

On Nonsmooth Optimization Based on Abs-Linearization

Andrea Walther Institut für Mathematik Humboldt-Universität zu Berlin

in memory of

Andreas Griewank, Humboldt-Universität zu Berlin

GdR MOA 2022

October 11, 2022

Andreas Griewank (1950 - 2021)

A. Walther

Nonsmooth Optimization via Abs-Linearization

Outline

- 1 Classes of Nonsmooth Problems
- 2 The Class of Abs-smooth Functions
- The Optimization of Piecewise Linear Functions
- The Optimization of Abs-Smooth Functions
- 5 Conclusion and Outlook

joint work with

Franz Bethke, Sabrina Fiege, Andreas Griewank, Timo Kreimeier,

1 / 30

Smooth

 \Rightarrow

Tight optimality conditions, (super-)linear convergence to roots of equation systems via linearization

A. Walther

Nonsmooth Optimization via Abs-Linearization

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

directional derivatives

$$f'(x; d) := \lim_{t \to 0_+} \frac{f(x + td) - f(x)}{t} \in \mathbb{R} \qquad \forall d \in \mathbb{R}^n$$

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

 directional derivatives necessary optimality condition f'(x; d) ≥ 0 for all d ∈ ℝⁿ

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

- directional derivatives necessary optimality condition f'(x; d) ≥ 0 for all d ∈ ℝⁿ
- Clarke generalized gradient

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

 $\partial^{C} f(x) := \operatorname{conv} \left\{ \lim_{i \to \infty} \nabla f(x_i) \, \big| \, x_i \mapsto x, \nabla f(x_i) \text{ exists} \right\} = \operatorname{conv} \left\{ \partial^{L} f(x) \right\}$

A. Walther

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

- directional derivatives necessary optimality condition f'(x; d) ≥ 0 for all d ∈ ℝⁿ
- Clarke generalized gradient

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990 necessary optimality condition $0 \in \partial^C f(x)$

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

- directional derivatives necessary optimality condition f'(x; d) ≥ 0 for all d ∈ ℝⁿ
- Clarke generalized gradient

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990 necessary optimality condition $0 \in \partial^C f(x)$

• Mordukhovich subgradient $\partial^M f(x)$

T. Rockafellar, R. Wets: Variational Analysis, Springer, 1998

$$\partial^M f(x) = \left\{ g \in \mathbb{R}^n \, \big| \, x_k \to x, f(x_k) \to f(x), g_k \in \widehat{\partial}^M f(x_k), g_k \to g \right\}$$

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

- directional derivatives
 necessary optimality condition f'(x; d) ≥ 0 for all d ∈ ℝⁿ
- Clarke generalized gradient

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990 necessary optimality condition $0 \in \partial^C f(x)$

• Mordukhovich subgradient $\partial^M f(x)$

T. Rockafellar, R. Wets: Variational Analysis, Springer, 1998 necessary optimality condition $0 \in \partial^M f(x)$

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

- directional derivatives
 necessary optimality condition f'(x; d) ≥ 0 for all d ∈ ℝⁿ
- Clarke generalized gradient

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990 necessary optimality condition $0 \in \partial^C f(x)$

• Mordukhovich subgradient $\partial^M f(x)$

T. Rockafellar, R. Wets: Variational Analysis, Springer, 1998 necessary optimality condition $0 \in \partial^M f(x)$

Given: $f : \mathbb{R}^n \mapsto \mathbb{R}$ not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

- directional derivatives
 necessary optimality condition f'(x; d) ≥ 0 for all d ∈ ℝⁿ
- Clarke generalized gradient

F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990 necessary optimality condition $0 \in \partial^C f(x)$ $\partial^C (|0|) = \partial^C (-|0|)!$

• Mordukhovich subgradient $\partial^M f(x)$

T. Rockafellar, R. Wets: Variational Analysis, Springer, 1998 necessary optimality condition $0 \in \partial^M f(x)$

Is This Really Necessary?

Theorem (Rademacher)

If the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is locally Lipschitz continuous then f is almost everywhere differentiable.

Is This Really Necessary?

Theorem (Rademacher)

If the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is locally Lipschitz continuous then f is almost everywhere differentiable.

