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Abstract

Differentiation along algorithms, i.e., piggyback propagation of derivatives, is
now routinely used to differentiate iterative solvers in differentiable programming.
Asymptotics is well understood for many smooth problems but the nondifferen-
tiable case is hardly considered. Is there a limiting object for nonsmooth piggyback
automatic differentiation (AD)? Does it have any variational meaning and can
it be used effectively in machine learning? Is there a connection with classical
derivative? All these questions are addressed under appropriate nonexpansivity
conditions in the framework of conservative derivatives which has proved useful
in understanding nonsmooth AD. We characterize the attractor set of nonsmooth
piggyback iterations as a set-valued fixed point which remains in the conservative
framework. Among various consequences we have almost everywhere conver-
gence of classical derivatives. Our results are illustrated on parametric convex
optimization with forward-backward, Douglas-Rachford and Alternating Direction
of Multiplier algorithms as well as the Heavy-Ball method.

1 Introduction
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Figure 1: We study exis-
tence and meaning of Jpb

x̄ as
a derivative of x̄, compatible
with automatic differentiation
of the iterates pxkpθqqkPN.

Differentiable programming. We consider a Lipschitz function
F : Rp ˆ Rm ÞÑ Rp, representing an iterative algorithm, parame-
terized by θ P Rm, with Lipschitz initialization x0 : θ ÞÑ x0pθq and

xk`1pθq “ F pxkpθq, θq “ Fθpxkpθqq, (1)

where Fθ :“ F p¨, θq, under the assumption that xkpθq converges
to the unique fixed point of Fθ: x̄pθq “ fixpFθq. Such recursion
represent for instance algorithms to solve an optimization problem
minx hpxq (e.g. empirical risk minimization), such as gradient de-
scent: F px, θq “ x ´ θ∇hpxq. But (1) could also be a fixed-point
equation such as a deep equilibrium network [5].

In the last years, a paradigm shift occurred: such algorithms are
now implemented in algorithmic differentiation (AD)-friendly frameworks such as Tensorflow [1],
PyTorch [42] or JAX [13]. For a differentiable F , it is possible to compute iteratively the derivatives of
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Figure 2: Illustration of the linear convergence of proximal splitting methods. (First line) Distance of
the iterates to the fixed point. (Second line) Distance of the piggyback Jacobians to the Jacobian of
the fixed point. The acronyms are FB for Forward-Backward, DR for Douglas-Rachford and ADMM
for Alternating Direction Method of Multipliers. In all cases, despite nonsmoothness, piggyback
Jacobians converge, illustrating Corollary 2. Blue lines represent the median of 100 repetitions with
random data, and the blue shaded area represents the first and last deciles.

xk with respect to θ using the differential calculus rules resulting in so called “piggyback” recursion:

B

Bθ
xk`1pθq “ B1F pxkpθq, θq ¨

B

Bθ
xkpθq ` B2F pxkpθq, θq, (2)

where B
Bθxk is the Jacobian of xk with respect to θ. In practice, automatic differentiation frameworks

do not compute the full Jacobian, but compute either vector-Jacobian products in reverse-mode (or
backpropagation) [48] or Jacobian-vector products in forward mode [53]. We rather consider the
full Jacobian, and therefore, our findings apply to both modes. We focus on two issues arising with
nonsmooth recursions, illustrated in Figure 1. (i) what can be said about the chain rule (2) and its
asymptotics when the function F is not smooth (for example a projected gradient step)? (ii) how to
interpret its asymptotics as a notion of derivative for x̄, the fixed point of Fθ? We propose a joint
answer to both questions, providing a solid theoretical ground to the idea of algorithmic differentiation
of numerical solvers involving nonsmooth components in a differentiable programming context.

Related works. Algorithmic use of the chain rule (2) to differentiate programs takes its root in [53],
with forward differentiation, and later in reverse mode [35]. Along with the development of AD,
convergence of the iterative sequence (2) was investigated, notably in the optimization community
as reviewed in [28]. This important survey paper gathers results in differentiable programming
rediscovered/reused later: implicit differentiation [43, 45] and its stability [8], adjoint fixed point
iteration [5] (a key aspect of the deep equilibrium network) and linear convergence of (2). Notably,
linear convergence of Jacobians was investigated in [25, 27] for the forward mode and in [15, Theorem
2.3] for the reverse mode. This was more recently investigated – for C2 functions – in imaging
for primal-dual algorithms [14, 9] and in machine learning for gradient descent [39, 36] and the
Heavy-ball [39] method. In the specific context where F solves a min-min problem, the authors in [2]
proved the linear convergence of the Jacobians. The use of AD for nonsmooth functions was justified
with the notion of conservative Jacobians [12, 11] with a nonsmooth version of the chain rule for
compositional models. Correctness of AD was also investigated in [34] for a large class of piecewise
analytic functions, and in [33] where a qualification condition is used to compute a Clarke Jacobian.
Along with AD, a natural way to differentiate a model (1) is by implicit differentiation, recently
applied in several works [5, 3, 21]. In a nonsmooth context, an implicit function theorem [10] was
proved for path-differentiable functions. In terms of applications, nonsmooth piggyback derivatives
are applied to hyperparameter tuning for inverse problems in [8] while the case of Lasso was
investigated in [7]. Other relevant applications include plug-and-play denoising [32], parameter
selection [19], bilevel programming [41]

Contributions: Under suitable nonexpansivity assumptions, our contributions are as follows.
• We address both questions illustrated in Figure 1 for nonsmooth recursions. Set-valued extensions of
the piggyback recursion (2) have a well defined limit: the fixed point of subset map (Theorem 1), it is
conservative for the fixed point map x̄. This is a nonsmooth “infinite” chain rule for AD (Theorem 2).
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• For almost all θ, despite nonsmoothness, recursion (2) is well defined using the classical Jacobian
and converges to the classical Jacobian of the fixed point x̄ (Corollary 2). This has implications for
both forward and reverse modes of AD.
• For a large class of functions (Lipschitz-gradient selection), it is possible to give a quantitative rate
estimate (Corollary 3), namely to prove linear convergence of the derivatives.
• We show that these results can be applied to proximal splitting algorithms in nonsmooth convex op-
timization. We include forward–backward (Proposition 2), as well Douglas–Rachford (Proposition 3)
and ADMM, a numerical illustration of the convergence of derivatives is given in Figure 2.
• We also illustrate that, contrarily to the smooth case, nonsmooth piggy back derivatives of momen-
tum methods such as Heavy-ball, may diverge even if the iterates converge linearly (Proposition 4).

Notations. A function f : Rp Ñ Rm is locally Lipschtiz if, for each x P Rn, there exists a
neighborhood of x on which f is Lipschitz. Denoting by R Ď Rp, the full measure set where f is
differentiable, the Clarke Jacobian [16] at x P Rp is defined as

Jac cfpxq “ conv

"

M P Rpˆm, Dpykqkě0 s.t. lim
kÑ8

yk “ x, yk P R, lim
kÑ8

Bf

By
pykq “ M

*

. (3)

The Clarke subdifferential, Bcf is defined similarly. Given two matrices A,B with compatible
dimension, rA,Bs is their concatenation. For a set X , convX is its convex hull. The symbol B
denotes a unit ball, the corresponding norm should be clear from the context.

2 Nonsmooth piggyback differentiation

We first show how the use of the notion of conservative Jacobians allow us to justify rigorously the
existence of a nonsmooth equivalent of piggyback iterations in (2) that is compatible with AD.

Conservative Jacobians. Conservative Jacobians were introduced in [12] as a generalization of
derivatives to study automatic differentiation of nonsmooth functions. Given a locally Lipschitz
continuous function f : Rp Ñ Rm, the set-valued J : Rp Ñ Rmˆp is a conservative Jacobian for
the path differentiable f if J has a closed graph, is locally bounded and nowhere empty with

d

dt
fpγptqq “ Jpγptqq 9γptq a.e. (4)

for any γ : r0, 1s Ñ Rp absolutely continuous with respect to the Lebesgue measure. Conservative
gradients are defined similarly. We refer to [12] for extensive examples and properties of this class
of function, key ideas are recalled in Appendix A for completeness. Let us mention that the classes
of convex functions, definable functions, or semialgebraic functions are contained in the set of path
differentiable functions. Given Df : Rp Ñ Rp, a conservative gradient for f : Rp Ñ R, we have:

• (Clarke subgradient), for all x P Rp, Bcfpxq Ă convpDf pxqq.
• (Gradient almost everywhere) Df pxq “ t∇fpxqu for almost all x P Rp.
• (Calculus) differential calculus rules preserve conservativity, e.g. sum and compositions of conser-
vative Jacobians are conservative Jacobians.

Finally, Df can be used as a first order optimization oracle for methods of gradient type [11].

Piggyback differentiation of recursive algorithms. The following is standing throughout the text.

Assumption 1 (The conservative Jacobian of the iteration mapping is a contraction) F is lo-
cally Lipschitz, path differentiable, jointly in px, θq, and JF is a conservative Jacobian for F .
There exists 0 ď ρ ă 1, such that for any px, θq P Rp ˆ Rm and any pair rA,Bs P JF px, θq, with
A P Rpˆp and B P Rpˆm, the operator norm of A is at most ρ. Jx0

is a conservative Jacobian for
the initialization function θ ÞÑ x0pθq.

