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Suppose that you want to solve the problem

min
𝑥∈[−1,1]𝑑

𝑓(𝑥),

and you want to achieve a 𝜖-precision on the objective function 𝑓 , i.e., you want to obtain an
estimate ̂𝑥 ∈ ℝ𝑑 of 𝑥⋆ = 0 such that || ̂𝑥 − 𝑥⋆|| ≤ 𝜖. Since 𝑓 is continuous, you cannot have
access to all values 𝑓(𝑥) when 𝑥 describes the constraints [−1, 1]𝑑, but you can allow yourself
multiples calls to the “oracle” 𝑓(𝑥) in order to achieve this precision.

A naive way to do so is to consider a discretization of [−1, 1] of precision 𝜖, that is

𝐺𝜖 = {𝑘𝜖 ∶ 𝑘 ∈ {−⌊𝜖−1⌋, … , ⌊𝜖−1⌋}} ,
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and 𝐺𝑑
𝜖 = 𝐺𝜖 × ⋯ × 𝐺𝜖 its counterpart in dimension 𝑑. It is easy to see that taking ̂𝑥 the

minimizers of 𝑓 over 𝐺𝑑
𝜖 satisfies the property || ̂𝑥 − 𝑥⋆|| ≤ 𝐿𝜖 as soon as 𝑓 is 𝐿-Lipchitz. So

what’s the deal?

The issue is that the size of 𝐺𝑑
𝜖 grows exponentially fast with the dimension 𝑑. In dimension

1, one needs to perform 2⌊𝜖−1⌋ evaluations of 𝑓 , but in dimension 𝑑, one needs 2⌊𝜖−1⌋𝑑! This
quantity gets prohibilitively large in a too fast manner: say you look at a very modest precision
of 𝜖 = 10−2, then in dimension 𝑑 = 1, only 200 computations of 𝑓 are needed, whereas in
dimension 𝑑 = 10, you already need 200000000000000000000 evaluations (that’s 20 zeros).

This is known as the curse of dimensionality, a term introduced by Bellman (1961, chap. V) for
optimal control and (over)used since then in the optimization, statistics and machine learning
communities (Donoho 2000). Summary: we need to be (slightly) more clever.

Descent direction

Consider the class of algorithms of the form

𝑥(𝑡+1) = 𝑥(𝑡) + 𝜂(𝑡)𝑢(𝑡+1),

how to “optimaly choose” the direction 𝑢(𝑡+1) such that 𝑥(𝑡+1) is closer to a minimum of 𝑓?

Definition 0.1 (Descent direction). Let 𝑓 ∶ ℝ𝑑 → ℝ. A descent direction 𝑢 ∈ ℝ𝑑 of 𝑓 at
𝑥 ∈ ℝ𝑑 is vector such that

∃𝜖 > 0, ∀𝜂 ∈ (0, 𝜖), 𝑓(𝑥 + 𝜂𝑢) < 𝑓(𝑥).

Observe that if 𝑓 is differentiable, this property is equivalent to ⟨∇𝑓(𝑥), 𝑢⟩ < 0. The negative
gradient −∇𝑓( ̄𝑥) is the direction of steepest descent at the point ̄𝑥.

Proposition 0.1 (The antigradient is the steepest direction).

Let 𝑓 ∶ ℝ𝑑 → ℝ be a differentiable function at ̄𝑥 ∈ ℝ𝑑. Then, the problem

min
||𝑢||=1

⟨∇𝑓( ̄𝑥), 𝑢⟩

has a unique solution 𝑢⋆ = − ∇𝑓(�̄�)
||∇𝑓(�̄�)|| .

Proof. Let 𝑢 ∈ ℝ𝑑 such that ||𝑢|| = 1. Consider the function 𝜙𝑢 ∶ ℝ → ℝ defined by

𝜙𝑢(𝑡) = 𝑓( ̄𝑥 + 𝜂𝑢).

The function 𝜙 is differentiable at 0 and its derivative reads 𝜙′
𝑢(0) = ⟨∇𝑓( ̄𝑥), 𝑢⟩. Denoting

𝜃 the angle between ∇𝑓( ̄𝑥) and 𝑢, we have that 𝜙′
𝑢(0) = ||∇𝑓( ̄𝑥)|| cos 𝜃. Hence, minimizing
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Figure 1: Descent cone.
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⟨∇𝑓( ̄𝑥), 𝑢⟩ is equivalent to finding the minimum of cos 𝜃, that is 𝜃 = (2𝑘 + 1)𝜋 for some 𝑘 ∈ ℤ.
Thus, we have

𝑢⋆ = − ∇𝑓( ̄𝑥)
||∇𝑓( ̄𝑥)|| and ⟨∇𝑓( ̄𝑥), 𝑢⟩ = −||∇𝑓( ̄𝑥)||.

The gradient descent (GD) algorithm

Proposition 0.1 gives birth to what is known as the gradient descent algorithm or gradient
descent method.

Algorithm 1 Gradient Descent
Require: Initialization 𝑥(0) ∈ ℝ𝑑, step-size policy 𝜂(𝑡) > 0.

1: for 𝑡 = 1, ⋯ do
2: 𝑥(𝑡+1) = 𝑥(𝑡) − 𝜂(𝑡)∇𝑓(𝑥(𝑡)) .
3: end for

The choice of the step-sizes 𝜂(𝑘) is crucial, and there is several way to do it.