Obvious idea: Use smooth optimization methods!

Berlin Mathematics Research Cen

Is This Really Necessary?

Theorem (Rademacher)

If the function $f : \mathbb{R}^n \to \mathbb{R}$ is locally Lipschitz continuous then f is almost everywhere differentiable.

Obvious idea: Use smooth optimization methods, e.g., quasi-Newton

M. Gürbüzbalaban, M.L. Overton / Nonlinear Analysis 75 (2012) 1282-1289

A Walther

Nonsmooth Optimization via Abs-Linearization

Is This Really Necessary?

Theorem (Rademacher)

If the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is locally Lipschitz continuous then f is almost everywhere differentiable.

Obvious idea: Use smooth optimization methods, e.g., steepest descent

Example by Hiriart-Urruty and Lemaréchal

4 / 30

Current (= Black Box) Approaches for **Current** (Nonsmooth Optimization

- Use methods for smooth problems may fail, see slide before, no convergence theory
- Subgradient method very (!) slow convergence
- Bundle methods lots of parameters, erratic convergence behaviour involves oracle
- Semi-smooth Newton methods only local convergence
- Derivative-free methods no structure exploitation, difficult when number of optimization variables large

5 / 30

Lessons learned

- various concepts for nonsmoothness
- various concepts for generalized derivatives
- resulting in various optimality conditions, usually difficult to verify
- many important applications, e.g., machine learning!!
- no out-of-the-shelf solution algorithm structure exploitation indispensable

Where are we?

Our Class of Functions

Definition $(\mathcal{C}^d_{abs}(\mathbb{R}^n)$ Functions)

For any $d \in \mathbb{N}$, the set of functions $f : \mathbb{R}^n \mapsto \mathbb{R}, y = f(x)$, defined by an abs-smooth form

$$z = F(x, z, |z|),$$

$$y = \varphi(x, z),$$

with $F \in \mathcal{C}^d(\mathbb{R}^{n+s+s},\mathbb{R}^s)$ and $\varphi \in \mathcal{C}^d(\mathbb{R}^{n+s},\mathbb{R})$, such that z_i is determined only by the values of z_i , $1 \leq j < i$, is denoted by $\mathcal{C}^d_{abs}(\mathbb{R}^n)$.

Our Class of Functions

Definition $(\mathcal{C}^d_{abs}(\mathbb{R}^n)$ Functions)

For any $d \in \mathbb{N}$, the set of functions $f : \mathbb{R}^n \mapsto \mathbb{R}, y = f(x)$, defined by an abs-smooth form

$$z = F(x, z, |z|),$$

$$y = \varphi(x, z),$$

with $F \in C^d(\mathbb{R}^{n+s+s}, \mathbb{R}^s)$ and $\varphi \in C^d(\mathbb{R}^{n+s}, \mathbb{R})$, such that z_i is determined only by the values of z_j , $1 \le j < i$, is denoted by $C^d_{abs}(\mathbb{R}^n)$. An element $f \in C^d(\mathbb{R}^{n+s+s}, \mathbb{R}^s)$ for $d \ge 1$ is called abs-smooth.

Our Class of Functions

Definition $(\mathcal{C}^d_{abs}(\mathbb{R}^n)$ Functions)

For any $d \in \mathbb{N}$, the set of functions $f : \mathbb{R}^n \mapsto \mathbb{R}, y = f(x)$, defined by an abs-smooth form

$$z = F(x, z, |z|),$$

$$y = \varphi(x, z),$$

with $F \in C^d(\mathbb{R}^{n+s+s}, \mathbb{R}^s)$ and $\varphi \in C^d(\mathbb{R}^{n+s}, \mathbb{R})$, such that z_i is determined only by the values of z_j , $1 \le j < i$, is denoted by $C^d_{abs}(\mathbb{R}^n)$. An element $f \in C^d(\mathbb{R}^{n+s+s}, \mathbb{R}^s)$ for $d \ge 1$ is called abs-smooth. The components z_i , $1 \le i \le s$, of z are called switching variables.