Under Assumption 1, Fθ is a strict contraction so that pxkpθqqkPN converges linearly to x̄pθq “

fixpFθq the unique fixed point of the iteration mapping Fθ. More precisely, for all k P N, we have

}xkpθq ´ x̄pθq} ď ρk
}x0 ´ Fθpx0q}

1 ´ ρ
.
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Furthermore, for every k P N, let us define the following set-valued piggyback recursion:

Jxk`1
pθq “ tAJ `B, rA,Bs P JF pxkpθq, θq, J P Jxk

pθqu . (PB)

We will show in Section 3 that (PB) plays the same role as (2) in the nonsmooth setting. Note that
one can recursively evaluates a sequence Jk P Jxk

, k P N, through operations actually implemented
in nonsmooth AD frameworks, as follows

Jk`1 “ AkJk `Bk where rAk, Bks P JF pxkpθq, θq, (5)

Remark 1 (Local contractions) Assumption 1 may be relaxed as follows: for all θ, the fixed point
set fixpFθq is a singleton x̄θ such that xkpθq Ñ x̄pθq as k Ñ 8, and the operator norm condition on
JF in Assumption 1 holds at the point px̄pθq, θq. By graph closedness of JF , in a neighborhood of
px̄pθq, θq, Fθ is a strict contraction and the operator norm condition on JF holds, possibly with a larger
contraction factor ρ. After finitely many steps, the iterates pxkqkPN remain on some neighborhood
and all our convergence results hold, due to their asymptotic nature.

Remark 2 (Relation to existing work) For a smooth F a natural conservative Jacobian is the clas-
sical one. The, hypotheses in [39, 36] for gradient descent (F is C1), are exactly the classical
counterpart of Assumption 1. On the other hand [25, 27, 15] use a more general assumption on
spectral radius, which allow to treat the Heavy-Ball method, e.g. in [39]. However this does not
generalize to sets of matrices, as shown in Section 5. Hence Assumption 1 is on operator norm and
not on spectral radius, which is sharp, contrary to the smooth case.

3 Asymptotics of nonsmooth piggyback differentiation

3.1 Fixed point of affine iterations

Gap and Haussdorf distance. Being given two nonempty compact subsets X ,Y of Rp, set

gappX ,Yq “ max
xPX

dpx,Yq where dpx,Yq “ min
yPY

}x´ y},

and define the Hausdorff distance between X and Y by distpX ,Yq “ maxpgappX ,Yq, gappY,X qq.
Note that gappX ,Yq “ 0 if, and only if, X Ď Y , whereas distpX ,Yq “ 0 if, and only if, X “ Y .
Moreover, X Ď Y ` gappX ,YqB where B is the unit ball. It means that gappX ,Yq “measures” the
default of inclusion of X in Y , see [46, Chapter 4] for more details.

Affine iterations by packets of matrices. Let J Ă Rpˆpp`mq be a compact subset of matrices
such that any matrix of the form rA,Bs P J with A P Rpˆp is such that A has operator norm at
most ρ ă 1. We let J act naturally on the matrices of size p ˆ m as follows J : Rpˆm Ñ Rpˆm

the function from Rpˆm to subsets of Rpˆm which is defined for each X P Rpˆm as follows:
J pXq “ tAX `B, rA,Bs P J u. This defines a set-valued map through, for any X Ă Rpˆm,

J pX q “ tAX `B, rA,Bs P J , X P X u. (6)

Recursions of the form (PB) generate sequences pXkqkPN of subsets of Rpˆm satisfying

Xk`1 “ J pXkq @k P N. (7)

The following is an instance of the Banach–Picard theorem (whose proof is recalled in Appendix B).

Theorem 1 (Set-valued affine contractions) Let J Ă Rpˆpp`mq be a compact subset of matrices
as above with ρ ă 1. Then there is a unique nonempty compact set fixpJ q Ă Rpˆm satisfying
fixpJ q “ J pfixpJ qq, where the action of J is given in (6).

Let pXkqkPN be a sequence of compact subsets of Rpˆm, such that X0 ‰ H, and satisfying the
recursion (7). We have for all k P N

distpXk,fixpJ qq ď ρk
distpX0,J pX0qq

1 ´ ρ
,

where dist is the Hausdorff distance related to the Euclidean norm on pˆm matrices.
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3.2 An infinite chain rule and its consequences

Define the following set-valued map based on the fix operator from Theorem 1,

Jpb
x̄ : θ Ñ fix rJF px̄pθq, θqs .

where x̄pθq is the unique fixed point of the algorithmic recursion. Since x̄pθq “ fixpFθq,
we have equivalently that Jpb

x̄ is the fixed-point of the Jacobian at the fixed-point: Jpb
x̄ : θ Ñ

fix rJF pfixpFθq, θqs. We have the following (proved in Appendix C) and a consequence from Theo-
rem 1.

Theorem 2 (A conservative mapping for the fixed point map) Under Assumption 1, Jpb
x̄ is well-

defined, and is a conservative Jacobian for the fixed point map x̄.

Corollary 1 (Convergence of the piggyback derivatives) Under Assumption 1, for all θ, the recur-
sion (PB) satisfies

lim
kÑ8

gappJxk
pθq, Jpb

x̄ pθqq “ 0. (8)

Unrolling the expression of Jxk
, using (6) and (7), we can rewrite (8) with a compositional product:

lim
KÑ`8

gap

˜˜

K
ì

k“0

JF pxkpθq, θq

¸

pJx0
pθqq, Jpb

x̄ pθq

¸

“ 0.

In plain words, this is a limit-derivative exchange result: Asymptotically, the gap between the
automatic differentiation of xk and the derivative of the limit is zero. In particular the recursion (5)
produces bounded sequences whose accumulation points are in Jpb

x̄ . Since conservative Jacobians
equal classical Jacobians almost everywhere [12], we have convergence of classical derivatives.

Corollary 2 (Convergence a.e. of the classical piggyback derivatives) Under Assumption 1, for
almost all θ, the classical Jacobian B

Bθxkpθq, is well defined for all k and converges towards the
classical Jacobian of x̄. That is

lim
kÑ8

B

Bθ
xkpθq “

B

Bθ
x̄pθq, for almost all θ.

Remark 3 (Connection to implicit differentiation) The authors in [10] proved a qualification-free
version of the implicit function theorem. Assuming that for every rA,Bs P Jpx̄pθq, θq, the matrix
I ´A is invertible, we have that

J imp
x̄ : θ Ñ

␣

pI ´Aq´1B, rA,Bs P JF px̄pθq, θq
(

(9)

is a conservative Jacobian for x̄. Under Assumption 1, one has J imp
x̄ pθq Ă Jpb

x̄ pθq for all θ. Unfor-
tunately, as soon as F is not differentiable, the inclusion may be strict, see details in Appendix D.

3.3 Consequence for algorithmic differentiation

Given k P N, 9θ P Rm, w̄k P Rp, the following algorithms allow us to compute 9xk “ Jk 9θ using the
forward mode of automatic differentation (Jacobian Vector Products, JVP), and θ̄Tk “ w̄T

k Jk using
the backward mode of automatic differentiation (Vector Jacobian Products, VJP). In a compositional
model 9θ is the derivative of an inner functions controlling algorithm parameters θ, with another
variable real variable λ P R, for example an hyper parameter. The goal is to combine Bθpλq

Bλ and
Bxkpθq

Bθ with the chain rule in a forward pass to obtain the total derivative Bxkpθpλqq

Bλ . On the other hand,
in a compositional model, w̄k is typically the gradient of an outer loss functions ℓ evaluated at xkpθq.
In this case the goal is to combine derivatives of iterates Bxkpθq

Bθ with w̄k “
Bℓpxkq

Bxk
in a backward pass

to obtain Bℓpxkpθqq

Bθ .
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Algorithm 1: Algorithmic differentiation of recursion (1), forward and reverse modes

Input: k P N, θ P Rm, 9θ P Rm, w̄k P Rp, initialization function x0pθq, recursion function
F px, θq, conservative Jacobians JF px, θq and Jx0pθq. Initialize: x0 “ x0pθq P Rp.

Forward mode (JVP):
9x0 “ J 9θ, J P Jx0

pθq.
for i “ 1, . . . , k do
xi “ F pxi´1, θq

9xi “ Ai´1 9xi´1 `Bi´1
9θ

rAi´1, Bi´1s P JF pxi´1, θq

Return: 9xk

Reverse mode (VJP): θ̄k “ 0.
for i “ 1, . . . , k do
xi “ F pxi´1, θq

for i “ k, . . . , 1 do
θ̄k “ θ̄k `BT

i´1w̄i w̄i´1 “ AT
i´1w̄i

rAi´1, Bi´1s P JF pxi´1, θq

θ̄k “ θ̄k ` JT w̄0, J P Jx0
pθq

Return: θ̄k

Proposition 1 (Convergence of VJP and JVP) Let k P N, 9θ P Rm, w̄k P Rp, xk P Rp, 9xk P Rp,
θ̄Tk P Rm be as in Agorithm 1 under Assumption 1. Then for almost all θ P Rm, 9xk Ñ Bx̄

Bθ
9θ.

Assume furthermore that, as k Ñ 8, w̄k Ñ w̄ (for example, w̄k “ ∇ℓpxkq for a C1 loss ℓ), then for
almost all θ P Rm, θ̄Tk Ñ w̄T Bx̄

Bθ .

Remark 4 In addition to Proposition 1, in both cases, for all θ, all accumulation points of both 9xk
and θ̄Tk are elements of Jpb

x̄
9θ and w̄TJpb

x̄ respectively. This is a consequence of Corollary 2 combined
with algorithmic differentiation arguments which proof is given in Appendix D.

3.4 Linear convergence rate for semialgebraic piecewise smooth selection function

Semialgebraic functions are ubiquitous in machine learning (piecewise polynomials, ℓ1, ℓ2 norms,
determinant matrix rank . . . ). We refer the reader to [11] for a thorough discussion of their extensions,
and use in machine learning. For more technical details, see [17, 18] for introductory material on
semialgebraic and o-minimal geometry.