• Predetermined. In this case, the sequence (𝜂(𝑡)) is chosen beforehand, either with a
constant step size 𝜂(𝑡) = 𝜂 ∈ ℝ>0 or with a given function of 𝑡, 𝜂(𝑡) = 𝑔(𝑡), e.g., 𝑔(𝑡) =
𝜂(𝑘 + 1)−1/2 for some 𝜂 > 0. For some classes of optimization problem, it is possible to
provide guarantees depending on the choice of 𝑔.

• Oracle. This is the “optimal” descent that a gradient descent method can produce,
defined by

𝜂(𝑡)
oracle = argmin

𝜂≥0
𝑓(𝑥(𝑡) − 𝜂∇𝑓(𝑥(𝑡))).

Remark that this choice is only theoretical since it involves a new optimization problem
that may be nonsolvable in closed form.

• Backtracking rule. Another time…

Rates of convegence

Means of convergence

In optimization, we consider several types of (worst-case) convergences:

• Convergence in norms of the iterates. Assuming that there exists a minimizer 𝑥⋆, the
convergence in norms (for a given norm, typically the Euclidean one) looks at an 𝜖-
solution in the sense of

𝑟(𝑡) = ||𝑥(𝑡) − 𝑥⋆|| ≤ 𝜖.
Note that there may be several minimizers, but we only consider one given minimzier.
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• Convergence to the set of minimizers. Here, we look at the distance to any minimizer:

𝑟(𝑡) = 𝑑(𝑥(𝑡), 𝒮) = inf
𝑥⋆∈𝒮

||𝑥(𝑡) − 𝑥⋆|| ≤ 𝜖,

where 𝒮 is the set of minimizer.

• Convergence in value (0-order). Assuming that the infimum of the problem is given by
𝑓∗ = inf𝑥∈dom 𝑓 𝑓(𝑥), an 𝜖-solution is given by

𝑟(𝑡) = 𝑓(𝑥(𝑡)) − 𝑓∗ ≤ 𝜖,

and assuming 𝑥⋆ is a solution, this is the quantity 𝑟(𝑡) = 𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆).
• First-order convergence. If 𝑓 is differentiable, one can looks at the gradient of the iterates

as
𝑟(𝑡) = ||∇𝑓(𝑥(𝑡))|| ≤ 𝜖.

The idea is to use the first-order condition, and say that the more ∇𝑓(𝑥(𝑡)), the closer
we are from a critical point of 𝑓 if 𝑓 is nonconvex, and closer from a global minima if 𝑓
is convex.

Rates versus complexity

To be more precise, we consider 𝑅-rate below, there is an alternative definition (𝑄-
convergence).

• Sublinear rates. We say that 𝑟(𝑡) enjoys a sublinear rate if it has an upper bound written
as a power function of 𝑡, i.e. 𝑟(𝑡) ≤ 𝑐𝑡−𝛼 where 𝑐 > 0 and 𝛼 > 0. Typical examples are
stochastic gradient descent enjoying a 𝑂(1/

√
𝑡) rate for convex functions or the gradient

descent enjoying a 𝑂(1/𝑡) rate for convex 𝐿-smooth functions. In term of complexity, if
𝑟(𝑡) enjoys a 𝑐𝑡−𝛼 rate, its complexity bound is ( 𝑐

𝜖 )1/𝛼. For instance, the SGD for convex
functions has complexity 𝑂(( 𝑐

𝜖 )2).
• Linear rates. We say that 𝑟(𝑡) enjoys a linear rate if it has an upper bound written as an

exponential function of 𝑡, i.e. 𝑟(𝑡) ≤ 𝑐𝑒−𝑞𝑡 for 𝑐 > 0 and 𝑞 ∈ (0, 1]. Note that typically, we
don’t obtain directly the exponential function in proofs, but an even more precise one:
𝑟(𝑡) ≤ 𝑐(1 − 𝑞)𝑡 that is directly bounded by 𝑐𝑒−𝑞𝑡. In term of complexity, we have the
bound 1

𝑞 (log 𝑐 + log 1
𝜖 ).

• Quadratic rates. We say that 𝑟(𝑡) enjoys a quadratic rate if it has an upper bound written
as 𝑟(𝑡) ≤ 𝑐(𝑟(𝑡))2 for 𝑐 > 0. In term of complexity, we have the bound log log 1

𝜖 : each
iteration doubles the precision of the estimate! Note that quadratic rates are a special
case of a wider class known as superlinear convergence.
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Explicit analysis of the gradient descent: ordinary least-squares

This part is heavily inspired from (Bach 2021, chap. V). Let 𝑛, 𝑝 ≥ 1, 𝐴 ∈ ℝ𝑛×𝑝 and 𝑦 ∈ ℝ𝑛.
The least-square estimator is defined by the problem

arg min
𝑥∈ℝ𝑝

𝑓(𝑥) = 1
2𝑛‖𝐴𝑥 − 𝑦‖2

2. (1)

The objective 𝑓 is twice differentiable, its gradient reads

∇𝑓(𝑥) = 1
𝑛𝐴⊤(𝐴𝑥 − 𝑦) ∈ ℝ𝑝,

and its Hessian is constant on the whole space:

∇2𝑓(𝑥) = 𝐻 = 1
𝑛𝐴⊤𝐴 ∈ ℝ𝑝×𝑝.