8 / 30

Exact ℓ_1 penalty functions

Reformulation of constrained optimization problem

$$\min_{x} f(x) \quad \text{s.t.} \quad c_i(x) = 0, \ i \in \mathcal{E}, \quad c_i(x) \ge 0, \ i \in \mathcal{I}$$

as unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

HUMBO.

Exact ℓ_1 penalty functions

Reformulation of constrained optimization problem

$$\min_{x} f(x) \quad \text{s.t.} \quad c_i(x) = 0, \ i \in \mathcal{E}, \quad c_i(x) \ge 0, \ i \in \mathcal{I}$$

as unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

Robust optimization

often formulated as min-max problems

Abs-smooth Example Problems

Exact ℓ_1 penalty functions

Reformulation of constrained optimization problem

$$\min_{x} f(x)$$
 s.t. $c_i(x) = 0, i \in \mathcal{E}, \quad c_i(x) \ge 0, i \in \mathcal{I}$

as unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

Robust optimization

often formulated as min-max problems

GdR MOA 2022

Train timetabling

yields piecewise linear optimization problem

F. Fischer, C. Helmberg: Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale Train Timetabling, 2010

Abs-smooth Example Problems

Exact ℓ_1 penalty functions

Reformulation of constrained optimization problem

$$\min_{x} f(x)$$
 s.t. $c_i(x) = 0, i \in \mathcal{E}, \quad c_i(x) \ge 0, i \in \mathcal{I}$

as unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

Robust optimization

often formulated as min-max problems

 Train timetabling
 yields piecewise linear optimization problem

 F. Fischer, C. Helmberg: Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale Train Timetabling, 2010

Local models may yield piecewise linear optimization problem F. Liers, M. Merkert: Structural Investigation of Piecewise Linearized Flow Problems. 2016

9 / 30

Abs-smooth Example Problems

Exact ℓ_1 penalty functions

Reformulation of constrained optimization problem

$$\min_{x} f(x)$$
 s.t. $c_i(x) = 0, i \in \mathcal{E}, \quad c_i(x) \ge 0, i \in \mathcal{I}$

as unconstrained optimization problem with $\ell_1\text{-penalty}$

$$\phi(x;\mu) = f(x) + \mu \sum_{i \in \mathcal{E}} |c_i(x)| + \mu \sum_{i \in \mathcal{I}} \max\{0, -c_i(x)\}$$

Robust optimization

often formulated as min-max problems

 Train timetabling
 yields piecewise linear optimization problem

 F. Fischer, C. Helmberg: Dynamic Graph Generation and Dynamic Rolling Horizon Techniques in Large Scale Train Timetabling, 2010

Local models may yield piecewise linear optimization problem F. Liers, M. Merkert: Structural Investigation of Piecewise Linearized Flow Problems. 2016

Machine Learning

nonsmooth activation functions like ReLu

GdR MOA 2022

9 / 30

The Half-pipe Function

$$f: \mathbb{R}^2 \mapsto \mathbb{R}, \ f(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0)$$

= $\frac{1}{2}(x_2^2 - \frac{1}{2}(x_1 + |x_1|) + |x_2^2 - \frac{1}{2}(x_1 + |x_1|)|)$

The Half-pipe Function

$$f: \mathbb{R}^2 \mapsto \mathbb{R}, \ f(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0)$$

= $\frac{1}{2}(x_2^2 - \frac{1}{2}(x_1 + |x_1|) + |x_2^2 - \frac{1}{2}(x_1 + |x_1|)|)$

has the abs-smooth form

$$z_{1} = x_{1}$$

$$z_{2} = x_{2}^{2} - \frac{1}{2}(x_{1} + |z_{1}|)$$

$$z_{3} = |z_{2}|$$

$$y = \varphi(x, z) = \frac{1}{2}(z_{2} + z_{3})$$
i.e., $z = F(x, z, |z|)$

Definition (Piecewise Smooth (PS), Piecewise Linear (PL))

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

• $f : \mathcal{D} \to \mathbb{R}^m$ is called *continuous selection* of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and

 $f(x) \in \{f_1(x), \ldots, f_k(x)\} \quad \forall x \in U.$

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

11 / 30

Definition (Piecewise Smooth (PS), Piecewise Linear (PL))

