)

βka
(t−k)
ij =

∑
i,j,k

Yijk,

where the sum over (i, j) counts only once each distinct edge between I and

J , and Yijk = a
(t−k)
ij is a Bernoulli variable with parameter p

(t−k)
ij . Using∑

i,j,k βkp
(t−k)
ij � |I||J |αn = μ(I, J) and Lemma 10, we have, for any t � 8,

P(e(I, J) � tμ(I, J)) � P (e(I, J)− Ee(I, J) � (t− 1)μ(I, J))

� exp

(
−μ(I, J)(t− 1) log k

2βmax

)
� exp

(
−μ(I, J)t log t

4βmax

)
.

Denoting u = u(I, J) the unique value such that u log u = c′βmax|J|
μ(I,J) log n

|J| and

t(I, J) = max(8, u(I, J)), we have (again for a fixed pair I, J of size less that
n/e):

P(e(I, J) � t(I, J)μ(I, J)) � e−
c′
4 |J| log n

|J| .

Then, performing the same computations as in [25] (reproduced here for
completeness):

P

(
∃I, J : |I| � |J | � n

e
, e(I, J) � t(I, J)μ(I, J)

)
�

∑
1�|I|�|J|�n/e

e−
c′
4 |J| log n

|J| =
∑

1�h�g�n/e

(
n

h

)(
n

g

)
e−

c′
4 g log n

g

�
∑

1�h�g�n/e

(ne
h

)h
(
ne

g

)g

e−
c′
4 g log n

g

�
∑

1�h�g�n/e

exp

(
h log

ne

h
+ g log

ne

g
− c′

4
g log

n

g

)
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�
∑

1�h�g�n/e

exp

(
4g log

n

g
− c′

4
g log

n

g

)
�

∑
1�h�g�n/e

n− c′
4 +4 � n− c′

4 +6

using the fact that x → x log x is increasing on [1, n/e]. So, e(I, J) � t(I, J)
μ(I, J) holds uniformly for all pairs I, J with high probability.

Finally, we distinguish two cases depending on the value of t(I, J). If t(I, J) =
8 we get e(I, J) � 8μ(I, J). If t(I, J) = u(I, J) � 8, we have e(I, J) � uμ(I, J),
and

e(I, J)

μ(I, J)
log

e(I, J)

μ(I, J)
� u log u � c′βmax

μ(I, J)
|J | log n

|J | .

We can now prove the bound on the heavy pairs, that is, we want to prove
with high probability:

sup
x,y∈T

∣∣∣∣∣∣
∑

(i,j)∈H(x,y)

xiyjwij

∣∣∣∣∣∣ �
√
nαnβmax.

Since pij � αn and by definition of the heavy pairs, for all x, y ∈ T :∣∣∣∣∣∣
∑

(i,j)∈H(x,y)

xiyjpij

∣∣∣∣∣∣ � αn

∑
(i,j)∈H(x,y)

x2
i y

2
j

|xiyj |

� αn

√
nβmax

αn
‖x‖2‖y‖2 �

√
nαnβmax.

Hence our goal is now to bound supx,y∈T

∣∣∣∑(i,j)∈H(x,y) xiyjaij

∣∣∣. We will show

that, when the bounded degree and bounded discrepancy properties hold, this
sum is bounded for all x, y. From now on, we assume that these results hold, and
consider any x, y ∈ T . Let us define sets of indices Is, Jt over which we bound
uniformly xi and yj , and replace the sum over aij is these sets by e(Is, Jt). More
specifically, we define

Is =

{
i : 2s−1 1/2√

n
� |xi| < 2s

1/2√
n

}
for s = 1, . . . , log2(2

√
n) + 1,

Jt =

{
j : 2t−1 1/2√

n
� |yj | < 2t

1/2√
n

}
for t = 1, . . . , log2(2

√
n) + 1.

Since we consider heavy pairs, we need only consider indices (s, t) such that

2s+t � 16
√

αnn
βmax

, and we define Cn =
√

αnn
βmax

for convenience. Moreover, we

have
∑

i∈Is,j∈Jt
aij � 2e(Is, Jt), since each edge indices appears at most twice.

