
On Nonsmooth Optimization
Based on Abs-Linearization

Andrea Walther
Institut für Mathematik

Humboldt-Universität zu Berlin

in memory of
Andreas Griewank, Humboldt-Universität zu Berlin

GdR MOA 2022

October 11, 2022



Andreas Griewank (1950 – 2021)

A. Walther Nonsmooth Optimization via Abs-Linearization GdR MOA 2022



Outline

1 Classes of Nonsmooth Problems

2 The Class of Abs-smooth Functions

3 The Optimization of Piecewise Linear Functions

4 The Optimization of Abs-Smooth Functions

5 Conclusion and Outlook

joint work with
Franz Bethke, Sabrina Fiege, Andreas Griewank, Timo Kreimeier, . . .

A. Walther Nonsmooth Optimization via Abs-Linearization 1 / 30 GdR MOA 2022



Classes of Nonsmooth Problems

50 Ways of Nonsmoothness ...

Smooth ⇒ Tight optimality conditions, (super-)linear conver-
gence to roots of equation systems via linearization

Convex ⇒ Beautiful optimality and duality theory, but gener-
ally sublinear convergence to unconstrained minima
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Classes of Nonsmooth Problems

... and Optimality Conditions
Given: f : Rn 7→ R not diff’able everywhere but with suitable properties

Generalized derivative concepts required:
directional derivatives

f ′(x ; d) := lim
t→0+

f (x + td) − f (x)
t ∈ R ∀d ∈ Rn
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Classes of Nonsmooth Problems

... and Optimality Conditions
Given: f : Rn 7→ R not diff’able everywhere but with suitable properties

Generalized derivative concepts required:
directional derivatives
necessary optimality condition f ′(x ; d) ≥ 0 for all d ∈ Rn

Clarke generalized gradient
F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

∂C f (x) := conv
{

lim
i→∞

∇f (xi)
∣∣ xi 7→ x , ∇f (xi) exists

}
= conv{∂Lf (x)}

A. Walther Nonsmooth Optimization via Abs-Linearization 3 / 30 GdR MOA 2022



Classes of Nonsmooth Problems

... and Optimality Conditions
Given: f : Rn 7→ R not diff’able everywhere but with suitable properties

Generalized derivative concepts required:
directional derivatives
necessary optimality condition f ′(x ; d) ≥ 0 for all d ∈ Rn

Clarke generalized gradient
F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990
necessary optimality condition 0 ∈ ∂C f (x)

A. Walther Nonsmooth Optimization via Abs-Linearization 3 / 30 GdR MOA 2022



Classes of Nonsmooth Problems

... and Optimality Conditions
Given: f : Rn 7→ R not diff’able everywhere but with suitable properties

Generalized derivative concepts required:
directional derivatives
necessary optimality condition f ′(x ; d) ≥ 0 for all d ∈ Rn

Clarke generalized gradient
F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990
necessary optimality condition 0 ∈ ∂C f (x)
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Classes of Nonsmooth Problems

Is This Really Necessary?

Theorem (Rademacher)

If the function f : Rn 7→ R is locally Lipschitz continuous then f is almost
everywhere differentiable.

Obvious idea: Use smooth optimization methods!
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Classes of Nonsmooth Problems

Is This Really Necessary?

Theorem (Rademacher)

If the function f : Rn 7→ R is locally Lipschitz continuous then f is almost
everywhere differentiable.

Obvious idea: Use smooth optimization methods, e.g., steepest descent
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Classes of Nonsmooth Problems

Current (= Black Box) Approaches for
Nonsmooth Optimization

Use methods for smooth problems
may fail, see slide before, no convergence theory

Subgradient method
very (!) slow convergence

Bundle methods
lots of parameters, erratic convergence behaviour
involves oracle

Semi-smooth Newton methods
only local convergence

Derivative-free methods
no structure exploitation,
difficult when number of optimization variables large
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Classes of Nonsmooth Problems

Lessons learned

various concepts for nonsmoothness

various concepts for generalized derivatives

resulting in various optimality conditions,
usually difficult to verify

many important applications, e.g., machine learning!!

no out-of-the-shelf solution algorithm
structure exploitation indispensable
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The Class of Abs-smooth Functions

Where are we?

⇓

⇓

⇓

⇓

⇑

Smooth ⇒ Tight optimality conditions, (super-)linear conver-
gence to roots of equation systems via linearization

Abs-Smooth ⇒ Global piecewise linear approximation
with uniform second order error

Piecewise Smooth ⇒ Local piecewise linear approximation
with very local second order error

Sub-Analytic ⇒ Function finitely defined with Poussilieux expansion

Semi-Smooth ⇒ Very local superlinear convergence under rank condi-
tions, combinatorics must be resolved for first iterate!