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

• $f : \mathcal{D} \to \mathbb{R}^m$ is called *continuous selection* of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and

 $f(x) \in \{f_1(x), \ldots, f_k(x)\} \qquad \forall x \in U.$

• $f: \mathcal{D} \to \mathbb{R}^m$ is called *PC^r-function* with $r \in \mathbb{N} \cup \{\infty\}$ if for every $x \in \mathcal{D}$ there exists an open neighboorhood $U \subseteq \mathcal{D}$, such that f is a continuous selection of f_1, \ldots, f_k on U and $f_i \in C^r(\mathcal{D}), 1 \le i \le k$.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

11 / 30

Definition (Piecewise Smooth (PS), Piecewise Linear (PL))

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

• $f : \mathcal{D} \to \mathbb{R}^m$ is called *continuous selection* of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and

 $f(x) \in \{f_1(x), \ldots, f_k(x)\} \quad \forall x \in U.$

- $f: \mathcal{D} \to \mathbb{R}^m$ is called *PC^r-function* with $r \in \mathbb{N} \cup \{\infty\}$ if for every $x \in \mathcal{D}$ there exists an open neighboorhood $U \subseteq \mathcal{D}$, such that f is a continuous selection of f_1, \ldots, f_k on U and $f_i \in C^r(\mathcal{D}), 1 \le i \le k$.
- A PC^r-function is also called piecewise smooth.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

11 / 30

Definition (Piecewise Smooth (PS), Piecewise Linear (PL))

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

• $f : \mathcal{D} \to \mathbb{R}^m$ is called *continuous selection* of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and

 $f(x) \in \{f_1(x), \ldots, f_k(x)\} \quad \forall x \in U.$

- $f: \mathcal{D} \to \mathbb{R}^m$ is called *PC^r-function* with $r \in \mathbb{N} \cup \{\infty\}$ if for every $x \in \mathcal{D}$ there exists an open neighboorhood $U \subseteq \mathcal{D}$, such that f is a continuous selection of f_1, \ldots, f_k on U and $f_i \in C^r(\mathcal{D}), 1 \le i \le k$.
- A PC^r-function is also called piecewise smooth.
- A continuous selection $f : U \to \mathbb{R}^m$ is called *piecewise linear* if all elements of the collection f_1, \ldots, f_k are affine functions.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

11 / 30

Definition (Piecewise Smooth (PS), Piecewise Linear (PL))

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be open and $f_i : \mathcal{D} \to \mathbb{R}^m, i = 1, \dots, k$ with $k \in \mathbb{N}$ be given.

• $f : \mathcal{D} \to \mathbb{R}^m$ is called *continuous selection* of the collection f_1, \ldots, f_k on the set $U \subseteq \mathcal{D}$ if f is continuous on U and

 $f(x) \in \{f_1(x), \ldots, f_k(x)\} \qquad \forall x \in U.$

- $f: \mathcal{D} \to \mathbb{R}^m$ is called *PC^r-function* with $r \in \mathbb{N} \cup \{\infty\}$ if for every $x \in \mathcal{D}$ there exists an open neighboorhood $U \subseteq \mathcal{D}$, such that f is a continuous selection of f_1, \ldots, f_k on U and $f_i \in C^r(\mathcal{D}), 1 \le i \le k$.
- A PC^r-function is also called piecewise smooth.
- A continuous selection $f : U \to \mathbb{R}^m$ is called *piecewise linear* if all elements of the collection f_1, \ldots, f_k are affine functions.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

One can show: $\mathcal{C}^d_{abs}(\mathbb{R}^n)$ is a proper subset of the PS functions!