Hence, we have:∣∣∣∣∣∣
∑

(i,j)∈H(x,y)

xiyjaij

∣∣∣∣∣∣ �
∑

(s,t):2s+t�16Cn

2s+t 1/4

n
· 2e(Is, Jt). (35)
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We now introduce more notations. We denote μs = 4s|Is|
n , νt =

4t|Jt|
n , γst =

e(Is,Jt)
αn|Is||Jt| , σst = γstCn2

−(s+t). We reformulate (35) as:

∣∣∣ ∑
(i,j)∈H(x,y)

xiyjaij

∣∣∣ � ∑
(s,t):2s+t�16Cn

2s+t 1/2

n
· e(Is, Jt)

= 1
2

√
nαnβmax

∑
s,t

1√
nαnβmax

2−(s+t)4s4t 1n · e(Is,Jt)αn|Is||Jt|
αn|Is||Jt| ·

√
n√
n

=
1

2

√
nαnβmax

∑
s,t

μsνtσst. (36)

Our goal is therefore to show that
∑

s,t μsνtσst � 1. For this, we will make

extensive use of the fact that μs � 16
∑

i∈Is
x2
i , and therefore

∑
s μs � 16, and

similarly
∑

t νt � 16.
Following the original proof of [25], let C = {(s, t) : 2s+t � 16Cn, |Is| � |Jt|},

divided in six:

C1 = {(s, t) ∈ C : σst � 1},
C2 = {(s, t) ∈ C \ C1 : γst � c2},
C3 = {(s, t) ∈ C \ (∪2

i=1Ci) : 2s−t � Cn},
C4 = {(s, t) ∈ C \ (∪3

i=1Ci) : log γst > 1
4 log

4t

νt
},

C5 = {(s, t) ∈ C \ (∪4
i=1Ci) : 2t log 2 � log 1

νt
},

C6 = {(s, t) ∈ C \ (∪5
i=1Ci)}.

Similarly, we define C′ = {(s, t) : 2s+t � 16Cn, |Is| � |Jt|} and C′
i the same way

by inverting the roles of μs and νt. We write the proof for C, the other case
is strictly symmetric. Our goal is to prove that each of the

∑
(s,t)∈Ci

μsνtσst is
bounded by a constant.

Pairs in C1 In this case we get∑
(s,t)∈C1

μsνtσst �
∑
s,t

μsνt � 162.

Pairs in C2 This includes the indices for which the first case in the bounded
discrepancy lemma (Lemma 9) is satisfied. Since for s, t ∈ C we have 2s+t �
16Cn, we have σst � γst/16, and∑

(s,t)∈C2

μsνtσst � c′′
∑
s,t

μsνt/16 � c′′16.

Pairs in C3. Since 2s−t � Cn, we have necessarily t � s − log2 Cn. Fur-
thermore, since we assumed the bounded degree property (Lemma 3), we have
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e(Is, Jt) � c|Is|αnn, and therefore γst � cn/|Jt|. Then,

∑
(s,t)∈C3

μsνtσst �
∑
s

μs

s−log2 Cn∑
t=1

4t|Jt|
n

cn

|Jt|
Cn2

−(s+t)

= c
∑
s

μsCn2
−s

s−log2 Cn∑
t=1

2t

= c
∑
s

μsCn2
−s(2s−log2 Cn+1 − 1)

� 2c
∑
s

μs � 32c.

Pairs in C4 All Is, Jt for which the first case of the bounded discrepancy
lemma is satisfied are included in C2, hence the remaining sets satisfy the second
case of the lemma, which reads e(Is, Jt) log γst � c′βmax|Jt| log n

|Jt| . It can be

reformulated as

γstαn|Is||Jt| log γst � c′βmax|Jt| log
4t

νt
,

σst2
s+t

√
βmax

αnn
αnμs4

−sn log γst � c′βmax log
4t

νt
,

σstμs log γst � c′
2s−t

Cn
log

4t

νt
. (37)

Since (s, t) /∈ C3, we have 2s−t � Cn, and therefore s � t + log2 Cn. Since

(s, t) ∈ C4 we have log γst � 1
4 log

4t

νt
, and (37) implies σstμs � 4c′ 2

s−t

Cn
. Then,

∑
(s,t)∈C4

μsνtσst �
∑
t

νt

t+log2 Cn∑
s=1

4c′
2s−t

Cn

� 4c′
∑
t

νs
2−t

Cn
(2t+log2 Cn+1 − 1) � 128c′.