Lipschitz gradient selection functions. Let F : Rp ÞÑ Rq be semialgebraic and continuous.
We say that F has a Lipschitz gradient selection ps, F1, . . . , Fmq if s : Rp ÞÑ p1, . . . ,mq is
semialgebraic and there exists L ě 0 such that for i “ 1 . . . ,m, Fi : Rp ÞÑ Rp is semial-
gebraic with L-Lipschitz Jacobian, and for all x P Rp, F pxq “ Fspxqpxq. For any x P Rp,
set Ipxq “ ti P t1, . . . ,mu , F pxq “ Fipxqu. The set-valued map Js

F : Rp Ñ Rpˆq given by
Js
F : x Ñ conv

`␣

BFi

Bx pxq, i P Ipxq
(˘

, is a conservative Jacobian for F as shown in [11]. Here BFi

Bx
denotes the classical Jacobian of Fi. Let us stress that such a structure is ubiquitous in applications
[11, 34].

Rate of convergence. We may now strengthen Corollary 1 by proving the linear convergence of
piggyback derivatives towards the fixed point. The following is a consequence of the fact that the
proposed selection conservative Jacobians of Lipschitz gradient selection functions are Lipschitz-like
(Lemma 4 in Appendix E.1). Note that semialgebraicity is only used as a sufficient condition to
ensure conservativity of the selection Jacobian together with this Lipschitz like property. It could be
relaxed if it can be guaranteed by other means, in particular one could consider the broader class of
definable functions in order to handle log-likelihood data fitting terms.

Corollary 3 (Linear convergence of piggyback derivatives) In addition to Assumption 1, assume
that F has a Lipschitz gradient selection structure as above. Then, for any θ and ϵ ą 0, there exists
C ą 0 such that the recursion (PB) with JF “ Js

F satisfies for all k P N, gappJxk
pθq, Jpb

x̄ pθqq ď

Cp
?
ρ` ϵqk. Moreover, classical Jacobians in Corollary 2 converge at a linear rate for almost all θ.

4 Application to proximal splitting methods in convex optimization

Consider the composite parametric convex optimization problem, where θ P Rm represents parame-
ters and x P Rp is the decision variable

x̄pθq “ argminxfpx, θq ` gpx, θq.
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The purpose of this section is to construct examples of functions F used in recursion (1) based on
known algorithms. The following assumption will be standing throughout the section.

Assumption 2 f is semialgebraic, convex, its gradient with respect to x for fixed θ, ∇xf , is locally
Lipschitz jointly in px, θq and L-Lipschitz in x for fixed θ. Semialgebraicity implies that ∇xf
is path-differentiable jointly in px, θq, we denote by J2

f its Clarke Jacobian. The function g is
semialgebraic, convex in x for fixed θ, and lower semicontinuous. For all α ą 0, we assume that
Gαpx, θq ÞÑ proxαgp¨,θqpxq is locally Lipschitz jointly in px, θq. Semialgebraicity implies that it is
also path differentiable jointly in px, θq, we denote by JGα

its Clarke Jacobian.

This assumption covers a very large diversity of problems in convex optimization as most gradient
and prox operations used in practice are semialgebraic (or definable). Under Assumption 2, we will
provide sufficient conditions on f and g for Assumption 1, for different algorithmic recursions. These
will therefore imply convergence as stated in Corollary 1 and 2, Proposition 1, as well Corollary 3 in
the piecewise selection case. The proofs are postponed to Appendix F.

4.1 Splitting algorithms

In this section we provide sufficient condition for Assumption 1 to hold. The underlying conservative
Jacobian is obtained by combining Clarke Jacobians of elementary algorithmic operations (gradient,
proximal operator in Assumption 2), using the compositional rules of differential calculus [11] and
implicit differentiation [10]. Using [12], such Jacobians are conservative by semialgebraicity and
their combination provide conservative Jacobians for the corresponding algorithmic recursion F .
These objects are explicitly constructed in Appendix F.

Forward–backward algorithm. The forward–backward iterations are given for α ą 0 by

xk`1 “ proxαgp¨,θq pxk ´ α∇xfpxk, θqq . (10)

Proposition 2 Under Assumption 2 with 0 ă α ă 2
L , denote by Fα : Rpˆm Ñ Rp the forward-

backward recursion in (10). For µ ą 0, if either f or g is µ-strongly convex in x for all θ, then Fα is
a strict contraction and Assumption 1 holds.

It is well known that if f is µ-strongly convex, choosing α “ 2{pL` µq provides a contraction factor
ρFB “ pτ ´ 1q{p1 ` τq, where τ “ L{µ ě 1 is the condition number of the problem.

Douglas–Rachford algorithm. Given α ą 0, the algorithm goes as follows

yk`1 “
1

2
pI `Rαfp¨,θqRαgp¨,θqqyk, (11)

where Rαfp¨,θq “ 2proxαfp¨,θq ´ I is the reflected proximal operator, which is 1-Lipschitz (and
similarly for g). Following [6, Theorem 26.11], if the problem has a minimizer, then pykqkPN
converges to a fixed point of (11), ȳ such that x̄ “ proxαgpȳq is a solution to the optimization
problem. Following [26, Theorem 1], if f is strongly convex, then Rαfp¨,θq is ρ-Lipschitz for some
ρ ă 1 and our differentiation result applies to Douglas-Rachford splitting in this setting.

Proposition 3 Under Assumption 2 with α ą 0, denote by Fα : Rpˆm Ñ Rp the Douglas-Rachford
recursion in (11). If f is µ-strongly convex in x for all θ, then Fα is a strict contraction and
Assumption 1 holds.

Following [26, Proposition 3], choosing α “ 1{
?
Lµ provides a contraction factor of order

ρDRp
?
τ ´ 1q{p

?
τ ` 1q ă ρFB , where again τ “ L{µ is the condition number of the prob-

lem. In this respect Douglas-Rachford’s iterations provide a faster asymptotic rate than those of
Forward-Backward, which may also impact the convergence of derivatives in the context of Corol-
lary 3.

Alternating Direction Method of Multipliers. Consider the separable convex problem

min
u,v

ϕθpuq ` ψθpvq subject to Aθu`Bθv “ cθ. (12)

7



The alternating direction method of multipliers (ADMM) algorithm combines two partial minimiza-
tion of an augmented Lagrangian, and a dual update:

uk`1 “ argmin
u

!

ϕθpuq ` xJ
kAθu`

α

2
}Aθu`Bθvk ´ cθ}22

)

vk`1 “ argmin
v

!

ψθpvq ` xJ
kBθv `

α

2
}Aθuk`1 `Bθvk ´ cθ}22

)

xk`1 “ xk ` αpAθuk`1 `Bθvk`1 ´ cθq.

(13)

As observed in [23], the ADMM algorithm can be seen as the Douglas-Rachford splitting method
applied to the Fenchel dual of problem (12) (see Appendix F.3 for more details). More precisely,
ADMM updates are equivalent to Douglas-Rachford iterations applied to the following problem

min
x
cJ
θ x` ϕ˚

θ p´AJ
θ xq

loooooooooomoooooooooon

fpx,θq

`ψ˚
θ p´BJ

θ xq
looooomooooon

gpx,θq

. (14)

Therefore, if ϕθ is strongly convex with Lipschitz gradient andAθ is injective, then ADMM converges
linearly and one is able to combine derivatives of proximal operators to differentiate ADMM.

4.2 Numerical illustrations

We now detail how Figure 2 discussed in the introduction is obtained, and how it illustrates our
theoretical results. We consider four scenarios (Ridge, Lasso, Sparse inverse covariance selection
and Trend filtering) corresponding to the four columns. For each of them, the first line shows the
empirical linear rate of the iterates xk and the second line shows the empirical linear rate of the
derivative B

Bθxk. All experiments are repeated 100 times and we report the median along with the
first and last deciles.

Forward–Backward for the Ridge. The Ridge estimator is defined for θ ą 0 as x̄pθq “

argminxPRp
1
2}Ax´ b}22 ` θ}x}22 Among several possibilities to solve it, one can use the Forward–

Backward algorithm applied to f : px, θq ÞÑ 1
2}Ax´ b}22 and g : θ}x}22. Since g is strongly convex,

the operator Fα is strongly convex, and thus Proposition 2 may be applied.

Forward–Backward algorithm for the Lasso. Consider the Forward–Backward algorithm applied
to the Lasso problem [49], with parameter θ ą 0, x̄pθq P argminxPRp

1
2}Ax ´ b}22 ` θ}x}1 “

argminx
1
2L}Ax ´ b}22 ` θ

L}x}1, where L is any upper bound on the operator norm of ATA. The
gradient of the quadratic part is 1-Lipschitz, so we may consider the forward backward algorithm
(10), with unit step size and f : px, θq ÞÑ 1

2L}Ax´ b}22 and g : px, θq ÞÑ θ
L}x}1.

A well known qualification condition involving a generalized support at optimality ensures uniqueness
of the Lasso solution [20, 37]. It holds for generic problem data [50]. Following [10, Proposition 5],
under this qualification condition, the implicit conservative Jacobian JF is such that, at the solution
x˚, the matrix set I ´ JF only contains invertible matrices. This means that there exists ρ ă 1, such
that any M P JF px˚q has operator norm at most ρ. Following Remark 1, all our convergence results
apply qualitatively. Note that we recover the results of [7, Proposition 2] for the Lasso.