11 / 30

Information Gained from $C^d_{abs}(\mathbb{R}^n)$ Functions

For $d \ge 1$ the following matrices and vectors are well defined:

$$\begin{split} Z &= \frac{\partial}{\partial x} F(x, z, |z|) \in \mathbb{R}^{s \times n} \\ M &= \frac{\partial}{\partial z} F(x, z, |z|) \in \mathbb{R}^{s \times s} & \text{strictly lower triangular} \\ L &= \frac{\partial}{\partial |z|} F(x, z, |z|) \in \mathbb{R}^{s \times s} & \text{strictly lower triangular} \\ a &= \frac{\partial}{\partial x} \varphi(x, z) \in \mathbb{R}^{n}, & b = \frac{\partial}{\partial z} \varphi(x, z) \in \mathbb{R}^{s} \end{split}$$

Information Gained from $C^d_{abs}(\mathbb{R}^n)$ Functions

For $d \ge 1$ the following matrices and vectors are well defined:

$$\begin{aligned} Z &= \frac{\partial}{\partial x} F(x, z, |z|) \in \mathbb{R}^{s \times n} \\ M &= \frac{\partial}{\partial z} F(x, z, |z|) \in \mathbb{R}^{s \times s} & \text{strictly lower triangular} \\ L &= \frac{\partial}{\partial |z|} F(x, z, |z|) \in \mathbb{R}^{s \times s} & \text{strictly lower triangular} \\ a &= \frac{\partial}{\partial x} \varphi(x, z) \in \mathbb{R}^{n}, & b = \frac{\partial}{\partial z} \varphi(x, z) \in \mathbb{R}^{s} \end{aligned}$$

The signature vector and the corresponding diagonal matrix given by

$$\sigma(x) = \operatorname{sign}(z(x))$$
 and $\Sigma = \operatorname{diag}(\sigma(x))$

define the active switch set

$$\alpha = \alpha(x) \equiv \{1 \leq i < s \mid \sigma_i(x) = 0\}.$$

Information Gained from $C^d_{abs}(\mathbb{R}^n)$ Functions

For $d \ge 1$ the following matrices and vectors are well defined:

$$\begin{aligned} Z &= \frac{\partial}{\partial x} F(x, z, |z|) \in \mathbb{R}^{s \times n} \\ M &= \frac{\partial}{\partial z} F(x, z, |z|) \in \mathbb{R}^{s \times s} & \text{strictly lower triangular} \\ L &= \frac{\partial}{\partial |z|} F(x, z, |z|) \in \mathbb{R}^{s \times s} & \text{strictly lower triangular} \\ a &= \frac{\partial}{\partial x} \varphi(x, z) \in \mathbb{R}^{n}, & b = \frac{\partial}{\partial z} \varphi(x, z) \in \mathbb{R}^{s} \end{aligned}$$

The signature vector and the corresponding diagonal matrix given by

$$\sigma(x) = \operatorname{sign}(z(x))$$
 and $\Sigma = \operatorname{diag}(\sigma(x))$

define the active switch set

$$\alpha = \alpha(x) \equiv \{1 \leq i < s \mid \sigma_i(x) = 0\}.$$

Required derivatives by extended algorithmic differentiation (AD)!

12 / 30

Once More the Half-pipe Function

$$\begin{split} f: \mathbb{R}^2 &\mapsto \mathbb{R}, \ f(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0) \\ &= \frac{1}{2} \left(x_2^2 - \frac{1}{2} \left(x_1 + |x_1| \right) + |x_2^2 - \frac{1}{2} \left(x_1 + |x_1| \right) | \right) \end{split}$$

A. Walther

Once More the Half-pipe Function

$$\begin{split} f: \mathbb{R}^2 &\mapsto \mathbb{R}, \ f(x_1, x_2) = \max(x_2^2 - \max(x_1, 0), 0) \\ &= \frac{1}{2} \left(x_2^2 - \frac{1}{2} \left(x_1 + |x_1| \right) + |x_2^2 - \frac{1}{2} \left(x_1 + |x_1| \right) | \right) \end{split}$$

with

$$z_{1} = x_{1} z_{2} = x_{2}^{2} - \frac{1}{2} (x_{1} + |z_{1}|) z_{3} = |z_{2}|$$
 $\Rightarrow Z = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & 2x_{2} \\ 0 & 0 \end{bmatrix}, M = 0, L = \begin{bmatrix} 0 & 0 & 0 \\ -\frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

$$y = \varphi(x, z) = \frac{1}{2}(z_2 + z_3) \Rightarrow a = 0 \text{ and } b = (0, 0.5, 0.5)^\top$$

