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Most of the bounds that are described in the optimization litterature are
upper bounds of the form ∥x(t) − x⋆∥ ≤ α(t) or f(x(t))− f(x⋆) ≤ α(t). But
what about findings the reverse-side inequality ∥x(t) − x⋆∥ ≥ β(t)? Said
otherwise, what can we achieve with a “gradient-descent-like” algorithm?

To formalize this notion, we consider algorithm, here sequences (x(t))t≥0,
that build upon the previous iterates with only access to a first-order oracle:

Assumption 1 (First-order method). We assume that a first-order method
is given by a sequence x(t) such that

x(t) ∈ x(0) + Span{∇f(x(0)), . . . ,∇f(x(t−1))}.

We shall note that one can thinks of a more general way to define first-
order methods, but for the sake of the results we aim to prove, such level of
generality is enough.

With this assumption in mind, how to design a function adversarial to
these type of schemes? The idea is to find a function such that the gradient
at step t−1 gives minimal information, i.e., it has a minimal nonzero partial
derivatives. A way to define such function is to “stack” quadratic functions
with increasing dependencies between variables:

fL,µ
k (x) =

L− µ

8

(
(x1 − 1)2 +

k−1∑
i=1

(xi+1 − xi)
2 + x2k

)
+

µ

2
∥x∥2, (1)

where 0 ≤ µ < L and 0 ≤ k ≤ d.

∂fL,µ
k

∂xi
(x) = µxi +

L− µ

4


−x2 + 2x1 − 1 if i = 1

−xi+1 + 2xi − xi−1 if 2 ≤ i < k

2xk − xk−1 if i = k

0 otherwise.
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Set f = fL,µ
k . Observe that if we start from x(0) = 0, then

x(1) = x(0) − η∇f(0) = −η
L− µ

4
e1 ∈ Re1,

that is only the first coordinate is updated after one iteration. What happens
now that we have access to x(0), ∇fk(x

(0)) and ∇fk(x
(1))? An algorithm

satisfying Assumption 1, we look at

x(2) = x0 + α∇f(x(0)) + β∇f(x(1)).

One can check that for any (α, β), x(2) ∈ Re1+Re2, and by an easy induction,
we have x(t) ∈

∑t
k=1Rek: any first-order methods will only be able to update

at most one new coordinate at each iteration. We are going to prove the
following result.

Theorem 1 (Lower-bound for smooth convex optimization). For any d ≥ 2,
x(0) ∈ Rd, L > 0, t ≤ (n− 1)/2, there exists a convex function f that is C∞

and L-smooth such that any sequences satisfying Assumption 1 is such that

f(x(t))− f(x⋆) ≥ 3L∥x(0) − x⋆∥2

32(t+ 1)2
(2)

(3)

where x⋆ is a minimizer of f .

Remark that the rate 1/t2 is not achieved by the gradient descent1! We
also have a lower bound for the class of strongly convex functions.

Theorem 2 (Lower-bound for smooth strongly convex optimization). For
any d ≥ 2, x(0) ∈ Rd, L > 0, there exists a µ-strongly convex function f
that is C∞ and L-smooth such that any sequences satisfying Assumption 1
is such that for all t < (n− 1)/2, we have

∥x(t) − x⋆∥2 ≥ 1

8

(√
Kf − 1√
Kf + 1

)2t

∥x(0) − x⋆∥2, (4)

f(x(t))− f(x⋆) ≥ µ

16

(√
Kf − 1√
Kf + 1

)2t

∥x(0) − x⋆∥2. (5)

where x⋆ is the unique minimizer of f .
1There exist algorithms that achieve it, in particular Nesterov’s acceleration method.
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Note that it is common in the litterature to see Theorem 2 without the
factor 1

8 . This is due to an artefact of proof since we prove this result in
the finite dimensional case whereas Nesterov (2018) works in the infinite
dimensional space ℓ2(N). Before proving these important results due to (Ne-
mirovski and Yudin, 1983), we are going to prove several lemmas.

Lemma 1 (Minimizers of fk). Let d ≥ 2, L > 0, µ ≥ 0, then fL,µ
k defined

in (1) is a µ-strongly convex (eventually convex if µ = 0) C∞-function such
that its gradient is L-Lipschitz.

If µ = 0, it has a unique minimizer xk,⋆ satisfying

xk,⋆i =

{
1− i

k+1 if 1 ≤ i ≤ k

0 otherwise,
and fL,0

k (xk,⋆) =
L

8(k + 1)
.

If µ > 0, it has a unique minimizer xk,⋆ satisfying

xk,⋆i =
s2(k+1)

s2(k+1) − 1
s−i +

1

1− s2(k+1)
si,

for 1 ≤ i ≤ k, and xk,⋆i = 0 for i > k, where s =

√
Kf+1√
Kf−1

.