Douglas–Rachford for the Sparse Inverse Covariance Selection. The Sparse Inverse Covariance
Selection [52, 22] reads x̄pθq P argminxPRnˆn trpCxq ´ log detx ` θ

ř

i,j |xi,j |, where C is a
symmetric positive matrix and θ ą 0. It is possible to apply Douglas–Rachford method to f :
px, θq ÞÑ trpCxq ´ log detx and g : px, θq ÞÑ θ}x}1,1. It is known that f is locally strongly convex,
indeed x ÞÑ ´ log detx is the standard self-concordant barrier in semidefinite programming [40].
Following Remark 1, all our convergence results apply qualitatively.

ADMM for Trend Filtering. Introduced in [51] in statistics as a generalization of the Total
Variation, the trend filtering estimator with observation θ P Rp reads x̄pθq “ argminxPRp

1
2}x ´

θ}22 ` λ}Dpkqx}1, where Dpkq is a forward finite–difference approximation of a differential operator
of order k (here k “ 2). Using ψθ : u ÞÑ λ}u}1, ϕθ : v ÞÑ }v ´ θ}22 (strongly convex), Aθ “ ´I
(injective), Bθ “ Dpkq, and cθ “ 0, we can apply the ADMM to solve trend filtering.
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5 Failure of automatic differentiation for inertial methods

This section focuses on the Heavy-Ball method for strongly convex objectives, in its global linear
convergence regime. For C2 objectives, piggyback derivatives converge to the derivative of the
solution map [28, 39, 36]. However, we provide a C1,1 strongly convex parametric objective with
path differentiable derivative, such that piggyback derivatives of the Heavy Ball algorithm contain
diverging vectors for a given parameter value. In this example, other conservative differentiation
means (implicit differentiation, piggyback on gradient descent), avoid this divergent behaviors.

5.1 Heavy-ball algorithm and global convergence

Consider a function f : Rp ˆRm Ñ R, and β ą 0, for simplicity, when the second argument is fixed,
we write fθ : x ÞÑ fpx, θq. Set for all x, y, θ, F px, y, θq “ px ´ ∇fθpxq ` βpx ´ yq, xq, consider
the Heavy-Ball algorithm pxk`1, yk`1q “ F pxk, yk, θq for k P N.

If fθ is µ-strongly convex with L-Lipschitz gradient, then, choosing α “ 1{L and β ă

1
2

ˆ

µ
2L `

b

µ2

4L2 ` 2

˙

, the algorithm will converge globally at a linear rate to the unique solu-

tion, x̄pθq [24, Theorem 4], local convergence is due to Polyak [44]. Furthermore, if in addition f is
C2 forward propagation of derivatives converge to the derivative of the solution [28, 29, 39].

5.2 A diverging Jacobian accumulation

Details and proof of the following result are given in Section G.

Proposition 4 (Piggyback differentiation fails for the Heavy Ball method) Consider f : R2 Ñ

R, such that for all θ P R, fpx, θq “ x2{2 if x ě 0 and fpx, θq “ x2{8 if x ă 0. Assume
that α “ 1 and β “ 3{4. Then the heavy ball algorithm converges globally to 0 and ∇f is path differ-
entiable. The Clarke Jacobian of F with respect to px, yq at p0, 0, 0q is JF p0, 0, 0q “ conv tM1,M2u,
where the product M1M1M2M2 has eigenvalue ´9{8.

The presence of an eigenvalue with modulus greater than 1 may produce divergence in (PB). Set

f1 : px, θq ÞÑ

"

x2{2 if x ě 0

x2{8 if x ă 0.
f2 : px, θq ÞÑ

"

x2{2 if x ą 0

x2{8 if x ď 0.

Note that f1 and f2 are both equivalent to f as they implement the same function. With initializations
xpθq “ ypθq “ θ, we run a few iterations of the Heavy Ball algorithm for θ “ 0, and implement
(PB) alternating between two steps on f1 and two steps on f2 and differentiate the resulting sequence
pxkqkPN with respect to θ using algorithmic differentiation. The divergence phenomenon predicted
by Proposition 4 is illustrated in Figure 3, while the true derivative is 0 (the sequence is constant).

6 Conclusion

We have developed a flexible theoretical framework to describe convergence of piggyback differentia-
tion applied to nonsmooth recursions – providing, in particular, a rigorous meaning to differentiation
of nonsmooth solvers. The relevance of our approach is illustrated on composite convex optimization
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−200
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200
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Figure 3: Behaviour of automatic differentiation for first-order methods on a quadratic function.
(Left) Stability of the propagation of derivatives for the fixed step-size gradient descent. (Right)
Instability of the propagation of Heavy-Ball initialized. Both methods are initialized at optimum.
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through widely used methods as forward-backward, Douglas-Rachford or ADMM algorithms. Our
framework allows however to consider many other abstract algorithmic recursions and provides thus
theoretical ground for more general problems such as variational inequalities or saddle point problems
as in [14, 9]. As a matter for future work, we shall consider relaxing Assumption 1 to study a wider
class of methods, e.g., when F is not a strict contraction.
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A Reminder on conservative calculus

For the sake of completeness, we recall important definitions and results from [12] on conservative
calculus which are extensively used throughout the paper.

Definitions: We first collect the necessary definitions and details for Equation (4). We then collect
important results from [12], which will be used throughout the paper. Recall from multivariable
calculus that the Jacobian of a differentiable function f : Rn Ñ Rm is given by

Bf

Bx
:“

»

—

–

Bf1
Bx1

. . . Bf1
Bxn

...
. . .

...
Bfm
Bx1

. . . Bfm
Bxn

fi

ffi

fl

.

Definition 1 (Absolutely continuous curves) A continuous function γ : R Ñ Rn is an absolutely
continuous curve if it has a derivative 9γptq, for almost all t P R, which furthermore satisfies

γptq ´ γp0q “

t
ż

0

9γpτqdτ

for all t P R.

The graph of a set-valued mapping D : Rn Ñ Rm is the set graph D :“ tpx, zq : x P Rn, z P

Dpxqu.

Definition 2 (Closed graphs) A set-valued mapping D : Rn Ñ Rm has closed graph or is graph
closed if graph D is a closed subset of Rn`m or, equivalently, if, for any convergent sequences
pxkqkPN and pzkqkPN with zk P Dpxkq for all k P N, it holds

lim
kÑ8

zk P Dp lim
kÑ8

xkq.
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Definition 3 (Locally bounded set-valued mappings) A set-valued mapping D : Rn Ñ Rm is
locally bounded if for all x P Rn, there exists a neighborhood U of x and M ą 0 such that, for all
u P U , for all y P Dpuq, }y} ă M .

We provide an equivalent alternative to Definition Equation (4) see [12, Lemma 2].

Definition 4 (Conservative Jacobians) The set-valued J : Rp Ñ Rmˆp is a conservative Jacobian
if J has a closed graph, is locally bounded and nowhere empty with

ż t“1

t“0

Jpγptqq 9γptqdt “ 0 (15)

for any γ : r0, 1s Ñ Rp absolutely continuous with respect to the Lebesgue measure such that
γp0q “ γp1q.

Given such a J , the potential f as in Equation (4) can be reconstructed up to a constant using
integration along absolutely continuous through.

fpγp1qq ´ fpγp0qq “

ż t“1

t“0

Jpγptqq 9γptqdt, (16)

where the value of the integral does not depend on the choice of γ provided that the endpoints are
fixed.

First results and examples : We have the following results, see [12, Theorem 1, Corollary 2].

Theorem 3 Let F : Rp Ñ Rm be locally Lipschitz. Then F is path differentiable if and only if
Jac cF in (3) is a conservative Jacobian. In this case, setting J : Rp Ñ Rmˆp any conservative
Jacobian for F , we have

• J pxq “ tJacF pxqu for Lebesgue almost all x.

• Jac cpxq Ă convpJ pxqq for all x.

Example of path differentiable functions include

• Convex or concave functions
• Clarke regular functions
• Prox regular functions

we refer to [46] for details on these classes of functions. Another relevant class is that of semi-
algebraic or more generally definable functions, see [17, 18]. Beyond technical definition, this class
is relevant because it contains the vast majority of operations used in applications, independently
of smoothness. These include: the relu function, the absolute value function, the max-pooling
operation, ℓ1 and ℓ8 norms, any polynomial or piecewise polynomial function such sorting a vector
by increasing coordinates order, the operator norm, the rank function . . . . Furthermore, the class of
semi-algebraic functions is closed under many operations, as for instance:

• usual arithmetic operations `,ˆ,´, {

• functional composition
• differentiation
• partial minimization
• more broadly, any functional operation which can be described with a first order logical

formula: a boolean formula with quantification on variables only (not sets), see [17].

Conservative Jacobians and calculus: The main reason for the introduction of conservative
Jacobians in [12] is the lack of an efficient differential calculus for Clarke Jacobians (recall (3)). For
example, if f “ | ¨ | and g “ ´| ¨ |, we have

Bcpf ` gqp0q “ Bcpt ÞÑ 0qp0q “ t0u ‰ r´2, 2s “ Bcfp0q ` Bcgp0q.

On the contrary, conservative Jacobians have an appealing calculus.

16



Lemma 1 [12, Lemma 5] Let F1 : Rp ÞÑ Rm and F2 : Rm ÞÑ Rl be locally Lipschitz continuous
mappings. Let J1 : Rp Ñ Rmˆp be a conservative mapping for F1 and J2 : Rp Ñ Rlˆm be a
conservative mapping for F2. Then the product mapping J2 ¨ J1 is a conservative mapping for
F2 ˝ F1.

as a consequence, beyond composition, conservative gradients are compatible with basic arithmetic
operations, such as addition. In general conservative gradients and Jacobian provide a variational
meaning to the formal application of the rules of differential calculus to generalized derivatives
arising in nonsmooth analysis, this goes beyond simple arithmetic operations and composition, for
example with implicit differentiation [10].