A Local PL Model for Abs-smooth Functions

Definition (Abs-linear form of abs-smooth $f : \mathbb{R}^n \to \mathbb{R}$ at \dot{x})

The abs-linear form of f at \mathring{x} is defined by $\Delta f(\mathring{x};.): \mathbb{R}^n \mapsto \mathbb{R}$,

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} Z & M & L \\ a & b & 0 \end{bmatrix} \begin{bmatrix} x \\ z \\ |z| \end{bmatrix}$$

A Local PL Model for Abs-smooth Functions

Definition (Abs-linear form of abs-smooth $f : \mathbb{R}^n \to \mathbb{R}$ at \dot{x})

The abs-linear form of f at \mathring{x} is defined by $\Delta f(\mathring{x}; .) : \mathbb{R}^n \mapsto \mathbb{R}$,

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} Z & M & L \\ a & b & 0 \end{bmatrix} \begin{bmatrix} x \\ z \\ |z| \end{bmatrix}$$

Theorem

Suppose f is abs-smooth on $D \subset K \subset \mathbb{R}^n$, D open, K closed and convex. Then there exists $\gamma > 0$ such that for all $x, \dot{x} \in K$

$$\|f(x) - \Delta f(\mathring{x}; x - \mathring{x})\| = \gamma \|x - \mathring{x}\|^2$$

14 / 30

A Local PL Model for Abs-smooth Functions

Definition (Abs-linear form of abs-smooth $f : \mathbb{R}^n \to \mathbb{R}$ at \dot{x})

The abs-linear form of f at \mathring{x} is defined by $\Delta f(\mathring{x}; .) : \mathbb{R}^n \mapsto \mathbb{R}$,

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} Z & M & L \\ a & b & 0 \end{bmatrix} \begin{bmatrix} x \\ z \\ |z| \end{bmatrix}$$

Theorem

Suppose f is abs-smooth on $D \subset K \subset \mathbb{R}^n$, D open, K closed and convex. Then there exists $\gamma > 0$ such that for all $x, \dot{x} \in K$

$$\|f(x) - \Delta f(\mathring{x}; x - \mathring{x})\| = \gamma \|x - \mathring{x}\|^2$$

 $\Rightarrow \Delta f(\dot{x};.)$ is local piecewise linear model of second order!

A. Griewank. On stable piecewise linearization and generalized AD, OMS, 2013

GdR MOA 2022

14 / 30

Observations

Even min $\varphi(x)$ with PL convex φ not easy:

- Global minimization is NP-hard
- Steepest descent with exact line search may fail
- Zeno behaviour possible, i.e., solution trajactory with infinite number of direction changes in a finite amount of time
- J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimization Algorithms I, Springer, 1993

GdR MOA 2022

15 / 30

There are many choices

There are many choices, e.g.,

Theorem (Max-Min representation of PL functions)

For each PL $f : \mathbb{R}^n \mapsto \mathbb{R}$ with selection functions $f_j(x) = a_j^\top x + b_j$, $1 \le j \le k$, there exist index sets $M_i \subset \{1, \dots, k\}$, $1 \le i \le l$, such that

$$f(x) = \max_{1 \leq i \leq l} \min_{j \in M_i} a_j^\top x + b_j .$$

e.g., S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

There are many choices, e.g.,

Theorem (Max-Min representation of PL functions)

For each PL $f : \mathbb{R}^n \mapsto \mathbb{R}$ with selection functions $f_j(x) = a_j^\top x + b_j$, $1 \le j \le k$, there exist index sets $M_i \subset \{1, \ldots, k\}$, $1 \le i \le l$, such that

$$f(x) = \max_{1 \leq i \leq l} \min_{j \in M_i} a_j^\top x + b_j .$$

e.g., S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

Then, it follows from

$$\min(v, u) = (v + u - |v - u|)/2 \text{ and} \max(v, u) = (v + u + |v - u|)/2,$$

that each PL function is in $\mathcal{C}^d_{\mathsf{abs}}(\mathbb{R}^n)$ and has an abs-linear form!