Note that there is at least one minimizer to the problem Equation 1. The first-order condition
for a potential minimizer 𝑥⋆ is given by

𝐻𝑥⋆ = 1
𝑛𝐴⊤𝑦.

A necessary, and sufficient condition, to have exactly one minimizer is that 𝐻 is invertible.

The following lemma shows that, providing the knowledge of 𝐻, the 𝑡-iterates of the gradient
descent with fixed step-size is computable in closed-form.

Lemma 0.1 (Closed-form expression of the gradient descent step). For all 𝑡 ∈ ℕ, we have

𝑥(𝑡) − 𝑥⋆ = (𝐼 − 𝜂𝐻)𝑡(𝑥(0) − 𝑥⋆). (2)

Proof. Using the expression of the gradient, we have for any minimizer 𝑥⋆

𝑥(𝑡+1) = 𝑥(𝑡) − 𝜂
𝑛𝐴⊤(𝐴𝑥(𝑡) − 𝑦)

= 𝑥(𝑡) − 𝜂𝐻(𝑥(𝑡) − 𝑥⋆).

Substracting 𝑥⋆ from both side gives

𝑥(𝑡+1) − 𝑥⋆ = (𝐼 − 𝜂𝐻)(𝑥(𝑡) − 𝑥⋆).

This identity is linear recursion, and unrolling it leads to the result.
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Convergence in norm

We denote by 𝜇 the smallest eigenvalue of 𝐻, 𝐿 its largest, and we let 𝜅 = 𝐿
𝜇 its condition

number. We have 0 ≤ 𝜇 ≤ 𝐿 and 𝜅 ≥ 1.

Using Equation 2, we have

‖𝑥(𝑡) − 𝑥⋆‖2 = ⟨𝑥(0) − 𝑥⋆, (𝐼 − 𝜂𝐻)2𝑡(𝑥(0) − 𝑥⋆)⟩.

Remark that the eigenvalues of (𝐼 − 𝜂𝐻)2𝑡 are exactly given by (1 − 𝜂𝜆)2𝑡 where 𝜆 is an
eigenvalue of 𝐻. Since all eigenvalues of 𝐻 are contained in [𝜇, 𝐿], one also can bound any
𝜌 ∈ eigen((𝐼 − 𝜂𝐻)2𝑡) by

|𝜌| ≤ ( max
𝜆∈[𝜇,𝐿]

|1 − 𝜂𝜆|)
2𝑡

.

Suppose that there is multiple minimizers. In this case, 𝐻 is not invertible and the smallest
eigenvalue 𝜇 is equal to 0. Hence, there exists 𝑣 such that (𝐼 − 𝜂𝐻)𝑣 = 𝑣. Choose 𝑥⋆ a
minimizer. Using 𝑥(0) = 𝑣 + 𝑥⋆, we have

‖𝑥(𝑡) − 𝑥⋆‖2 = ⟨𝑣 + 𝑥⋆ − 𝑥⋆, (𝐼 − 𝜂𝐻)2𝑡(𝑣 + 𝑥⋆ − 𝑥⋆)⟩ = ⟨𝑣, (𝐼 − 𝜂𝐻)2𝑡𝑣⟩ = ‖𝑣‖2
2.

Hence, the method is not necessarly convergent, depending on the initialization.

The situation is different when we assume that there is a unique minimizer.

Proposition 0.2 (Convergence in norm). Assume that@eq-lstq has a unique minimizer 𝑥⋆.
Then, the gradient descent iterates 𝑥(𝑡) with constant step-size 𝜂(𝑡) = 𝜂 = 2

𝜇+𝐿 converges
linearly in norm

||𝑥(𝑡) − 𝑥⋆||2 ≤ (𝜅 − 1
𝜅 + 1)

2𝑡
||𝑥(0) − 𝑥⋆||2.

Proof. Since there is a unique minimizer 𝑥⋆, we have 𝜇 > 0. Observe that (using a spectral
norm bound)

⟨𝑥(0) − 𝑥⋆, (𝐼 − 𝜂𝐻)2𝑡(𝑥(0) − 𝑥⋆)⟩ ≤ ( max
𝜆∈[𝜇,𝐿]

|1 − 𝜂𝜆|)
2𝑡

‖𝑥(0) − 𝑥⋆‖2
2.

Observe that max𝜆∈[𝜇,𝐿] |1 − 𝜂𝜆| is minimized for 𝜂 = 2
𝜇+𝐿 , and value is 𝜅−1

𝜅+1 ∈ (0, 1). Indeed,

max
𝜆∈[𝜇,𝐿]

|1 − 𝜂𝜆| = max (|1 − 𝜂𝜇|, |1 − 𝜂𝐿|) .

Hence,
min
𝜂>0

max
𝜆∈[𝜇,𝐿]

|1 − 𝜂𝜆| = min
𝜂>0

max (|1 − 𝜂𝜇|, |1 − 𝜂𝐿|) .
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Moreover, we have the following set of equivalence

|1 − 𝜂𝐿| ≤ |1 − 𝜂𝜇|
(1 − 𝜂𝐿)2 ≤ (1 − 𝜂𝜇)2

𝜂𝐿2 − 2𝐿 ≤ 𝜂𝜇2 − 2𝜇

𝜂 ≤ 2
𝐿 + 𝜇.