Optimization: Let D be a conservative gradient, v is called a selection in D if for all x, vpxq P

Dpxq. Selection conservative gradients can be used as surrogate gradients, or subgradients, while
preserving convergence guaranties, examples are given in [12, 11, 10].

B Properties of affine iterations on compact subsets

B.1 Banach–Picard theorem: Proof of Theorem 1

For a compact set, Z we denote by }Z}sup the maximal norm of elements in Z:
}Z}sup “ sup

zPZ
}z}.

In order to prove our fixed point result, we need first the following lemma.

Lemma 2 (Bounding Hausdorff distances) Let X ,Y,Z Ă Rp be nonempty compact sets, such
that X Ă Y ` Z and Y Ă X ` Z then

distpX ,Yq ď }Z}sup.

Proof : The first inclusion says that for any x P X , there is ypxq P Y , zpxq P Z such that
x “ ypxq ` zpxq. We deduce that for any x P X

min
yPY

}x´ y} “ min
yPY

}ypxq ´ zpxq ´ y} ď }zpxq} ď max
zPZ

}z}

Therefore, maxxPX minyPY }x ´ y} ď maxzPZ }z}. Symmetrically, maxyPY minxPX }x ´ y} ď

maxzPZ }z} and the result follows. l

We now prove Theorem 1.

Proof of Theorem 1: Recall that the action of J on matrices is defined in (6) and by A and B the
projections of J on the first p and last l columns respectively, that is A “ tA, DB, rA,Bs P J u and
similarly for B. Note that A is a compact set and that all matrices in A have an operator norm of
at most ρ. We claim that the restriction of J to compact subsets is a strict contraction in Hausdorff
metric. Indeed, for any X , Y compact subsets of Rpˆm, we have by using Lemma 2 and noting that
J preserves the inclusion,

J pX q Ă J pY ` distpX ,YqBq Ă J pYq ` distpX ,YqAB Ă J pYq ` ρdistpX ,YqB
J pYq Ă J pX ` distpX ,YqBq Ă J pX q ` distpX ,YqAB Ă J pX q ` ρdistpX ,YqB

where the last inclusion follows because AB Ă ρB, where B is the unit ball (for the Euclidean norm)
of pˆm matrices, since by assumption all square matrices in A have operator norm at most ρ. We
deduce that distpJ pX q,J pYqq ď ρdistpX ,Yq using Lemma 2, that is the action of J on subsets of
pˆm matrices is ρ Lipschitz with respect to Hausdorff metric.

Let us show that pXkqkPN remains in a bounded set, we have for all k
}Xk`1}sup ď }AXk ` B}sup ď }AXk}sup ` }B}sup ď ρ}Xk}sup ` }B}sup,

which entails

}Xk`1}sup ´
}B}sup

1 ´ ρ
ď ρ

ˆ

}Xk}sup ´
}B}sup

1 ´ ρ

˙

.

We distinguish two cases
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• if }Xk}sup ą
}B}sup

1´ρ , then }Xk`1}sup gets either closer to }B}sup
1´ρ or below it, in particular it

decreases.
• if }Xk}sup ď

}B}sup

1´ρ then }Xk`1}sup ď
}B}sup
1´ρ and we remain below this threshold for all k.

All in all, for all k P N,

}Xk`1}sup ď max

"

}Xk}sup,
}B}sup

1 ´ ρ

*

ď . . . ď max

"

}X0}sup,
}B}sup

1 ´ ρ

*

,

and lim supk }Xk}sup ď
}B}sup

1´ρ .

We have shown that the sequence remains in a bounded set so that the recursion actually takes place
in a compact set C Ă Rpˆm which contains all the iterates in its interior, we consider the restriction
of the topology to this subset. By [4, Theorem 3.85], the closed subsets form a complete metric space.
The result is an application of Banach-Picard theorem (for example [47, Section 10.3]). In particular
(see [4, Theorem 3.88]), L is the unique fixed point of J and it is closed and bounded, hence compact.
Note that we can consider larger compact sets to take into account larger initializations, the fixed
point remains the same. Indeed for a larger compact C̃ containing C, L is in the interior of C and is
still a fixed point of J when the topology is restricted to C̃ and this fixed point must be unique. l

B.2 Properties of the fixed-set mapping

We now equip the set of matrices Rpˆppˆmq with the norm }rA,Bs}p,m “ maxt}A}op, }B}u

where A P Rpˆp and B P Rpˆm. The set of compact subsets of Rpˆpp`mq is endowed with the
corresponding Hausdorff distance.

Definition 5 (Affine contraction sets) For ρ P r0, 1q, we denote by Cρ, the set of compact subsets of
matrices in Rpˆpp`mq such that for all S Ă Rpˆpp`mq, S Ă Cρ and all M P S , we have }A}op ď ρ
where A P Rpˆp is the matrix made of the first p columns of M .

Given J P Cρ, we denote by fixpJ q the unique fixed point of the corresponding iteration mapping as
defined in Theorem 1. We have the following

Proposition 5 (Monotonicity of the fixed set) Given J P Cρ and J̃ P Cρ (as in Definition 5), such
that J Ă J̃ , we have

fixpJ q Ă fixpJ̃ q.

Proof : Setting X0 “ fixpJ q, we have

X0 “ J pX0q Ă J̃ pX0q,

and the result follows by the same argument as in the last paragraph of the proof of Theorem 1. l

Proposition 6 (The fixed-set mapping is locally Lipschitz continuous) The function fix is locally
Lipschitz continuous on Cρ (as in Definition 5). More precisely, for any J0 P Cρ and J P Cρ,

dist pfixpJ0q,fixpJ qq ď

ˆ

1

1 ´ ρ
`

suprA0,B0sPJ0
}B0}

p1 ´ ρq2

˙

distpJ0,J q

Proof : Given J0 P Cρ and J P Cρ, we remark that J Ă J0 ` distpJ0,J qBpm, where dist and
Bpm are considered with respect to the norm } ¨ }pm. This means

J Ă trA0, B0s ` rC,Ds, rA0, B0s P J0, }rC,Ds}p,m ď distpJ0,J qu

We have
J pfixpJ0qq “ tAX `B, rA,Bs P J , X P fixpJ0qu

Ă tA0X `B0, rA0, B0s P J0, X P fixpJ0qu

` tCX `D, }rC,Ds}mp ď distpJ0,J q, X P fixpJ0qu

“ J0pfixpJ0qq ` tCX `D, }rC,Ds}mp ď distpJ0,J q, X P fixpJ0qu

“ fixpJ0q ` tCX `D, }rC,Ds}mp ď distpJ0,J q, X P fixpJ0qu .
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This sets one inclusion. Similarly, we have

fixpJ0q “ J0pfixpJ0qq

Ă J pfixpJ0qq ` tCX `D, }rC,Ds}mp ď distpJ0,J q, X P fixpJ0qu .

Recall that }rC,Ds}mp “ maxt}C}op, }D}u, we have for any rC,Ds with }rC,Ds}mp ď

distpJ0,J q and X P fixpJ0q,

}CX `D} ď }C}op}fixpJ0q}sup ` }D} ď distpJ0,J qp1 ` }fixpJ0q}supq.

We deduce using Lemma 2 that distpfixpJ0q,J pfixpJ0qqq ď distpJ0,J qp1` }fixpJ0q}supq. Setting
X0 “ fixpJ0q, invoking Theorem 1 with J and k “ 0, we have

distpfixpJ0q,fixpJ qq ď
distpJ0,J qp1 ` }fixpJ0q}supq

1 ´ ρ

ď distpJ0,J q
p1 ´ ρ` suprA0,B0sPJ0

}B0}q

p1 ´ ρq2
.

l

B.3 Perturbed iterations

The following proposition shows that the linear convergence property is actually stable to pertur-
bations. It will be useful to show that all potential limits of unrolling algorithmic differentiation
recursions are contained in the corresponding fixed point set.

Proposition 7 (Perturbed set sequences) Let ρ ă 1 and ϵ ą 0 such that ρ ` ϵ ă 1. Let pJkqkPN
be a sequence in Cρ`ϵ and J̄ P Cρ (as in Definition 5). Assume that for all k P N

gappmpJk, J̄ q ď ϵ

or in other words Jk Ă J̄ ` ϵBpm where Bpm is the unit ball of the norm } ¨ }pm. Then the recursion
on compact sets

Xk`1 “ JkpXkq

satisfies for all k P N
gappXk,fixpJ qq

ď pρ` ϵqk
p1 ` ρ` ϵq}X0}sup ` suprA,BsPJ̄ }B} ` ϵ

1 ´ ρ´ ϵ
` ϵ

p1 ´ ρ` suprA,BsPJ̄ }B}q

p1 ´ ρq2
.

In other words, Xk Ă fixpJ̄ q ` Cpρ, ϵ, kqB where Cpρ, ϵ, kq is the constant above.

Proof : Set Jϵ :“ tJ ` rC,Ds, J P J̄ , }rC,Ds}mp ď ϵu. Denote by pX̃kqkPN the sequence
satisfying the recursion, X̃k`1 “ JϵpX̃kq with X0 “ X̃0. We have

X1 “ J̄ pX0q Ă JϵpX0q “ X̃1

and by recursion Xk Ă X̃k for all k P N. By Theorem 1, we have

distpX̃k,fixpJϵqq ď pρ` ϵqk
distpX0,JϵpX0qq

1 ´ ρ´ ϵ
.