Convex ⇒ Beautiful optimality and duality theory, but gener-
ally sublinear convergence to unconstrained minima
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The Class of Abs-smooth Functions

Our Class of Functions
Definition (Cd

abs(Rn) Functions)

For any d ∈ N, the set of functions f : Rn 7→ R, y = f (x), defined by an
abs-smooth form

z = F (x , z , |z |) ,

y = φ(x , z),

with F ∈ Cd(Rn+s+s ,Rs) and φ ∈ Cd(Rn+s ,R), such that zi is
determined only by the values of zj , 1 ≤ j < i , is denoted by Cd

abs(Rn).

An element f ∈ Cd(Rn+s+s ,Rs) for d ≥ 1 is called abs-smooth.

The components zi , 1 ≤ i ≤ s, of z are called switching variables.
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The Class of Abs-smooth Functions

Abs-smooth Example Problems
Exact ℓ1 penalty functions
Reformulation of constrained optimization problem

min
x

f (x) s.t. ci(x) = 0, i ∈ E , ci(x) ≥ 0, i ∈ I

as unconstrained optimization problem with ℓ1-penalty

ϕ(x ; µ) = f (x) + µ
∑
i∈E

|ci(x)| + µ
∑
i∈I

max{0, −ci(x)}

Robust optimization often formulated as min-max problems

Train timetabling yields piecewise linear optimization problem
F. Fischer, C. Helmberg: Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale Train Timetabling, 2010

Local models may yield piecewise linear optimization problem
F. Liers, M. Merkert: Structural Investigation of Piecewise Linearized Flow Problems. 2016

Machine Learning nonsmooth activation functions like ReLu
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The Class of Abs-smooth Functions

The Half-pipe Function

f : R2 7→ R, f (x1, x2) = max(x2
2 − max(x1, 0), 0)

= 1
2 (x2

2 − 1
2 (x1 + |x1|) + |x2

2 − 1
2 (x1 + |x1|) |)
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The Class of Abs-smooth Functions

The Half-pipe Function

f : R2 7→ R, f (x1, x2) = max(x2
2 − max(x1, 0), 0)

= 1
2 (x2

2 − 1
2 (x1 + |x1|) + |x2

2 − 1
2 (x1 + |x1|) |)

has the abs-smooth form

z1 = x1

z2 = x2
2 − 1

2 (x1 + |z1|)
z3 = |z2|

 i.e., z = F (x , z , |z |)

y = φ(x , z) = 1
2 (z2 + z3)
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The Class of Abs-smooth Functions

Definition (Piecewise Smooth (PS), Piecewise Linear (PL))
Let D ⊆ Rn be open and fi : D → Rm, i = 1, . . . , k with k ∈ N be given.

f : D → Rm is called continuous selection of the collection f1, . . . , fk
on the set U ⊆ D if f is continuous on U and

f (x) ∈ {f1(x), . . . , fk(x)} ∀x ∈ U.

f : D → Rm is called PC r -function with r ∈ N ∪ {∞} if for every
x ∈ D there exists an open neighboorhood U ⊆ D, such that f is a
continuous selection of f1, . . . , fk on U and fi ∈ C r (D), 1 ≤ i ≤ k.
A PC r -function is also called piecewise smooth.
A continuous selection f : U → Rm is called piecewise linear if all
elements of the collection f1, . . . , fk are affine functions.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

One can show: Cd
abs(Rn) is a proper subset of the PS functions!
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The Class of Abs-smooth Functions

Information Gained from Cd
abs(Rn) Functions

For d ≥ 1 the following matrices and vectors are well defined:
Z = ∂

∂x F (x , z , |z |) ∈ Rs×n

M = ∂
∂z F (x , z , |z |) ∈ Rs×s strictly lower triangular

L = ∂
∂|z| F (x , z , |z |) ∈ Rs×s strictly lower triangular

a = ∂
∂x φ(x , z) ∈ Rn, b = ∂

∂z φ(x , z) ∈ Rs

The signature vector and the corresponding diagonal matrix given by
σ(x) = sign(z(x)) and Σ = diag(σ(x))

define the active switch set
α = α(x) ≡ {1 ≤ i < s |σi(x) = 0} .

Required derivatives by extended algorithmic differentiation (AD)!
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The signature vector and the corresponding diagonal matrix given by
σ(x) = sign(z(x)) and Σ = diag(σ(x))

define the active switch set
α = α(x) ≡ {1 ≤ i < s |σi(x) = 0} .