This minima is achieved when the two curve |1 − 𝜂𝐿| and |1 − 𝜂𝜇| intersect.

Choice independant from the strong-convexity constant 𝜇: It is possible to chose a smaller
stepsize (hence slower) by taking the suboptimal value 𝜂 = 1/𝐿. In this case, we get

max
𝜆∈[𝜇,𝐿]

|1 − 𝜂𝜆| = 1 − 𝜇
𝐿 = 1 − 1

𝜅.

In both cases, we obtained a linear (or geometric, or exponential depending on the community)
rate

‖𝑥(𝑡) − 𝑥⋆‖2 ≤ 𝑐2𝑡‖𝑥(0) − 𝑥⋆‖2,
where 𝑐 = 𝜅−1

𝜅+1 or 𝑐 = 1 − 1
𝜅 depending on the choice of the step-size.

It is possible to also speaks in term of iteration complexity. Assuming the choice of 𝜂 = 1/𝐿,
observe that

(1 − 1
𝜅)

2𝑡
≤ exp(− 1

𝜅)2𝑡 = exp(−2𝑡
𝜅 ).

Thus, to obtain a fraction 𝜖‖𝑥(0) − 𝑥⋆‖2 it is necessary to perform 𝑡 iterations defined by

𝜖 = exp(−2𝑡
𝜅 ) ⇔ 𝑡 = 𝜅

2 log 1
𝜖 .

Convergence in value

As we say, if 𝜇 = 0, one cannot establish the convergence of the iterates. But the story is
different for the convergence in value.

Proposition 0.3 (Convergence in value). Let 𝑥⋆ any solution of Equation 1. The gradient
descent iterates 𝑥(𝑡) with constant step-size 𝜂(𝑡) = 𝜂 = 1

𝐿 converges with a 𝑂(1/𝑡) rate

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) ≤ 1
4𝑡𝜂 ||𝑥(0) − 𝑥⋆||22.

If moreover, Equation 1 has a unique solution, the convergence is linear:

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) ≤ (1 − 1
𝜅)

2𝑡
(𝑓(𝑥(0)) − 𝑓(𝑥⋆)).
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Proof. Observe that 𝑓 has an exact Taylor expansion of order 2. Indeed, for any 𝑥 ∈ ℝ𝑝 and
any minimizer 𝑥⋆:

𝑓(𝑥) − 𝑓(𝑥⋆) = ⟨∇𝑓(𝑥⋆), 𝑥 − 𝑥⋆⟩ + 1
2⟨𝑥 − 𝑥⋆, 𝐻(𝑥 − 𝑥⋆)⟩

= 1
2⟨𝑥 − 𝑥⋆, 𝐻(𝑥 − 𝑥⋆)⟩.

Using the (exact) Taylor expansion Equation 3 of 𝑓 , we have

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) = 1
2⟨𝑥(𝑡) − 𝑥⋆, 𝐻(𝑥(𝑡) − 𝑥⋆)⟩.

Using Equation 2, we have

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) = 1
2⟨(𝐼 − 𝜂𝐻)𝑡(𝑥(0) − 𝑥⋆), 𝐻(𝐼 − 𝜂𝐻)𝑡(𝑥(0) − 𝑥⋆)⟩.

Since (𝐼 − 𝜂𝐻) is symmetric, we have

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) = 1
2⟨𝑥(0) − 𝑥⋆, (𝐼 − 𝜂𝐻)2𝑡𝐻(𝑥(0) − 𝑥⋆)⟩.

Using the fact that for a symmetric matrix, we have ⟨𝐴𝑢, 𝑣⟩ ≤ ‖𝐴‖𝑠𝑝⟨𝑢, 𝑣⟩, we have

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) ≤ ∥(𝐼 − 𝜂𝐻)2𝑡∥ 1
2⟨𝑥(0) − 𝑥⋆, 𝐻(𝑥(0) − 𝑥⋆)⟩.

Using again Equation 3, we have
𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) ≤ ∥(𝐼 − 𝜂𝐻)2𝑡∥ (𝑓(𝑥(0)) − 𝑓(𝑥⋆)).

Case 𝜇 > 0. Now, we have according to the previous section, the following linear rate.

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆) ≤ (1 − 1
𝜅)

2𝑡
(𝑓(𝑥(0)) − 𝑓(𝑥⋆)).

Case 𝜇 = 0. Let’s study the eigenvalues of 1 (𝐼 − 𝜂𝐻)2𝑡𝐻. We keep our analysis restricted to
𝜂 ≤ 1

𝐿 .
|𝜆(1 − 𝜂𝜆)2𝑡| ≤ 𝜆 exp(−𝜂𝜆)2𝑡

= 𝜆 exp(−2𝑡𝜂𝜆)

= 1
2𝑡𝜂2𝑡𝜂𝜆 exp(−2𝑡𝜂𝜆) insert the term 2𝑡𝜂

≤ 1
2𝑡𝜂 sup

𝜌≥0
𝜌 exp(−𝜌) crude bound

= 1
2𝑒𝑡𝜂 maximum at 𝜌 = 1

≤ 1
4𝑡𝜂 𝑒 > 2.