Pairs in C5 We have 1
νt

� 4t, and since (s, t) /∈ C4, we have log γst �
1
4 log

4t

νt
� t log 2 and γst � 2t. On the other hand, since (s, t) /∈ C1, 1 � σst =

γstCn2
−(s+t) � Cn2

−s, and s � log2 Cn.
Because (s, t) /∈ C2 and c′′ � 8, log γst � 3 log 2, combining with 1

νt
� 4t,

equation (37) becomes:

σstμs � c′
2s−t

Cn

4t

3
� c′

2s+1

3Cn
,

since t2−t � 1/2.
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Combining these two facts,

∑
(s,t)∈C5

μsνtσst �
∑
t

νt

log2 Cn∑
s=1

2

3Cn
c′2s � c′

∑
t

νs
2

3Cn
(2log2 Cn+1 − 1) � 64

3
c′.

Pairs in C6 Finally, we have 0 � log γst � 1
2 log

1
νt

� log 1
νt

because, respec-

tively, (s, t) /∈ C2, (s, t) /∈ C4 and (s, t) /∈ C5, so γst � 1
νt
. Since by definition

2s+t � Cn, we have t � log2 Cn − s, and∑
(s,t)∈C6

μsνtσst =
∑

(s,t)∈C6

μsνtγst2
−(s+t)Cn

�
∑
s

μsCn2
−s

∑
t�log2 Cn−s

(1/2)t

=
∑
s

μsCn2
−s

(
2− 1− (1/2)log2 Cn−s

1− (1/2)

)
= 2

∑
s

μs � 32.

We conclude the proof of Theorem 3 by gathering the bounds on the light
and heavy pairs, with the corresponding probabilities of failure. We consider the
same constant c > 0 in each lemma for simplicity.

A.3. Concentration of Laplacian: proof of Theorem 4

We note the degree matrices of A and P respectively D and DP , containing

the degrees di =
∑

kj βka
(t−k)
ij and d̄i = Edi. Note that under our assumptions

dmin
def.
= αnn̄min � d̄i � dmax

def.
= αnn̄max. Applying Lemma 6 with c = 1

2 , we

obtain: for all ν > 0, there is a constant C ′
ν such that, if αn

βmax
� C ′

νμB
logn
n̄min

, with

probability at least 1 − n−ν we have 1
2dmin � di � 3

2dmax for all i. We assume
that it is satisfied for the rest of the proof.

We apply Lemma 11, from which

‖L(A)− L(P )‖ � 2‖A− P‖
dmin

+
4‖(D −DP )P‖

d2min

. (38)

We will now bound ‖A− P‖ and ‖(D −DP )P‖ with high probability, and use
a union bound to conclude.

By Theorem 3, with probability 1− n−ν we have ‖A−P‖ �
√
nαnβmax and

the first term has the desired rate.
To bound the spectral norm of (D −DP )P with high probability, we re-use

the “light and heavy pairs” strategy of the previous proof. Define δi = di − d̄i.
We adopt the definitions of the previous section. Define Q = (D − DP )P , we
use again the fact that

‖(D −DP )P‖ � 4 sup
x,y∈T

x�Qy,
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where T is the same grid. We decompose

x�Qy =
∑

i,j∈L(x,y)

xiyjpijδi +
∑

i,j∈H(x,y)

xiyjpijδi.

Recall that we have |δi| � dmax. In the proof of Theorem 3 we proved that∑
i,j∈H(x,y) xiyjpij �

√
nαnβmax, and therefore with the same probability∑

i,j∈H(x,y)

xiyjpijδi � dmax

√
nαnβmax,

which is the desired complexity.

We must now handle the light pairs. We write δi =
∑n

�=1

∑t
k=0 βkw

(t−k)
i� ,

and therefore ∑
i,j∈L(x,y)

xiyjpijδi =
∑
i<�

∑
k

ui�kw
(t−k)
i� ,

where
ui�k = βk

∑
j

(
xiyjpij1(i,j)∈L(x,y) + x�yjp�j1(�,j)∈L(x,y)

)
.