Required derivatives by extended algorithmic differentiation (AD)!
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The Class of Abs-smooth Functions

Once More the Half-pipe Function

f : R2 7→ R, f (x1, x2) = max(x2
2 − max(x1, 0), 0)

= 1
2

(
x2

2 − 1
2 (x1 + |x1|) + |x2

2 − 1
2 (x1 + |x1|) |

)

with
z1 = x1

z2 = x2
2 − 1

2 (x1 + |z1|)
z3 = |z2|

 ⇒ Z =

 1 0
− 1

2 2x2
0 0

 , M = 0, L =

 0 0 0
− 1

2 0 0
0 1 0


y = φ(x , z) = 1

2 (z2 + z3) ⇒ a = 0 and b = (0, 0.5, 0.5)⊤ .
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The Class of Abs-smooth Functions

A Local PL Model for Abs-smooth Functions
Definition (Abs-linear form of abs-smooth f : Rn → R at x̊)
The abs-linear form of f at x̊ is defined by ∆f (x̊ ; .) : Rn 7→ R,[

z
y

]
=

[
c1
c2

]
+

[
Z M L
a b 0

]  x
z
|z |

 .

Theorem
Suppose f is abs-smooth on D ⊂ K ⊂ Rn, D open, K closed and convex.
Then there exists γ > 0 such that for all x , x̊ ∈ K

∥f (x) − ∆f (x̊ ; x − x̊)∥ = γ∥x − x̊∥2

⇒ ∆f (x̊ ; .) is local piecewise linear model of second order!
A. Griewank. On stable piecewise linearization and generalized AD, OMS, 2013
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The Optimization of PL Functions

Observations

Even min φ(x) with PL convex φ not easy:

Global minimization is NP-hard

Steepest descent with exact line
search may fail

Zeno behaviour possible,
i.e., solution trajactory with infinite
number of direction changes in a
finite amount
of time

J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis
and Minimization Algorithms I, Springer, 1993
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The Optimization of PL Functions

Representations of PL Functions
There are many choices

, e.g.,

Theorem (Max-Min representation of PL functions)
For each PL f : Rn 7→ R with selection functions fj(x) = a⊤

j x + bj ,
1 ≤ j ≤ k, there exist index sets Mi ⊂ {1, . . . , k}, 1 ≤ i ≤ l , such that

f (x) = max
1≤i≤l

min
j∈Mi

a⊤
j x + bj .

e.g., S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

Then, it follows from
min(v , u) = (v + u − |v − u|)/2 and
max(v , u) = (v + u + |v − u|)/2,

that each PL function is in Cd
abs(Rn) and has an abs-linear form!

⇒ Exploit abs-linear form for optimization!
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The Optimization of PL Functions

Signature Domaines

Definition ((Extended) Signature domain)
For a fixed σ ∈ {−1, 0, 1}s and f ∈ Cd

abs(Rn) , we define

Pσ ≡ {x ∈ Rn | sgn(z(x)) = σ} ⊂ Pσ ≡ {x ∈ Rn | Σz(x) = |z(x)|} .

Pσ is called signature domain and Pσ extended signature domain.

the signature domains form a disjoint decomposition of Rn

for a PL function f
each signature domain Pσ is a polyhedron and
f is linear on Pσ

Algorihmic idea: Minimize PL function on Pσ, choose next Pσ̃ carefully

A. Walther Nonsmooth Optimization via Abs-Linearization 17 / 30 GdR MOA 2022



The Optimization of PL Functions

Signature Domaines

Definition ((Extended) Signature domain)
For a fixed σ ∈ {−1, 0, 1}s and f ∈ Cd

abs(Rn) , we define

Pσ ≡ {x ∈ Rn | sgn(z(x)) = σ} ⊂ Pσ ≡ {x ∈ Rn | Σz(x) = |z(x)|} .

Pσ is called signature domain and Pσ extended signature domain.

the signature domains form a disjoint decomposition of Rn

for a PL function f
each signature domain Pσ is a polyhedron and
f is linear on Pσ

Algorihmic idea: Minimize PL function on Pσ, choose next Pσ̃ carefully

A. Walther Nonsmooth Optimization via Abs-Linearization 17 / 30 GdR MOA 2022



The Optimization of PL Functions

Signature Domaines

Definition ((Extended) Signature domain)
For a fixed σ ∈ {−1, 0, 1}s and f ∈ Cd

abs(Rn) , we define

Pσ ≡ {x ∈ Rn | sgn(z(x)) = σ} ⊂ Pσ ≡ {x ∈ Rn | Σz(x) = |z(x)|} .