We deduce from Proposition 6 that for all k P N,

distpX̃k,fixpJ̄ qq

ď distpX̃k,fixpJϵqq ` distpfixpJϵq,fixpJ̄ qq

ď pρ` ϵqk
distpX0,JϵpX0qq

1 ´ ρ´ ϵ
`

p1 ´ ρ` suprA,BsPJ̄ }B}q

p1 ´ ρq2
distpJϵ, J̄ q

ď pρ` ϵqk
p1 ` ρ` ϵq}X0}sup ` suprA,BsPJ̄ }B} ` ϵ

1 ´ ρ´ ϵ
`

p1 ´ ρ` suprA,BsPJ̄ }B}q

p1 ´ ρq2
ϵ.
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And the result follows because
max
XPXk

min
LPfixpJ̄ q

}X ´ L} ď max
XPX̃k

min
LPfixpJ̄ q

}X ´ L} ď distpX̃k,fixpJ̄ qq.

l

This allows to obtain explicit convergence results as follows

Corollary 4 (Limit of iterations with vanishing perturbations) Let ρ ă 1 and J̄ P Cρ (as in
Definition 5). Let pJkqkPN be a sequence of matrices such that for all k P N

gappmpJk, J̄ q ď ϵk

where pϵkqkPN is a positive sequence such that there exists a constant a ą 0 such that ϵk ď aρk for
all k P N. Then for the recursion on compact sets of pˆm matrices

Xk`1 “ JkpXkq

There are constants C, c ą 0 such that for all k P N
gappXk,fixpJ qq ď Ce´ck.

Furthermore, one can take c “ log
´

1?
ρ`ϵ

¯

for arbitrary ϵ ą 0.

Proof : We consider K P N such that ϵk ď ϵ for all k P N where ϵ ` ρ ă 1. Without loss of
generality, we may assume that K “ 0. Using the same notations as in the proof of Proposition 7,
we have Xk Ă X̃k for all k P N. Furthermore, it follows from the same arguments as in the proof of
Theorem 1 that

}Xk}sup ď }X̃k}sup ď M, (17)
for a constant M ą 0. Now choose k P N, applying Proposition 7 shifting the initialization 0 to k,
we have for all m P N

max
XPXk`m

min
LPfixpJ q

}X ´ L}

ď pρ` ϵkqm
p1 ` ρ` ϵkq}Xk}sup ` suprA,BsPJ̄ }B} ` ϵk

1 ´ ρ´ ϵk
` ϵk

p1 ´ ρ` suprA,BsPJ̄ }B}q

p1 ´ ρq2

ď pρ` ϵqm
p1 ` ρ` ϵqM ` suprA,BsPJ̄ }B} ` ϵ

1 ´ ρ´ ϵ
` aρk

p1 ´ ρ` suprA,BsPJ̄ }B}q

p1 ´ ρq2
,

where we have used the bound (17) and the fact that ϵk ď ϵ and ϵk ď aρk. Setting u “
p1`ρ`ϵqM`suprA,BsPJ̄ }B}`ϵ

1´ρ´ϵ and v “ a
p1´ρ`suprA,BsPJ̄ }B}q

p1´ρq2
we have

max
XPX2k

min
LPfixpJ q

}X ´ L} ď upρ` ϵqk ` vρk ď pu` vqpρ` ϵq2k{2 ď
u` v

pρ` ϵq1{2
pρ` ϵq2k{2,

max
XPX2k`1

min
LPfixpJ q

}X ´ L} ď upρ` ϵqk`1 ` vρk ď
u` v

pρ` ϵq1{2
pρ` ϵqp2k`1q{2.

Since k was arbitrary, this proves the desired result. l

C Existence of a conservative Jacobian for autodiff

C.1 Regularity of Jpb
x̄

We recall the main notations and elements of Assumption 1. We assume that F is locally Lipschitz,
path differentiable, and denote by JF : Rp`m Ñ Rpˆpp`mq a conservative Jacobian for F . Now
assume that any pair rA,Bs P JF px, θq is such that the operator norm of A is at most ρ ă 1, that is
for all x and θ, JF px, θq P Cρ (as in Definition 5). Define the following set-valued map

Jpb
x̄ : θ Ñ fix rJF px̄pθq, θqs .

Here, x̄pθq “ fixpFθq is the unique fixed point of the algorithmic recursion, so that we actually have

Jpb
x̄ : θ Ñ fix rJF pfixpFθq, θqs .

We have the following

20



Lemma 3 (Regularity of Jpb
x̄ ) The mapping Jpb

x̄ is nonempty valued, locally bounded and has a
closed graph.

Proof : The fact that Jpb
x̄ is locally bounded and nonempty valued comes from the fact that JF is

locally bounded with nonempty values and x̄ is locally Lipschitz combined with Theorem 1.

By local Lipschitz continuity of x̄ and the fact that JF has a closed graph, the set-valued map
θ Ñ JF px̄pθq, θq also has a closed graph. By continuity of fixpJ q with respect to the Hausdorff
distance, see Proposition 6, Jpb

x̄ has a closed graph. l

C.2 Proof of Theorem 2

Proof : Following Remark 3, we consider

J imp
x̄ : θ Ñ

␣

pI ´Aq´1B, rA,Bs P JF px̄pθq, θq
(

,

a conservative Jacobian for x̄ and L0 “ J imp
x̄ . Now, define by recursion for all k P N

Lk`1 : θ Ñ JF px̄pθq, θqpLkpθqq.

Recall that this means that for all θ P Rm and k P N

Lk`1pθq “ tAL`B, rA,Bs P JF px̄pθq, θq, L P Lkpθqu.

Since F px̄pθq, θq “ x̄pθq for all θ, JF is conservative for F and L0 is conservative for x̄, we have by
induction that for all k P N, Lk is conservative for x̄.

Fix l : Rm Ñ Rm an arbitrary Borel measurable selection in Jpb
x̄ , that is lpθq P Jpb

x̄ pθq for all θ P Rm.
Such a selection exist by [4, Theorem 18.20] because Jpb

x̄ has a closed graph by Lemma 3. Consider
for all k P N, a measurable selection

lk : θ Ñ arg min
zPLkpθq

}z ´ lpθq}.

The function pz, θq Ñ }z ´ lpθq} is Caratheodory (continuous in z, measurable in θ), so such a
selection exists (Aliprantis Theorem 18.19). By Theorem 1, we have that distpLkpθq, Jpb

x̄ pθqq tends
to 0 as k grows, for all θ P Rm, where the convergence is in Hausdorff distance. Actually since all
set-valued objects are locally bounded, the convergence occurs uniformly on every compact. This
implies in particular that lk converges pointwise to l.

Fix an absolutely continuous path γ : r0, 1s Ñ Rm. We have for all k P N, by conservativity,

x̄pγp1qq ´ x̄pγp0qq “

ż 1

0

lkpγptqq 9γptqdt.

Furthermore, lk˝γ is measurable, converges pointwise to l˝γ and lk˝γ can be uniformly bounded, let
K be such a bound. The integrable function g : t ÞÑ K} 9γptq} dominates the integrand and lk ˝ γ ˆ 9γ
converges pointwise to l ˝ γ ˆ 9γ. By the dominated convergence theorem (see [47, Section 4.4] ), we
have

x̄pγp1qq ´ x̄pγp0qq “

ż 1

0

lpγptqq 9γptqdt.

L has a Castaing representation with a dense sequence of measurable selection [4, Theorem 18.14].
Since l was an arbitrary measurable selection in L, conservativity of L follows by [38, Lemma 8]. l

C.3 Proof of Corollary 1

Proof : Fix θ. We have xkpθq Ñ x̄pθq, so that for any ϵ ą 0, there exists K P N such that
JF pxkpθq, θq Ă JF px̄pθq, θq ` ϵB for all k ě K. The result is then a consequence of Proposition
7, letting ϵ Ñ 0. The last part is due to the conservativity of Jpb

x̄ which must be a singleton almost
everywhere, equal to the classical Jacobian. l
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C.4 Proof of Corollary 3

Proof : Define pLkqkPN, a sequence of conservative Jacobians for x̄ as in the begining of the proof
of Theorem 2 in Appendix C.2. By [12, Theorem 1], for each k P N, there is a full measure set
Sk Ă Rm such that Lkpθq “

␣

Bx̄
Bθ pθq

(

for all θ P Sk. Similarly, there exists a full measure set
S´1 Ă Rm such that Jpb

x̄ pθq “
␣

Bx̄
Bθ pθq

(

for all θ P S´1. Setting S “ X
`8
i“´1Si, S has full measure

and for all θ P S and for all k P N,

Jpb
x̄ pθq “

"

Bx̄

Bθ
pθq

*

Lkpθq “

"

Bx̄

Bθ
pθq

*

.

Following the proof of Theorem 2 in Appendix C.2, Lk converges to Jpb
x̄ in Hausdorff distance, which

means that convergence occurs in the classical sense since all sets in the sequence are singletons. l

C.5 Proof of Proposition 1

Proof : Under the setting of Corollary 2, for almost all θ P Rm, recursion (PB) or (5) reduce to the
following, and all k P N

Jk`1 “ AkJk `Bk (18)

where Jk “
Bxk

Bθ , Ak “ BF
Bx pxk, θq and Bk “ BF

Bθ pxk, θq are classical Jacobians and Jk converges to
the classical Jacobian of Bx̄

Bθ pθq. Fix such a θ P Rm and k P N, k ě 1. With the notation of Algorithm
1, for the forward mode, multiplying (18) on the right by 9θ, we have for all i P 1, . . . k

Ji 9θ “ Ai´1Ji´1
9θ `Bi´1

9θ.