We want to apply Bernstein inequality. The random variables w
(t−k)
i� are inde-

pendent centered Bernoulli variables of parameters p
(t−k)
i� . By definition of light

pairs we have

|uijk| � 2βmaxαnn̄max

√
αn

nβmax
= 2

√
βmaxα

3
2
n
n̄max√

n
,

since
∑

j pij
(t−k) � αnn̄max. Then, using (a+ b)2 � 2(a2 + b2),

∑
i�k

V ar(ui�kw
(t−k)
i� ) �

∑
k

β2
k

⎛
⎜⎝∑

i�

p
(t−k)
i�

⎛
⎝xi

∑
j

yjpij + x�

∑
j

yjp�j

⎞
⎠

2
⎞
⎟⎠

� 2
∑
k

β2
max

⎛
⎜⎝∑

i�

p
(t−k)
i� x2

i

⎛
⎝∑

j

yjpij

⎞
⎠

2

+ p
(t−k)
i� x2

�

⎛
⎝∑

j

yjp�j

⎞
⎠

2
⎞
⎟⎠

� 2Cββmaxn̄
2
maxα

3
n,

where we have used∑
j

yjp�j =
∑
k

βk

∑
j

yjp
(t−k)
�j �

∑
k

βk‖y‖αn

√
nmax + τ2n � αn

√
n̄max,

and
∑

i� p
(t−k)
i� x2

i � αnn̄max‖x‖. Hence, using Bernstein’s inequality,

P

⎛
⎝|

∑
i,j∈L(x,y)

xiyjpijδi| � t

⎞
⎠ � 2 exp

⎛
⎝− t2/2

2Cββmaxn̄2
maxα

3
n + 2

3

√
βmaxα

3
2
n

n̄max√
n
t

⎞
⎠
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P

⎛
⎝|

∑
i,j∈L(x,y)

xiyjpijδi| � cn̄max

√
nβmaxα

3
2
n

⎞
⎠ � 2 exp

(
− c2/2

2Cβ + 2c
3

· n
)
.

Using a union bound over T we can conclude.

A.4. Additional proofs

Proof of Lemma 5. Recall that we defined ε̄
def.
= max(εn,

√
logn/n). For any k,

we have p
(t−k)
ij = p

(t)
ij if zt−k

i = zti and zt−k
j = ztj , that is, if the nodes have not

changed communities. Thus we write

‖Pt−k − Pt‖2F =
∑
i,j

(p
(t−k)
ij − p

(t)
ij )

2
(
1− 1{zt−k

i =zt
i}
1{zt−k

j =zt
j}

)

� α2
nn

2

⎛
⎝1−

(
1

n

∑
i

1{zt−k
i =zt

i}

)2
⎞
⎠

α2
nn

2

⎛
⎝1−

(
1

n

∑
i

1Ai

)2
⎞
⎠

where Ai is the event that zt−k
i = zt−k+1

i = . . . = zti . The Ai are independent
and occur with probability (1 − εn)

k. By Hoeffding inequality, for some δ > 0
that we will fix later, we have

P

(
1

n

∑
i

1Ai � (1− εn)
k − δ

)
� 2e−2δ2n.

Therefore with probability at least 1− 2e−2δ2n,

‖Pt−k − Pt‖2F � α2
nn

2
(
1−

(
(1− εn)

k − δ
)2) � 2α2

nn
2
(
1− (1− εn)

k + δ
)
.

Using 1− xk = (1− x)(1 + x+ . . .+ xk−1) � (1− x)k for |x| � 1 and εn � ε̄n
we get

‖Pt−k − Pt‖2F � 2α2
nn

2 (min(1, kε̄n) + δ) .

Then we choose δ ∼ ε̄n � min(1, kε̄n), and use a union bound for k = 1 to
k ∼ 1/ε̄n (since beyond that we have min(1, kε̄n) = 1) to conclude.

Proof of Lemma 7. Denote by D = D(Pt), D̄ = D(P smooth
t ) the degree matrices

of Pt and P smooth
t , with di and d̄i their elements. By assumption, we have

di, d̄i � dmin
def.
= n̄minαn for all i. Therefore, by applying Lemma 11 we have

‖L(Pt)− L(P smooth
t )‖ � ‖Pt − P smooth

t ‖
dmin

+
‖(D − D̄)P smooth

t ‖
d2min

.
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From Lemma 4, we have ‖Pt − P smooth
t ‖ � C ′

βαn

√
nn̄maxεn

βmax
.

For the second term, we define Dt−k the diagonal degree matrix associated
to Pt−k, such that

‖(D − D̄)P smooth
t ‖ �

t∑
k=0

βk‖(D −Dt−k)P
smooth
t ‖F .