16 / 30

There are many choices, e.g.,

Theorem (Max-Min representation of PL functions)

For each PL $f : \mathbb{R}^n \mapsto \mathbb{R}$ with selection functions $f_j(x) = a_j^\top x + b_j$, $1 \le j \le k$, there exist index sets $M_i \subset \{1, \ldots, k\}$, $1 \le i \le l$, such that

$$f(x) = \max_{1 \leq i \leq l} \min_{j \in M_i} a_j^\top x + b_j .$$

e.g., S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

Then, it follows from

$$\min(v, u) = (v + u - |v - u|)/2 \text{ and} \max(v, u) = (v + u + |v - u|)/2,$$

that each PL function is in $\mathcal{C}^d_{abs}(\mathbb{R}^n)$ and has an abs-linear form!

 \Rightarrow Exploit abs-linear form for optimization!

Berlin Mathematics Research Center

16 / 30

Signature Domaines

Definition ((Extended) Signature domain)

For a fixed $\sigma \in \{-1,0,1\}^s$ and $f \in \mathcal{C}^d_{\mathsf{abs}}(\mathbb{R}^n)$, we define

$$\mathcal{P}_{\sigma} \equiv \{x \in \mathbb{R}^n \mid \mathsf{sgn}(z(x)) = \sigma\} \subset \overline{\mathcal{P}}_{\sigma} \equiv \{x \in \mathbb{R}^n \mid \Sigma z(x) = |z(x)|\} \;.$$

 \mathcal{P}_{σ} is called signature domain and $\overline{\mathcal{P}}_{\sigma}$ extended signature domain.

Signature Domaines

Definition ((Extended) Signature domain)

For a fixed $\sigma \in \{-1,0,1\}^s$ and $f \in \mathcal{C}^d_{\mathsf{abs}}(\mathbb{R}^n)$, we define

$$\mathcal{P}_{\sigma} \equiv \{x \in \mathbb{R}^n \mid \mathbf{sgn}(z(x)) = \sigma\} \subset \overline{\mathcal{P}}_{\sigma} \equiv \{x \in \mathbb{R}^n \mid \Sigma z(x) = |z(x)|\} \;.$$

 \mathcal{P}_{σ} is called signature domain and $\overline{\mathcal{P}}_{\sigma}$ extended signature domain.

- the signature domains form a disjoint decomposition of \mathbb{R}^n
- for a PL function f
 - $\bullet\,$ each signature domain \mathcal{P}_{σ} is a polyhedron and
 - f is linear on \mathcal{P}_{σ}

Signature Domaines

Definition ((Extended) Signature domain)

For a fixed $\sigma\in\{-1,0,1\}^s$ and $f\in\mathcal{C}^d_{\mathsf{abs}}(\mathbb{R}^n)$, we define

$$\mathcal{P}_{\sigma} \equiv \{x \in \mathbb{R}^n \mid \operatorname{sgn}(z(x)) = \sigma\} \subset \overline{\mathcal{P}}_{\sigma} \equiv \{x \in \mathbb{R}^n \mid \Sigma z(x) = |z(x)|\} \;.$$

 \mathcal{P}_{σ} is called signature domain and $\overline{\mathcal{P}}_{\sigma}$ extended signature domain.

- the signature domains form a disjoint decomposition of \mathbb{R}^n
- for a PL function f
 - $\bullet\,$ each signature domain \mathcal{P}_{σ} is a polyhedron and
 - f is linear on \mathcal{P}_{σ}

Algorihmic idea: Minimize PL function on \mathcal{P}_{σ} , choose next $\mathcal{P}_{\tilde{\sigma}}$ carefully

17 / 30

Example: A Nesterov-Rosenbrock function^{*}

The Nesterov-Rosenbrock function

$$f: \mathbb{R}^n \mapsto \mathbb{R}, \quad f(x) = \frac{1}{4} |x_1 - 1| + \sum_{i=1}^{n-1} |x_{i+1} - 2|x_i| + 1|$$

has 2^{n-1} Clarke-stationary points!