Hence, we obtain the claimed 𝑂(1/𝑡) rate.
1Note the presence of 𝐻 after (𝐼 − 𝜂𝐻)2𝑡.
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Convergence of gradient descent for nonconvex functions

Unfortunately, not every functions are quadratic, and we need to deep diver in the analysis of
the gradient descent algorithm to understand its behavior on generic function. We are going
to explore several class of functions that leads to different rates, either in norm or in objective
values. We start with some “weak” results on function with limited regularity and without
convexity assumptions.

Coercive continuously differentiable function

The following proposition show a very weak result without any quantification of the rate of
convergence of gradient descent.

Proposition 0.4 (Convergence of GD for coercive 𝐶1 functions). Let 𝑓 ∶ ℝ𝑑 → ℝ be a coercive
function and assume moreover that it is continuously differentiable. For any initial guess 𝑥(0),
the oracle GD iterates 𝑥(𝑡) converge up to a subsequence towards a critical point of 𝑓.

Proof.

Step 1. The value sequence is (strictly) decreasing (unless it reaches a critical point). We recall
that the oracle GD chose the step-size 𝜂(𝑡) as

𝜂(𝑡) = argmin
𝜂≥0

𝜙(𝑡)(𝜂) ∶= 𝑓(𝑥(𝑡) − 𝜂∇𝑓(𝑥(𝑡))).

Hence, evaluating 𝜙(𝑡) at 𝜂(𝑡) and 0 leads to

𝑓(𝑥(𝑡+1)) = 𝜙(𝑡)(𝜂(𝑡)) ≤ 𝜙(𝑡)(0) = 𝑓(𝑥(𝑡)).

Suppose that 𝑓(𝑥(𝑡+1)) = 𝑓(𝑥(𝑡)). Thus, 0 is a minimizer of 𝜙(𝑡) and therefore its first-order
condition reads 𝑑

𝑑𝜂𝜙(𝑡)(0) = 0. Given 𝜂 ≥ 0, we have

𝑑
𝑑𝜂𝜙(𝑡)(𝜂) = ⟨−∇𝑓(𝑥(𝑡)), ∇𝑓(𝑥(𝑡) − 𝜂∇𝑓(𝑥(𝑡)))⟩.

Evaluating this expression at 𝜂 = 0 gives us −⟨∇𝑓(𝑥(𝑡)), ∇𝑓(𝑥(𝑡))⟩ = 0, hence ∇𝑓(𝑥(𝑡)) = 0
that means 𝑥(𝑡) is a critical point.

Step 2. The iterates sequence is converging (up to a subsequence). Consider the set 𝑆 =
{𝑥 ∈ ℝ𝑑 ∶ 𝑓(𝑥) ≤ 𝑓(𝑥(0))}. Remark that:

• 𝑆 is defined by an inequality ≤, thus 𝑆 is closed;

• 𝑓 is coercive, thus 𝑆 is bounded.
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Hence, 𝑆 is compact. Observe that for all 𝑡 ≥ 0, 𝑥(𝑡) ∈ 𝑆. Using Bolzano–Weierstrass theorem,
we get that the sequence (𝑥(𝑡)) has a convergent subsequence towards some 𝑥∗. Let us denote
it by (𝑥(𝜓(𝑡)))𝑡≥0 where 𝜓 ∶ ℕ → ℕ is increasing.

Step 3. The limit of the iterates sequence is a critical point. Suppose that 𝑥∗ is not a critical
point. Using Step 1, we now that 𝑥∗∗ defined as 𝑥∗∗ = 𝑥∗ − 𝜂∗∇𝑓(𝑥∗) ≠ 𝑥∗, where 𝜂∗ > 0 is the
oracle step, is such that 𝑓(𝑥∗∗) < 𝑓(𝑥∗). Consider the sequence 𝑦(𝑡) = 𝑥(𝜓(𝑡)) converging to 𝑥∗.
Remark that, using the continuity of the map 𝑧 ↦ 𝑧 − 𝜂∗∇𝑓(𝑧) for a contiously differentiable
function 𝑓 , we have

lim
𝑘→+∞

(𝑦(𝑡) − 𝜂∗∇𝑓(𝑦(𝑡))) = 𝑥∗ − 𝜂∗∇𝑓(𝑥∗) = 𝑥∗∗. (3)

By definition of 𝜙(𝑡), we also have for all 𝑡 ≥ 0 that

𝜙(𝑡)(𝜂∗) ≥ 𝜙(𝑡)(𝜂(𝑡)) ≥ 𝑓(𝑥∗).

Hence,
𝑓(𝑦(𝑡) − 𝜂∗∇𝑓(𝑦(𝑡))) ≥ 𝑓(𝑥∗)

Using Equation 3, we get that 𝑓(𝑥∗∗) ≥ 𝑓(𝑥⋆), that is a contradiction. In conclusion, 𝑥∗ is a
critical point.

Remark that if in addition 𝑓 has a unique critical point, i.e., a unique global minimizer, then
𝑥(𝑡) converges to this global minimizer.

Corollary 0.1. Let 𝑓 ∶ ℝ𝑑 → ℝ be a coercive, continuously differentiable function with a
unique global minimizer 𝑥⋆. For any initial guess 𝑥(0), the oracle GD iterates 𝑥(𝑡) converge
towards 𝑥⋆

Proof. Do it !

Reminders on 𝐿-smooth functions

Recall that a (fulld-domain) differentiable function 𝑓 ∶ ℝ𝑛 → ℝ is said to be 𝐿-smooth if ∇𝑓 is
𝐿-Lipschitz. 𝐿-smoothness is important in optimization because it ensures a quadratic upper
bound of the function.