Denoting by p̄ij the elements of P smooth
t , recall that

∑
j p̄

2
ij � α2

nn̄max, and

using (a+ b)2 � 2(a2 + b2) we have

‖(D −Dt−k)P
smooth
t ‖2F =

∑
i

(∑
�

p
(t)
i� − p

(t−k)
i�

)2
⎛
⎝∑

j

p̄2ij

⎞
⎠

� α2
nn̄max

∑
i

(∑
�

p
(t)
i� − p

(t−k)
i�

)2

� α2
nn̄max

∑
i

(∑
�

(√
p
(t)
i� +

√
p
(t−k)
i�

)2
)(∑

�

(√
p
(t)
i� −

√
p
(t−k)
i�

)2
)

� 2α2
nn̄max

∑
i

(∑
�

p
(t)
i� + p

(t−k)
i�

)(∑
�

(√
p
(t)
i� −

√
p
(t−k)
i�

)2
)

� 4α3
nn̄

2
max‖P

� 1
2

t − P
� 1

2

t−k‖
2
F ,

where A� 1
2 indicates element-wise square root. Repeating the proof of Lemma

4, for two SBM connection probability matrices P and P ′ between which only
the nodes belonging to a set S have change community, we have

‖P� 1
2 − (P ′)�

1
2 ‖2F =

∑
i∈S

∑
j

(√
pij −

√
p′ij

)2

+
(√

pji −
√
p′ji

)2

� 4
∑
i∈S

∑
j

pij + p′ij � 8|S|αnn̄max.

Therefore, ‖P� 1
2

t −P
� 1

2

t−k‖
2
F � αnn̄maxnmin(1, kεn), and ‖(D−Dt−k)P

smooth
t ‖F �

α2
nn̄

3
2
max

√
nmin(1,

√
kεn). We conclude using the hypothesis on

∑
k βk

min(1,
√
kεn).

A.5. Technical Lemma

Lemma 11. Let A,P ∈ R
n×n be symmetric matrices containing non-negative

elements, assume that di =
∑

j aij and dPi =
∑

j pij are strictly positive, define

D = diag(di), DP = diag(dPi ), dmin = mini(di, d
P
i ). Then,

‖L(A)− L(P )‖ � ‖A− P‖
dmin

+
‖(D −DP )P‖

d2min

.
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Proof. Recall that ‖M‖ = supx,y∈S x�My, where S is the Euclidean unit ball.

Denote Q = (D− 1
2 −D

− 1
2

P )P .

We write

L(A)− L(P ) = D− 1
2AD− 1

2 −D
− 1

2

P PD
− 1

2

P

= D− 1
2 (A− P )D− 1

2 +D− 1
2PD− 1

2 −D
− 1

2

P PD
− 1

2

P

= D− 1
2 (A− P )D− 1

2 +QD− 1
2 −D

− 1
2

P Q�,

and thus

‖L(A)− L(P )‖ � ‖A− P‖
dmin

+
2‖Q‖√
dmin

.

Then, for x, y ∈ S, we have

x�Qy =
∑
ij

xiyjpij

(
1√
di

− 1√
dPi

)
=

∑
ij

xiyjpij

(
dPi − di√

didPi (
√
di +

√
dPi )

)

=
∑
ij

xiyjpijδi(d
P
i − di),

where δi
def.
= 1√

didP
i (

√
di+

√
dP
i )

� 1
2d

− 3
2

min. Since the pij are non-negative, the

maximum over x, y ∈ S is necessarily reached when every term in the sum
is non-negative, by choosing yj � 0 and xi with the same sign as dPi − di.
Hence, supx,y∈S

∑
ij xiyjpij(d

P
i − di) = supx,y∈S

∑
ij |xiyjpij(d

P
i − di)|. Using

this property,

sup
x,y∈S

∑
ij

xiyjpijδi(d
P
i − di) � sup

x,y∈S

∑
ij

|xiyjpijδi(d
P
i − di)|

� 1

2
d
− 3

2

min sup
x,y∈S

∑
ij

|xiyjpij(d
P
i − di)|

=
1

2
d
− 3

2

min sup
x,y∈S

∑
ij

xiyjpij(d
P
i − di)

=
1

2
d
− 3

2

min‖(D −DP )P‖,

which concludes the proof.
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