Pσ is called signature domain and Pσ extended signature domain.

the signature domains form a disjoint decomposition of Rn

for a PL function f
each signature domain Pσ is a polyhedron and
f is linear on Pσ

Algorihmic idea: Minimize PL function on Pσ, choose next Pσ̃ carefully

A. Walther Nonsmooth Optimization via Abs-Linearization 17 / 30 GdR MOA 2022



The Optimization of PL Functions

Example: A Nesterov-Rosenbrock function
The Nesterov-Rosenbrock function

f : Rn 7→ R, f (x) = 1
4 |x1 − 1| +

n−1∑
i=1

|xi+1 − 2|xi | + 1|

has 2n−1 Clarke-stationary points!
M. Gürbüzbalaban, M. Overton, On Nesterov’s nonsmooth Chebyshev–Rosenbrock functions, Nonlinear Anal: Theory, 2012
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The Optimization of PL Functions

Signature Optimal Point
Hence, consider for fixed σ ∈ {−1, 0, 1}s

min
x∈Rn,z∈Rs

a⊤x + b⊤z + 1
2x⊤Qx

s.t. z = c + Zx + Mz + LΣz ,

0 = (Is − |Σ|)z , 0 ≤ Σz ,

for the signature matrix Σ = diag(σ).and a positive definite matrix Q

Definition (Signature optimal point)
Consider a fixed signature vector σ ∈ {−1, 0, 1}s . A minimizer xσ ∈ Pσ

of the original optimization problem restricted to Pσ is called signature
optimal point of the original optimization problem.
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The Optimization of PL Functions

Required Regularity Condition

Definition (LIKQ)
Let a PL function f : Rn 7→ R and a signature vector σ ∈ {−1, 0, 1}s be
given. We say that the linear independence kink qualification (LIKQ) is
satisfied at a point xσ ∈ Rn if the active Jacobian

J(x) ≡ ∇zσ
α(x) ≡

(
e⊤

i ∇zσ(x)
)

i∈α
∈ R|α|×n

has full row rank |α|, which requires in particular that |σ| ≥ s − n.
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The Optimization of PL Functions

Necessary and sufficient optimality condition

Theorem
Let a PL function f : Rn 7→ R and a signature vector σ ∈ {−1, 0, 1}s be
given. Assume that xσ is signature optimal and that LIKQ holds at xσ.
Then xσ is a local minimizer of f if and only if there exist Lagrange
multipliers λ ∈ Rs , such that

0 = a⊤+ b⊤|Σ|Z̊ − λ⊤P⊤
αPαZ̊ and |Pα(b + λ)| ≤ −PαL̊⊤λ

with Z̊ = (Is − M − LΣ)−1Z , L̊ = (Is − M − LΣ)−1L and Pα ≡ (e⊤
i )i∈α.

No combinatorics involved, can be verified in polynomial time!
A. Griewank, A. Walther: Finite convergence of an active signature method to local minima of
piecewise linear functions. OMS, 2019
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The Optimization of PL Functions

Active Signature Method (ASM)
= Optimization of unconstrained, piecewise linear functions

minimization over a sequence of polyhedra
new optimality conditions that can be verified in polynomial time
corresponding adapted QP solver on each polyhedron
convergence in finitely many steps

For the first time convergence to local minimizers!!

Example: Nesterov-Rosenbrock function (2n−1 Clarke-stationary points!)

φ2 : Rn 7→ R, φ(x) = 1
4 |x1 − 1| +

∑
i=1,...,n−1

|xi+1 − 2|xi | + 1|

Iterations numbers:
n 1 2 3 4 5 6 7 8 9 10
ASM+QP 2 4 8∗ 16∗ 32∗ 64∗ 128∗ 256∗ 512∗ 1024∗

HANSO 3 61 494∗ 1341∗ 2521∗ 329∗ 357∗ 326∗ 307∗ 515∗

MPBNGC 3 52 9859∗ 9978∗ 3561∗ 4166∗ 2547∗ 1959∗ 9420∗ 9807∗

* = stop at non-optimal, stationary point
A. Griewank, A. Walther: Finite convergence of an active signature method to local minima of
piecewise linear functions. OMS, 2019
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The Optimization of PL Functions

The Constrained Case II
First, we consider PL constraints, i.e.,

min
x∈Rn,z∈Rs

a⊤x + b⊤z

s.t. 0 = g + Ax + Bz + C |z | ,

0 ≥ h + Dx + Ez + F |z | ,

z = c + Zx + Mz + L|z | ,

Hence, target function might still be unbounded.