Setting 9xi “ Ji 9θ, this is exactly the recursion implemented by Algorithm 1 in forward mode.
Corollary 2 and the result follows from convergence of Jk.

As for the backward mode a simple recursion shows that

Jk “ Ak´1Ak´2 . . . A0J0
`Ak´1Ak´2 . . . A1B0

` . . .

`Ak´1Ak´2 . . . AiBi´1

` . . .

`Ak´1Bk´2

`Bk´1. (19)

Setting B´1 “ J0, we may rewrite equivalently,

Jk “ Bk´1 `

k´1
ÿ

i“0

˜

i
ź

j“k´1

Aj

¸

Bi´1. (20)

Transposing and multiplying on the right by w̄k, we have

JT
k w̄k “ BT

k´1w̄k `

k´1
ÿ

i“0

BT
i´1

˜

k´1
ź

j“i

AT
j

¸

w̄k. (21)

We set for all i “ 0, . . . , k ´ 1,

w̄i “

k´1
ź

j“i

AT
j w̄k. (22)

We have the backward recursion relation, for i “ k, . . . , 1

w̄i´1 “ AT
i´1w̄i,
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which is the recursion implemented by Algorithm 1 in reverse mode. Combining (21) and (22), we
obtain

JT
k w̄k “ BT

k´1w̄k `

k´1
ÿ

i“0

Bi´1w̄i “

k
ÿ

i“1

BT
i´1w̄i ` JT

0 w̄0,

which is the quantity accumulated in θ̄k in Algorithm 1. This proves that θ̄Tk returned by the backward
mode is indeed equal to w̄T

k Jk and the convergence follows from convergence of both w̄k and Jk as
k Ñ 8. l

D Connection with implicit differentiation

Recall that for all θ

J imp
x̄ pθq “

␣

pI ´Aq´1B, rA,Bs P JF px̄pθq, θq
(

“ tM, DrA,Bs P JF px̄pθq, θqM “ AM `Bu .

Setting J “ JF px̄pθq, θq, we have therefore that J imp
x̄ pθq Ă J pJ imp

x̄ pθqq. By recursion, for all k P N,
J imp
x̄ pθq Ă J kpJ imp

x̄ pθqq and passing to the limit using Theorem 1, J imp
x̄ pθq Ă fixpJ q “ Jpb

x̄ pθq. In
particular, if F is continuously differentiable, then (PB) with classical Jacobians converges towards a
classical implicit derivative.

However, the inclusion J imp
x̄ pθq Ă Jpb

x̄ pθq may be strict as the following example shows.

Example 1 Set J “ trA,Bs, A P A, B P Bu, where

A “

"ˆ

λ`1
4 0
0 2´λ

4

˙

, λ P r0, 1s

*

B “

"ˆ

1
1

˙*

.

We set

T “ pI ´ Aq´1B “

"ˆ

4
3´λ
4

2`λ

˙

, λ P r0, 1s

*

.

As already observed, we have T Ă AT ` B, but the inclusion is strict. Therefore T is not a fixed
point of the affine iteration and it is only contained in it.

Indeed, we have
ˆ

1`1
4 0
0 2´1

4

˙ˆ

4
3´0
4

2`0

˙

`

ˆ

1
1

˙

“

ˆ

5
3
3
2

˙

P AT ` B.

However solving for λ
ˆ

5
3
3
2

˙

“

ˆ

4
3´λ
4

2`λ

˙

,

the first equation requires λ “ 3
5 while the second requires λ “ 2

3 which shows that the given vector
does not belong to T .

E Semialgebraic Lipschitz gradient selection functions

E.1 Lipschitz property of conservative Jacobians of selections

Lemma 4 (Conservative Jacobians of selections are Lipschitz-like) Let F be continuous, semi-
algebraic with Lipschitz gradient selection. Then for each x0 P Rp, there exists R ą 0 such
that

gappJs
F pxq, Js

F px0qq ď L}x´ x0}, @x, }x´ x0} ď R,

where L is the Lipschitz constant given by the selection structure of F .
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Proof : Fix x0 P Rp and consider the function g which associates to r ą 0 a subset of t1, . . . ,mu

defined as
gprq “ Y}x´x0}ďr Ipxq.

The function g is semialgebraic and therefore it admits a limit as r Ñ 0. The function g is actually
piecewise constant so that the limit is reached for some R ą 0 by semialgebraicity. This means that
there is R ą 0 and an index set I Ă t1, . . . ,mu such that Ipxq Ă I for all x such that }x´ x0} ď R.
Furthermore, for each i P I and all 0 ă r ď R, there exists x such that }x ´ x0} ď r and
Fipxq “ F pxq. By continuity of each component Fi, we have for each i P I , Fipx0q “ F px0q, that
is I Ă Ipx0q.

We deduce that for each x such that }x´ x0} ď R and i P Ipxq, we have

min
V PJs

F px0q

›

›

›

›

V ´
BFi

Bx
pxq

›

›

›

›

ď

›

›

›

›

BFi

Bx
px0q ´

BFi

Bx
pxq

›

›

›

›

ď L}x´ x0}.

Fix any Z P Js
F pxq, it is a convex combination of BFi

Bx pxq for i P Ipxq so by convexity of the distance,
we have

min
V PJs

F px0q
}V ´ Z} ď L}x´ x0},

which proves the result since this allows to bound the supremum over Z P Js
F pxq by the desired

quantity. l

E.2 Proof of Corollary 3

Proof : This is a consequence of linear convergence of the recursion xk`1 “ F pxk, θq combined
with Lemma 4 and Corollary 4. l

F Proximal splitting algortihms in convex optimization

F.1 Proof of Proposition 2

Proof : We consider the gradient step operation Hα : px, θq ÞÑ x ´ α∇xfpx, θq. We have for all
px, θq,

Fαpx, θq “ GαpHαpx, θq, θq.

By Assumption 2, both Gα and Hα are 1-Lipschitz in x for fixed θ and we are going to show that if
either f or g satisfy the strong convexity condition, the corresponding map is a strict contraction in x
for fixed θ. Furthermore, the mapping Jac c

Hα
: px, θq Ñ

!

rI ´ αA,´αBs, rA,Bs P J2
f px, θq

)

is
the Clarke Jacobian of Hα. By Assumption 2, all the functions are path-differentiable [12] and one
may obtain a conservative jacobian for F by applying differential calculus rules [12]. We set for all
px, θq a conservative Jacobian for Fα,

JFαpx, θq “
␣

rCpI ´ αAq,´αCB `Ds, rA,Bs P J2
f px, θq, rC,Ds P JGαpx´ α∇xfpx, θq, θq

(

(23)

Whenever ∇xf is differentiable at px, θq, the first p columns of its Jacobian form a symmetric positive
definite square matrix with eigenvalues at most L. This implies that the matrix pI ´ αAq in (23)
is symmetirc with eignevalues in r´1, 1s and strictly greater than ´1. Similarly, whenever Gα is
differentiable, since it is 1-Lipschitz in x for fixed θ and the gradient of a C1 function, the first p
columns of its Jacobian form a symmetric positive definite square matrix with eigenvalues at most 1.
This implies that the matrix C in (23) is symmetric with eignevalues in r0, 1s. In addition, we have
the following;

• Assume that for all θ, f is µ-strongly convex. In this case, similarly as above the matrix
pI ´ αAq in (23) has eigenvalue in p´1, 1q for all px, θq.

• Assume that for all θ, g is µ-strongly convex. In this case, similarly as above the matrix C
in (23) has eigenvalue in r0, 1{p1 ` αµqs for all px, θq [6, Proposition 23.13].

In both cases, the product CpI ´ αAq in (23) has operator norm strictly smaller than 1 and Assump-
tion 1 holds. l
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F.2 Proof of Proposition 3

Proof : From [6, Proposition 23.11], both Rαf and Rαg are 1-Lipschitz. We are going to show that
Rαf is a strict contraction and the result will follow. Since f is C1,1 in x, we have for all θ P Rm,

z “ proxαfp¨,θqpxq ô z ` α∇xfpz, θq ´ x “ 0

Set Hαpz, x, θq “ z ` α∇xfpz, θq ´ x, we have that

Jac c
Hα

pz, x, θq Ñ trI ` αA, ´I, αBsu (24)

is the Clarke Jacobian of Hα. Similarly as in Appendix F.1, by strong convexity of f , the matrix
I ` αA in (24) is symmetric with eigenvalues strictly greater than 0 and smaller than 1. By implicit
differential calculus rule in [10, Theorem 2], the mapping

Jproxαfp¨,θq
px, θq Ñ

!

rpI ` αAq´1, ´αpI ` αAq´1Bs, rA,Bs P J2
f pproxαfp¨,θq, θq

)

(25)

is conservative for px, θq ÞÑ proxαfp¨,θq. Furthermore, the matrix pI ` αAq´1 in (25) is symmetric
eigenvalues in p0, 1q. This entails that the mapping

JRαfp¨,θq
px, θq Ñ

!

r2pI ` αAq´1 ´ I, ´2αpI ` αAq´1B ´ Is, rA,Bs P J2
f pproxαfp¨,θq, θq

)

(26)

is conservative forRαfp¨,θq and the matrix 2pI`αAq´1 ´I is symmetric with eigenvalues in p´1, 1q.