Proposition 0.5. Let 𝑓 a 𝐿-smooth function. Then, for all 𝑥, 𝑦 ∈ ℝ𝑛,

⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≤ 𝐿‖𝑥 − 𝑦‖2. (4)

Moreover, Equation 4 is equivalent to

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ + 𝐿
2 ‖𝑥 − 𝑦‖2, ∀𝑥, 𝑦 ∈ ℝ𝑛. (5)
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Smooth function bounded from below

The previous result was rather weak. Consider now a function 𝑓 ∶ ℝ𝑑 → ℝ that is 𝐿-smooth,
but not necessarly convex. In addition, we suppose that 𝑓 has full domain and is bounded
from below on ℝ𝑑. The following proposition gives a 𝑂(1/

√
𝑇 ) rate for the 1st-order optimality

using a constant step-size. A similar proof is doable for the oracle or the backtracking gradient
descent.

Proposition 0.6 (Convergence of GD for 𝐿-smooth functions). Let 𝑓 ∶ ℝ𝑑 → ℝ be a 𝐿-smooth
function, bounded from below by ̄𝑓 ∈ ℝ. For any initial guess 𝑥(0), the GD iterates 𝑥(𝑡) with
step-size 𝜂(𝑡) = 𝜂 < 2

𝐿 converge towards a critical point of 𝑓, and moreover

min
0≤𝑡≤𝑇

||∇𝑓(𝑥(𝑡))|| ≤ 1√𝑇 + 1 (𝜔−1𝐿(𝑓(𝑥(0) − ̄𝑓)))1/2 ,

where 𝜔 = 2𝛼(1 − 𝛼) and 𝜂 = 2𝛼
𝐿 .

Proof.

Step 1. Bound on one step of gradient descent. For 𝑥 ∈ ℝ𝑑, let 𝑦 = 𝑥 − 𝜂∇𝑓(𝑥). Using
Proposition 0.5, we have that

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ + 𝐿
2 ||𝑦 − 𝑥||2

= 𝑓(𝑥) + ⟨∇𝑓(𝑥), −𝜂∇𝑓(𝑥)⟩ + 𝐿
2 ||𝜂∇𝑓(𝑥)||2

= 𝑓(𝑥) − 𝜂||∇𝑓(𝑥)||2 + 𝐿𝜂2

2 ||∇𝑓(𝑥)||2

= 𝑓(𝑥) − 𝜂(1 − 𝐿𝜂
2 )||∇𝑓(𝑥)||2.

To ensure that 𝑓(𝑦) ≤ 𝑓(𝑥), we need to require that 𝜂(1 − 𝐿𝜂
2 ) ≥ 0 that is 𝜂 ≤ 2

𝐿 . We can
parameterize 𝜂 as 𝜂 = 2𝛼

𝐿 with 𝛼 ∈ [0, 1). Hence, we get the descent

𝑓(𝑥) − 𝑓(𝑦) ≥ 2𝛼(1 − 𝛼)
𝐿 ||∇𝑓(𝑥)||2. (6)

Step 2. Convergence of 1st-order optimality. Applying (Equation 6) to 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑥(𝑡+1),
we get that

𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡+1)) ≥ 2𝛼(1 − 𝛼)
𝐿 ||∇𝑓(𝑥(𝑡))||2. (7)

Summing inequality Equation 7 for 𝑡 = 0 … 𝑇 , we obtain

𝑇
∑
𝑡=0

𝑓(𝑥(𝑡)) − 𝑓(𝑥(𝑡+1)) ≥ 2𝛼(1 − 𝛼)
𝐿

𝑇
∑
𝑡=0

||∇𝑓(𝑥(𝑡))||2.
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Observing that the r.h.s. telescopes, we have

2𝛼(1 − 𝛼)
𝐿

𝑇
∑
𝑡=0

||∇𝑓(𝑥(𝑡))||2 ≤ 𝑓(𝑥(0)) − 𝑓(𝑥(𝑇 +1)) ≤ 𝑓(𝑥(0)) − ̄𝑓, (8)

by definition of ̄𝑓 . Since (Equation 8 )is true for all 𝑇 ∈ ℕ, we get ∇𝑓(𝑥(𝑡)) converges towards
0.

Step 3. Rate of convergence. Using the fact that for all 𝑡 = 0 … 𝑇 , we have ||∇𝑓(𝑥(𝑡))|| ≤
min0≤𝑡≤𝑇 ||∇𝑓(𝑥(𝑡))||, we have from (Equation 8) that

2𝛼(1 − 𝛼)
𝐿 (𝑇 + 1) min

0≤𝑡≤𝑇
||∇𝑓(𝑥(𝑡))||2 ≤ 𝑓(𝑥(0)) − ̄𝑓,

Hence, the claimed result.

Note that we cannot say anything in this context about the rate of convergence
of 𝑓(𝑥(𝑡)) or (𝑥(𝑡))! One can show that 𝜂 = 1

𝐿 is the optimal rate with respect to the bound in
Equation 6.

Convergence of gradient descent for convex functions

Co-coercivity of the gradient of a convex 𝐿-smooth function

Convex 𝐿-smooth functions are co-coercive. This result is sometimes coined Baillon–Haddad
theorem (Baillon and Haddad 1977), but one shall note that the original contributionis much
more general than its application to the gradient.