Proof. We drop the exponents L, µ in the definition of fk = fL,µ
k . The

function fk being a quadratic form, it is C∞ and its partial derivatives read

∂fk
∂xi∂xj

(x) = µ1{i=j} +
L− µ

4


2 if i = j ≤ k

−1 if j = i− 1 and 1 < i ≤ k

−1 if j = i+ 1 and 1 ≤ i < k

0 otherwise.

Thus, the Hessian matrix is given (for any x ∈ Rd) by

∇2fk(x) = µ Idd+
L− µ

4
Lk,

where Lk is a (thresholded) discrete Laplacian operator with Dirichlet bound-
ary conditions that is tridiagonal

Lk =



2 −1 0

0k,d−k

−1 2 −1

−1
. . . . . .
. . . . . . −1

−1 2

0d−k,k 0d−k,d−k


.
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Observe that we have (since fk is a quadratic form)

fk(x) =
1

2
⟨∇2fk(x)x, x⟩ −

L− µ

4
x1 +

L− µ

8
.

Note that:

1. The Hessian is definite (resp. semi-definite) positive if µ > 0 (resp.
µ = 0). Indeed,

⟨∇2fk(x)h, h⟩ = µ∥h∥2 + L− µ

4
⟨Lkh, h⟩.

Since ⟨Lkh, h⟩ = h21 +
∑k

i=1(hi+1 − hi)
2 + h2k ≥ 0 for any h, the result

follows depending on the value of µ.

2. Since (a− b)2 ≤ 2a2 + 2b2, we have

h21+
k∑

i=1

(hi+1−hi)
2+h2k ≤ h21+

k∑
i=1

(2h2i+1+2h2i )+h2k ≤ 4
k∑

i=1

h2i ≤ 4
d∑

i=1

h2i = 4∥h∥2.

Hence,

⟨∇2fk(x)h, h⟩ ≤ µ∥h∥2 + (L− µ)∥h∥2 = L∥h∥2.

Thus, we have µ Id ⪯ ∇2fk(x) ⪯ L Id.
Let us characterize the (unique) solution xk,⋆ of the minimization of fk

over Rd. We aim to solve ∇fk(x
k,⋆) = 0 to find a critical point (which will

be a minimum since we just proved that the Hessian is at least semidefinite
positive), that is

µxk,⋆ +
L− µ

4
Lkx

k,⋆ − L− µ

4
e1 = 0.

Projecting this relation on each coordinate 2 ≤ i ≤ k − 1, we get that

−xk,⋆i−1 + 2xk,⋆i − xk,⋆i−1 = − 4µ

L− µ
xk,⋆i ,

which leads to
xk,⋆i =

1

2

L+ µ

L− µ
(xk,⋆i+1 + xk,⋆i−1).

Similarly, we have

xk,⋆1 =
1

2

L+ µ

L− µ
(xk,⋆2 + 1) and xk,⋆k =

1

2

L+ µ

L− µ
xk,⋆k−1.
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Consider y0, . . . , yk+1 defined by yi = xk,⋆i for 1 ≤ i ≤ k and y0 = 1 and
yk+1 = 0. We have the relation

yi = α(yi+1 + yi−1) where α =
1

2

L+ µ

L− µ
> 0.

We can rewrite it as the second-order linear recursion yi+2−α−1yi+1+yi = 0.
The associated trinom is P = X2 − α−1X + 1 ∈ R[X] whose discriminant is
given by

∆ = (−α−1)2 − 4 = 16
Lµ

(L− µ)2
.

We distinguish two cases:

1. If µ = 0, then the unique root is given by r = 1.

2. If µ > 0, then the roots are given by

r =
1

2
(α−1 −

√
∆) =

√
L
µ − 1√
L
µ + 1

=

√
Kf − 1√
Kf + 1

s =
1

2
(α−1 +

√
∆) =

√
Kf + 1√
Kf − 1

=
1

r
.

Case µ = 0. We have the affine relation yi = (a + bi)r with constraints
y0 = a = 1 and yk+1 = a+ b(k + 1) = 0. In turn, we have yi = 1− i

k+1 and
thus

xk,⋆i =

{
1− i

k+1 if 1 ≤ i ≤ k

0 otherwise.

The associated optimal value is given by

fk(x
k,⋆) =

L

8

((
− 1

k + 1

)
+

k−1∑
i=1

1

(k + 1)2
+

(
1− k

k + 1

)2
)

=
L

8

k + 1

(k + 1)2
=

L

8

1

k + 1
.

Case µ > 0. The solution can be written as

yi = ari + bsi with

{
a+ b = 1

ark+1 + bsk+1 = 0.