generalization of LIKQ and optimality conditions possible
yields Constrained Active Signature Method (CASM)
same convergence results

PhD thesis of T. Kreimeier
T. Kreimeier, A. Walther und A. Griewank: An active signature method for constrained abs-linear
minimization. In revision.
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The Optimization of PL Functions

Robust gas network optimization
Here: Uncertainties in demand and in the physical parameters
Leads to PL constrained problem in inner loop of bundle method

Test instance GasLib134, i.e., the Greek gas network
T. Kreimeier, M. Kuchlbauer, F. Liers, M. Stingl, A. Walther: Towards the Solution of Robust Gas
Network Optimization Problems Using the Constrained Active Signature Method, INOC 2022

A. Walther Nonsmooth Optimization via Abs-Linearization 24 / 30 GdR MOA 2022



The Optimization of PL Functions

Results for Subproblem of GasLib-134
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The Optimization of PL Functions

The Constrained Case II
Second, we consider

min
x∈C ,z∈Rs

a⊤x + b⊤z

s.t.z = c + Zx + Mz + L|z | ,

for a convex, closed, and polyhedral feasible set C .

Existence on minimizers guaranteed!

⇒ Use adapted version of ASM!

again minimization over sequence of polyhedra
now incorporating additional constraints and Q = 0
optimality conditions like ASM,
can be again verified in polynomial time
LP solver on each polyhedron,
here: HiGHS as solver
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The Optimization of PL Functions

Again: The Nesterov-Rosenbrock function
We had for the Nesterov-Rosenbrock function

n 1 2 3 4 5 6 7 8 9 10
ASM+QP 2 4 8∗ 16∗ 32∗ 64∗ 128∗ 256∗ 512∗ 1024∗

HANSO 3 61 494∗ 1341∗ 2521∗ 329∗ 357∗ 326∗ 307∗ 515∗

MPBNGC 3 52 9859∗ 9978∗ 3561∗ 4166∗ 2547∗ 1959∗ 9420∗ 9807∗

Introducing additional bounds not interfering with the minimizer, we get
n 1 2 3 4 5 6 7 8 9 10
polyh. 1 8 32 128 512 2048 8192 32768 131072 524288
aASM 1 2 4 8 16 32 64 128 256 512
splx 0 0 0 0 0 0 0 0 0 0
n 11 12 13 14 15 16 17 18 19 20
aASM 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288
splx 0 0 0 0 0 0 0 0 0 0
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The Optimization of AS Functions

The Unconstrained Case
The local PL model allows the optimization approach

xk+1 = xk + arg min
∆x

{
∆f (xk ; ∆x) + q

2 ∥∆x∥2}
= Successive Abs-Linear MINimization with a proximal term = SALMIN

Pros:
piecewise linear local model can be generated by AD
convergence theory and convergence rates (Griewank, Walther 2019)
optimality can be verified in polynomial time using optimality
conditions for the abs-smooth case, see Griewank, Walther (2016)

Cons: For large-scale problems (large s!)
computing the abs-linear form is expensive
matrices are usually sparse, but sparsity ignored so far
optimization process is slow since inner loop to compute
arg min∆x (...) stops at every kink

⇒ Developement of nonsmooth CG method (PhD topic of Franz Bethke)
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The Optimization of AS Functions

Simulation of Gas Networks
by combining Least-Squares Collocation and SALMIN

Control valve

Circuit symbol, set-point values and
nonsmooth model

aggregated classic/generalized gradient calls

SALMIN (total:380)

SciPy least squares - orig (total:19022)

SciPy least squares - norm (total:13733)
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time steps [h] within scenario

Comparison SALMIN vs. SciPy
solver (transient control valve)

faster convergence/better numerical stability than state-of-art solvers
applied also to a 70 node extended network derived from GasLib40
(now including a close to real world compressor station)

T. Kreimeier, H. Sauter, T. Streubel, C. Tischendorf, A. Walther: Solving Least-Squares
Collocated Differential Algebraic Equations by Successive Abs-Linear Minimization - A Case Study
on Gas Network Simulation. TRR 154 preprint, in review
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classes of nonsmooth optimization problems and their properties

abs-smooth functions and the local PL model via abs-linearization

optimization of PL functions
algorithmic idea
convergence results
numerical results

serves as work horse for nonsmooth optimization

optimization of abs-smooth functions without constraints

future work:
optimization of abs-smooth functions with constraints
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