Proposition 0.7. Let 𝑓 be a full-domain convex 𝐿-smooth function. Then, ∇𝑓 is 1/𝐿-co-
coercive, i.e.,

∀𝑥, 𝑦 ∈ ℝ𝑛, ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 1
𝐿‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2

∗ .

Convex 𝐿-smooth function

When 𝑓 is supposed to be convex, we can have a rate of convergence in objective values.

Proposition 0.8 (Rate of GD for convex 𝐿-smooth functions). Let 𝑓 ∶ ℝ𝑑 → ℝ be a convex 𝐿-
smooth function. For any initial guess 𝑥(0), the GD iterates 𝑥(𝑡) with step-size 𝜂(𝑡) = 𝜂 ∈ (0, 2

𝐿)
converge towards an optimal point 𝑥⋆ of 𝑓, and moreover

𝑓(𝑥(𝑡)) − 𝑓⋆ ≤ 2(𝑓(𝑥0) − 𝑓⋆)||𝑥(0) − 𝑥⋆||2
𝑡𝜂(2 − 𝐿𝜂)(𝑓(𝑥0) − 𝑓⋆) + 2||𝑥(0) − 𝑥⋆||2 .
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Moreover, if 𝜂 = 1
𝐿 , then

𝑓(𝑥(𝑡)) − 𝑓⋆ ≤ 2𝐿||𝑥(0) − 𝑥⋆||2
𝑡 + 4 .

Proof.

Let 𝑥⋆ a minimizer of 𝑓 . We consider 𝑟(𝑡) = ||𝑥(𝑡) − 𝑥⋆|| the lack of optimality ˆ[Note that we
do not assume that 𝑥(𝑡) converges towards this specific 𝑥⋆.]. We have

(𝑟(𝑡+1))2 = ||𝑥(𝑡) − 𝑥⋆ − 𝜂∇𝑓(𝑥(𝑡))||2
= (𝑟(𝑡))2 − 2𝜂⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩ + 𝜂2||∇𝑓(𝑥(𝑡))||

Using the co-coercivity of the gradient (Proposition 0.7), we have that

⟨∇𝑓(𝑥(𝑡)) − ∇𝑓(𝑥⋆)⏟
=0

, 𝑥(𝑡) − 𝑥⋆⟩ ≥ 1
𝐿||∇𝑓(𝑥(𝑡)) − ∇𝑓(𝑥⋆)⏟

=0
||2.

Thus,
(𝑟(𝑡+1))2 ≤ (𝑟(𝑡))2 − 𝜂( 2

𝐿 − 𝜂)||∇𝑓(𝑥(𝑡))||2.

In particular, we get that 𝑟(𝑡) ≤ 𝑟(0) for all 𝑡 ≥ 0.

Using the smoothness of 𝑓 , Proposition 0.5 gives us the bound

𝑓(𝑥(𝑡+1)) ≤ 𝑓(𝑥(𝑡+1)) + ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡+1) − 𝑥(𝑡)⟩ + 𝐿
2 ||𝑥(𝑡+1) − 𝑥(𝑡)||2

Using again the co-coercivity of the gradient, we have that

𝑓(𝑥(𝑡+1)) ≤ 𝑓(𝑥(𝑡)) − 𝜂(1 − 𝐿𝜂
2 )||∇𝑓(𝑥(𝑡))||2.

Now, let 𝛿(𝑡) = 𝑓(𝑥(𝑡+1)) − 𝑓(𝑥⋆). Using the differential characterization of convexity

∀𝑥, ̄𝑥 ∈ 𝐶, 𝑓(𝑥) ≥ 𝑓( ̄𝑥) + ⟨∇𝑓( ̄𝑥), 𝑥 − ̄𝑥⟩.

, we have
𝛿(𝑡) ≤ ⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩.

Using Cauchy–Schwarz inequality, we have

𝛿(𝑡) ≤ ||∇𝑓(𝑥(𝑡))||||𝑥(𝑡) − 𝑥⋆|| = 𝑟(𝑡)||∇𝑓(𝑥(𝑡))|| ≤ 𝑟(0)||∇𝑓(𝑥(𝑡))||.

Hence, we have
𝛿(𝑡+1) ≤ 𝛿(𝑡) − 𝑞

(𝑟(0))2 (𝛿(𝑡))2,
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where 𝑞 = 𝜂(1 − 𝐿𝜂
2 ). Multiplying both side by 1

𝛿(𝑡)𝛿(𝑡+1) > 0, we get that

1
𝛿(𝑡) ≤ 1

𝛿(𝑡+1) − 𝑞
(𝑟(0))2

𝛿(𝑡)

𝛿(𝑡+1) .

Since (𝑓(𝑥(𝑡))) is nonincreasing, we have 𝛿(𝑡)

𝛿(𝑡+1) ≤ 1, hence

1
𝛿(𝑡+1) ≥ 1

𝛿(𝑡) + 𝑞
(𝑟0)2 .

Summing 𝑇 − 1 inequalities of this type, we obtain

1
𝛿(𝑇 ) ≥ 1

𝛿(0) + 𝑇 𝑞
(𝑟0)2 .