Similarly, the mapping

JRαgp¨,θq
px, θq Ñ

!

r2C ´ I, 2D ´ Is, rC,Ds P Jproxαgpx,θq

)

(27)

is the Clarke Jacobian of Rαgp¨,θq and the matrix 2C ´ I in (27) is symmetric with eigenvalues
in r´1, 1s. One may combine JRαfp¨,θq

and JRαg¨,θq
, using differential calculus rule to obtain a

conservative Jacobian JFα
for Fα, such that for all px, θq and rE,F s P JFα

px, θq, the square matrix
E is of the form I

2 ` ppI ` αAq´1 ´ Iqp2C ´ Iq where A is from (26) and C is from (27). Such a
matrix E has operator norm strictly smaller than 1 which is Assumption 1. l

F.3 Equivalence between ADMM and dual Douglas–Rachford

We need the following lemma.

Lemma 5 Let F,G two convex, lower semicontinuous and closed functions and h defined by

hpxq “ F˚p´AJxq `G˚pxq.

Then, h is convex, lower semicontinuous, closed, and

proxαhpxq “ x` αpAû´ v̂q (28)

where
pû, v̂q P argmin

u,v

!

F puq `Gpvq ` xJpAu´ vq `
α

2
}Au´ v}22

)

.

The material contained in this section is already known in the litterature accross several papers and
lecture notes, but for the sake of completeness, we include a full derivation of the equivalence.

In this appendix, we drop the dependency to the variable θ since we are only concerned on the
behaviour with respect to x. We recall that the iteration of Douglas–Rachford are defined by an
initialization y0 and the recursion

xk`1 “ proxf pykq

yk`1 “ yk ` proxgp2xk`1 ´ ykq ´ xk`1.
(29)

By denoting x̃k “ xk`1 and ỹk “ yk, we can rewrite the updates of Douglas–Rachford (given x̃0
and ỹ0) as

ỹk`1 “ ỹk ` proxgp2x̃k ´ ỹkq ´ x̃k.

x̃k`1 “ proxf pỹk`1q
(30)
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Introducing the variable r̂ “ proxgp2x̂´ ŷq, this is also equivalent to

r̂k`1 “ proxgp2x̂k ´ ŷkq

x̂k`1 “ proxf pŷk ` r̂k`1 ´ x̂kq

ŷk`1 “ ŷk ` r̂k`1 ´ x̂k

(31)

Using the change of variable ŵk “ x̂k ´ ŷk, we have

r̂k`1 “ proxgpx̂k ` ŵkq

x̂k`1 “ proxf pr̂k`1 ´ ŵkq

ŵk`1 “ ŵk ` x̂k`1 ´ r̂k`1.

(32)

This formulation will be convenient to show how to retrieve the equations of ADMM (13).

The dual problem of (12) is given by (14)

max
x

´fpxq ´ gpxq. (33)

where fpxq “ ϕ‹p´Axq ` cJx and gpxq “ ψp´Bxq

We consider the update rules given by (32), i.e.,

r̂ “ proxαgpx` wq (34)

x̂ “ proxαf pr̂ ´ wq (35)

ŵ “ w ` x̂´ r̂. (36)

Applying Lemma 5 to F “ ϕ and G “ ιc, we rewrite (34) by

r̂ “ x` w ` αpAû´ cq

where
û “ argmin

u

!

ϕpxq ` xJpAu´ vq `
α

2
}Au´ c` w{α}22

)

.

Using the same lemma to F “ ψ and G “ 0, we rewrite (35) by

x̂ “ x` αpAû`Bv̂ ´ cq

where
v̂ “ argmin

v

!

ψpvq ` xJBv `
α

2
}Aû`Bv ´ c

)

.

Finaly, combining the expression of r̂ and x̂, we obtain

ŵ “ αBv̂.

G Inertial methods

Let us first recall notations from Section 5. Consider a function f : Rp ˆ Rm Ñ R, and β ą 0,
for simplicity, when the second argument is fixed we write fθ : x ÞÑ fpx, θq. Set for all x, y, θ,
F px, y, θq “ px ´ ∇fθpxq ` βpx ´ yq, xq, consider the Heavy-Ball algorithm pxk`1, yk`1q “

F pxk, yk, θq for k P N. If fθ is µ-strongly convex with L-Lipschitz gradient, then, choosing α “ 1{L

and β ă 1
2

ˆ

µ
2L `

b

µ2

4L2 ` 2

˙

, the algorithm will converge globally at a linear rate to the unique

solution,

G.1 Failure of Forward differentiation for C1,1 objectives

The Jacobian of F for the Heavy-Ball agorithm (in x, y) is of the form

JacF px, y, θq “

ˆ

pI ´ α∇2fθpxqq ` βI ´βI
I 0

˙

, (37)

when f is C2. If f is C1,1, then the Hessian can be replaced by a set-valued conservative Jacobian of
the gradient: J∇fθ .
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Proof of Proposition 4:

Recall that the function f : R2 Ñ R is given by

f : px, θq ÞÑ

#

x2

2 if x ě 0
x2

8 if x ă 0.

We have f 1pxq “ x for t ě 0 and f 1pxq “ x
4 for t ă 0, therefore, f 1 is 1-Lipschitz. The Clarke

subdifferential of f 1 is t 1
4u for t ă 0, t1u for t ą 0 and the segment

“

1
4 , 1

‰

at t “ 0. Finally, f is
µ “ 1

4 strongly convex and has L “ 1 Lipschitz gradient and the unique fixed point of the Heavy-Ball
algorithm applied to fp¨, θq is x “ y “ θ. Choosing α “ 1, β “ 0.75, we have

β ă
1

2

˜

µ

2L
`

c

µ2

4L2
` 2

¸

“
1

2

˜

1

8
`

c

1

64
` 2

¸

» 0.77.

Therefore, the heavy ball algorithm with this choice of parameter converges linearly to the unique
solution which is 0, a fixed point of the iteration mapping.

Set

F px, y, θq “ px´ ∇xfpx, θq ` βpx´ yq, xq.

At p0, 0, 0q, the last column of the Jacobian of F is p0, 0q and the first two columns are given by

J “ conv tM1,M2u ,

where

M1 “

ˆ

3
2 ´ 3

4
1 0

˙

M2 “

ˆ

3
4 ´ 3

4
1 0

˙

.

Therefore, the Clarke Jacobian of F (with respect to x, y) at p0, 0, 0q is given by

JF p0, 0, 0q “ convtM1,M2u, M1 “

ˆ

3
2 ´ 3

4
1 0

˙

, M2 “

ˆ

3
4 ´ 3

4
1 0

˙

.

We have

M1M1M2M2 “
´1

32

ˆ

36 0
27 9

˙

,

which has two eigenvalues ´9
8 ă ´1 and ´9

32 . Setting for any θ P R x0pθq “ θ, y0pθq “ θ, we have
for all k P N xkpθq “ ykpθq “ θ, in other words, this is the unique fixed point of the Heavy-Ball
algorithm.

l

Given l P N, the forward propagation recursion in (PB) presented in Figure 3 satisfies for k “ 8l

pM1M1M2M2q2l
ˆ

1
1

˙

This products will diverge diverge due to the eigenvalue of pM1M1M2M2q2 strictly above 1. In other
words, for all k, Jx8k

given by (PB) contains elements which magnitude diverges at a geometric rate.
We conclude that, for all k P N, Jxk

contains elements which magnitude diverge at a geometric rate.

This illustrates the failure of forward derivative propagation on fp¨, θq: the Heavy Ball algorithm is
stable and globally linearly convergent, its fixed point is differentiable (it is actually constant in θ), yet
there is a parametric initialization xpθq, ypθq such that forward propagation of derivatives produces
diverging elements for θ “ 0. Note that implicit differentiation provides the correct derivative,
which is 0, since xpθq “ 0 is the unique fixed point of the gradient iterations. Forward derivative
propagation on the gradient descent algorithms also results in the limit in 0 derivative since it only
contains element which converge to 0 at a geometric rate.

Le us emphasize again that such pathology would not happen if f was C2. Indeed, in this case,
J2
f would be single valued and the divergence phenomenon would not appear. This illustrate a

fundamental difference between C1,1 and C2 objectives in terms of forward derivative propagation
for second order inertial methods.
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H Experiments details

All the experiments where run on a MacBook M1 Pro (arm64), on Python 3.9 and numpy 1.21 for
a compute time inferior to one hour. They are repeated 100 times, and we report the median as a
blue line and the first and last deciles as a blue shaded area. The solutions are computed with 2000
iterations, and the curves are reported for the 1000 first iterations. The differentiation of all methods
is performed in forward-mode with jacfwd of the module jax.

Forward–Backward for the Ridge. The dimensions of the problem are n “ 500, p “ 300.
The design matrix is Gaussian, i.e., Xi,j

i.i.d
„ N p0, 1q and the observations yi

i.i.d
„ N p0, 1q. The

regularization parameter is set to θ “ 0.05.

Forward–Backward algorithm for the Lasso. The dimensions of the problem are n “ 50,
p “ 500. The design matrix is Gaussian, i.e., Xi,j

i.i.d
„ N p0, 1q and the observations yi

i.i.d
„ N p0, 1q.

The regularization parameter is set to θ “ 0.2 ˆ θmax where θmax “ }XJy}8.

Douglas–Rachford for the Sparse Inverse Covariance Selection. We consider covariance ma-
trices of size n ˆ n where n “ 50 and θ “ 0.1. The matrix C is generated as C “ V JV where
Vi,j

i.i.d
„ N p0, 1q.

ADMM for Trend Filtering. We consider the cyclic 1D Total Variation n “ p “ 75 and λ “ 3.0.
Here θ i.i.d

„ N p0, 1q.

I Assets used

Our numerical experiments rely on:

• numpy [30], released under BSD-3 license.
• matplotlib [31], released under PSF license.
• jax [13], released under Apache-2.0 license.
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