Thus, we have b = 1− a, hence a
a−1 = s2(k+1) > 0, and in turn we have

a =
s2(k+1)

s2(k+1) − 1
and b =

1

1− s2(k+1)
.
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Hence,

yi =
s2(k+1)

s2(k+1) − 1
s−i +

1

1− s2(k+1)
si.

We now turns to the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. We restrict our attention the the case where x0 = 0
w.l.o.g. Indeed, if x0 ̸= 0, we can set x 7→ f̃(x) = f(x + x0) and the
following proof carry on. Let d = 2k + 1 and set f = fL,0

2k+1.
Remark that

f(x(t)) = fL,0
2k+1(x

(t)) = fL,0
t (x(t)) ≥ f⋆

t .

Using Lemma 1, we have on one hand that f⋆
t = L

8(t+1) , and then

f(x(t))− f(x⋆) =
L

8(k + 1)
− L

82̇(k + 1)
=

L

16(k + 1)
.

On the other hand,

∥x2k+1,⋆ − x0∥2 = ∥x2k+1,⋆∥2 =
2k+1∑
i=1

(x2k+1,⋆)2i

=

2k+1∑
i=1

(
1− i

2(k + 1)

)2

=
2k+1∑
i=1

1− 2

2(k + 1)

2k+1∑
i=1

i+
1

4(k + 1)2

2k+1∑
i=1

i2

= (2k + 1)− 1

k + 1

2(k + 1)(2k + 1)

2
+

1

4(k + 1)2
2(k + 1)(4k + 3)(2k + 1)

6

=
1

3

(2k + 1)(4k + 3)

4(k + 1)

≤ 2k + 1

3
≤ 2

3
(k + 1).

Thus,
f(x(t))− f(x⋆)

∥x2k+1,⋆ − x0∥2
≥

L
16(k+1)

2
3(k + 1)

=
3L

32(k + 1)2
,

that proves (2).
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Proof of Theorem 2. The proof follows the same strategy as before, but we
start with a bound on the iterates instead of the objective function. Assume
that x(0) = 0, otherwise let f̃ = f(·+x0). Consider d = 2k+1 and f = fL,µ

2k+1.
We rewrite the coordinate of x2k+1,⋆ as

x2k+1,⋆
i =

s4(k+1)

s4(k+1) − 1
s−i +

1

1− s4(k+1)
si = s−i

(
1− s2i − 1

s4(k+1) − 1

)
.

On one hand, we have:

∥x(0)−x2k+1,⋆∥2 =
2k+1∑
i=1

(x2k+1,⋆
i )2 =

2k+1∑
i=1

s−2i

(
1− s2i − 1

s4(k+1) − 1

)2

≤
2k+1∑
i=1

s−2i,

where we used that for all 1 ≤ i ≤ 2k + 1, we have

0 ≤ 1− s2i − 1

s4(k+1) − 1
≤ 1.

Bounding the tail of the geometric sums, we obtain

∥x(0) − x2k+1,⋆∥2 ≤ 2
k+1∑
i=1

s−2i. (6)

On the other hand, observe that for t < k + 1, one has x(t) ∈ Rk,2k+1,
thus

∥x(t) − x2k+1,⋆∥2 ≥
2k+1∑
i=k+1

(x2k+1,⋆
i )2 =

2k+1∑
i=k+1

s−2i

(
1− s2i − 1

s4(k+1) − 1

)2

.

Since s > 0, we have

1− s2i

s4(k+1) − 1
≤ 1− s2(k+1)

s4(k+1) − 1
,

and in turn,

1 ≥
(
1− s2i − 1

s4(k+1) − 1

)2

≥

(
1− s2(k+1) − 1

s4(k+1) − 1

)2

≥ 0.

Thus,

∥x(k) − x2k+1,⋆∥2 ≥

(
1− s2(k+1) − 1

s4(k+1) − 1

)2 2k+1∑
i=k+1

s−2i

=

(
1− s2(k+1) − 1

s4(k+1) − 1

)2

s−2k
k+1∑
i=1

s−2i. (7)
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Observe that (
1− s2(k+1) − 1

s4(k+1) − 1

)2

≥ 1

4
.

Combining it with (6) and (7), we have

∥x(t)−x2k+1,⋆∥2 ≥ 1

8
s−2k∥x(0)−x2k+1,⋆∥2 ≥ 1

8

(√
Kf − 1√
Kf + 1

)2t

∥x(0)−x2t+1,⋆∥2,

proving (4). The value bound (5) is obtained by applying the following
inequality

f(x) ≥ f(x⋆) +
µ

2
∥x− x⋆∥2,

to f .

More refined versions of these lower bounds, which provide tighter con-
stants, can be found in Drori and Taylor (2022). However, these improve-
ments come at the price of significantly more involved and technical proofs.
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