We conclude using a bit of computation:

𝛿(𝑇 ) ≤ ( 1
𝛿(0) + 𝑇 𝑞

(𝑟0)2 )
−1

= ((𝑟0)2 + 𝑇 𝑞𝛿(0)

𝛿(0)(𝑟(0))2 )
−1

= 𝛿(0)(𝑟(0))2

(𝑟0)2 + 𝑇 𝑞𝛿(0)

Replacing 𝑞, 𝑟(0) and 𝛿(0) by their expression gives the result.

Maximizing the descent 𝜂(2 − 𝐿𝜂) gives the optimal step-size 𝜂 = 1
𝐿 . Injecting this value, we

get that

𝛿(𝑇 ) ≤ 2𝐿𝛿(0)(𝑟(0))2

2𝐿(𝑟(0))2 + 𝑇 𝛿(0) .

Using the smoothness (Proposition 0.5), we have

𝑓(𝑥(0)) ≤ 𝑓⋆ + ⟨∇𝑓(𝑥⋆), 𝑥(0) − 𝑥⋆⟩ + 𝐿
2 (𝑟(0))2 = 𝑓⋆ + 𝐿

2 (𝑟(0))2

Thus,
2𝐿(𝑟(0))2 + 𝑇 𝛿(0) ≥ (4 + 𝑇 )𝛿(0),

which is the claimed result.

Strongly convex 𝐿-smooth function

When 𝑓 is both 𝐿-smooth and 𝜇-strongly convex, we have the following “strenghened” co-
coercivity.

Proposition 0.9. Let 𝑓 be a 𝐿-smooth and 𝜇-strongly convex function. For any 𝑥, 𝑦 ∈ ℝ𝑛,
we have

⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 𝜇𝐿
𝜇 + 𝐿||𝑥 − 𝑦||2 + 1

𝜇 + 𝐿||∇𝑓(𝑥) − ∇𝑓(𝑦)||2.
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We now prove the linear convergence of gradient descent when dealing with strongly convex
functions.

Proposition 0.10 (Rate of GD for strongly convex smooth functions). Let 𝑓 ∶ ℝ𝑑 → ℝ be
a 𝜇-strongly convex 𝐿-smooth function. For any initial guess 𝑥(0), the GD iterates 𝑥(𝑡) with
step-size 𝑡(𝑡) = 𝜂 ∈ (0, 2

𝜇+𝐿 ] converge towards an optimal point of 𝑓, and moreover

||𝑥(𝑡) − 𝑥⋆||2 ≤ (1 − 2𝜂𝜇𝐿
𝜇 + 𝐿)

𝑡
||𝑥(0) − 𝑥⋆||2.

Moreover, if 𝜂 = 2
𝜇+𝐿 , then

||𝑥(𝑡) − 𝑥⋆||2 ≤ (𝐾𝑓 − 1
𝐾𝑓 + 1)

2𝑡
||𝑥(0) − 𝑥⋆||2

𝑓(𝑥(𝑡)) − 𝑓⋆ ≤ 𝐿
2 (𝐾𝑓 − 1

𝐾𝑓 + 1)
2𝑡

||𝑥(0) − 𝑥⋆||2,

where 𝐾𝑓 = 𝐿/𝜇.

Proof.

Let 𝑟(𝑡) = ||𝑥(𝑡) − 𝑥⋆||. We start like the proof of Proposition 0.8:

(𝑟(𝑡+1))2 = ||𝑥(𝑡) − 𝑥⋆ − 𝜂∇𝑓(𝑥(𝑡))||2
= (𝑟(𝑡))2 − 2𝜂⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩ + 𝜂2||∇𝑓(𝑥(𝑡))||

Using Proposition 0.9, we have

⟨∇𝑓(𝑥(𝑡)) − ∇𝑓(𝑥⋆), 𝑥(𝑡) − 𝑥⋆⟩ ≥ 𝜇𝐿
𝜇 + 𝐿||𝑥(𝑡) − 𝑥⋆||2 + 1

𝜇 + 𝐿||∇𝑓(𝑥(𝑡)) − ∇𝑓(𝑥⋆)||2,

that is
⟨∇𝑓(𝑥(𝑡)) − ∇𝑓(𝑥⋆), 𝑥(𝑡) − 𝑥⋆⟩ ≤ 𝜇𝐿

𝜇 + 𝐿(𝑟(𝑡))2 + 1
𝜇 + 𝐿||∇𝑓(𝑥(𝑡))||2.

Hence,

(𝑟(𝑡+1))2 ≤ (1 − 2𝜂𝜇𝐿
𝜇 + 𝐿) (𝑟(𝑡))2 + 𝜂 (𝜂 − 2

𝜇 + 𝐿) ||∇𝑓(𝑥(𝑡))||2.

Since 𝜂 − 2
𝜇+𝐿 < 0, we can drop it and we obtain the recursion (𝑟(𝑡+1))2 ≤ (1 − 𝑞)(𝑟(𝑡))2 with

𝑞 = 2𝜂𝜇𝐿
𝜇+𝐿 , that proves the first claim (linear rate).

Let 𝜂 = 2
𝜇+𝐿 . We have

1 − 𝑞 = 1 − 4𝜇𝐿
(𝜇 + 𝐿)2 = (𝐿 − 𝜇)2

(𝐿 + 𝜇)2 = (𝐾𝑓 − 1
𝐾𝑓 + 1)

2
.

The last inequality is yet another use of Proposition 0.5.
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