M. Gürbüzbalaban, M. Overton, On Nesterov's nonsmooth Chebyshev-Rosenbrock functions, Nonlinear Anal: Theory, 2012

Example: A Nesterov-Rosenbrock function

The Nesteroy-Rosenbrock function

$$f: \mathbb{R}^n \mapsto \mathbb{R}, \quad f(x) = \frac{1}{4} |x_1 - 1| + \sum_{i=1}^{n-1} |x_{i+1} - 2|x_i| + 1|$$

has 2^{n-1} Clarke-stationary points!

M. Gürbüzbalaban, M. Overton, On Nesterov's nonsmooth Chebyshev-Rosenbrock functions, Nonlinear Anal: Theory, 2012

Nonsmooth Optimization via Abs-Linearization

18 / 30

Signature Optimal Point

Hence, consider for fixed $\sigma \in \{-1,0,1\}^s$

$$\begin{array}{l} \min_{x \in \mathbb{R}^n, z \in \mathbb{R}^s} \ a^\top x + b^\top z \\ \text{s.t.} \quad z = c + Zx + Mz + L\Sigma z \ , \\ 0 = (I_s - |\Sigma|)z \ , \quad 0 \leq \Sigma z \ , \end{array}$$

for the signature matrix $\Sigma = \text{diag}(\sigma)$.

Signature Optimal Point

Hence, consider for fixed $\sigma \in \{-1,0,1\}^s$

$$\min_{x \in \mathbb{R}^n, z \in \mathbb{R}^s} a^\top x + b^\top z + \frac{1}{2} x^\top Q x$$
s.t. $z = c + Z x + M z + L \Sigma z$,
 $0 = (I_s - |\Sigma|) z$, $0 \le \Sigma z$,

for the signature matrix $\Sigma = \text{diag}(\sigma)$ and a positive definite matrix Q.

Signature Optimal Point

Hence, consider for fixed $\sigma \in \{-1,0,1\}^s$

$$\min_{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{z} \in \mathbb{R}^{s}} a^{\top} \mathbf{x} + b^{\top} \mathbf{z} + \frac{1}{2} \mathbf{x}^{\top} Q \mathbf{x}$$
s.t. $\mathbf{z} = \mathbf{c} + Z \mathbf{x} + M \mathbf{z} + L \Sigma \mathbf{z}$,
 $\mathbf{0} = (I_{s} - |\Sigma|) \mathbf{z}$, $\mathbf{0} \le \Sigma \mathbf{z}$,

for the signature matrix $\Sigma = \text{diag}(\sigma)$ and a positive definite matrix Q.

Definition (Signature optimal point)

Consider a fixed signature vector $\sigma \in \{-1, 0, 1\}^s$. A minimizer $x_{\sigma} \in \mathcal{P}_{\sigma}$ of the original optimization problem restricted to \mathcal{P}_{σ} is called *signature optimal point* of the original optimization problem.

19 / 30

Required Regularity Condition

Definition (LIKQ)

Let a PL function $f : \mathbb{R}^n \mapsto \mathbb{R}$ and a signature vector $\sigma \in \{-1, 0, 1\}^s$ be given. We say that the linear independence kink qualification (LIKQ) is satisfied at a point $x_{\sigma} \in \mathbb{R}^n$ if the active Jacobian

$$J(x) \equiv \nabla z_{\alpha}^{\sigma}(x) \equiv \left(e_{i}^{\top} \nabla z^{\sigma}(x)\right)_{i \in \alpha} \in \mathbb{R}^{|\alpha| \times n}$$

has full row rank $|\alpha|$, which requires in particular that $|\sigma| \ge s - n$.

Necessary and sufficient optimality condition

Theorem

Let a PL function $f : \mathbb{R}^n \mapsto \mathbb{R}$ and a signature vector $\sigma \in \{-1, 0, 1\}^s$ be given. Assume that x_{σ} is signature optimal and that LIKQ holds at x_{σ} . Then x_{σ} is a local minimizer of f if and only if there exist Lagrange multipliers $\lambda \in \mathbb{R}^s$, such that

with $\mathring{Z} = (I_s - M - L\Sigma)^{-1}Z$, $\mathring{L} = (I_s - M - L\Sigma)^{-1}L$ and $P_{\alpha} \equiv (e_i^{\top})_{i \in \alpha}$.

Necessary and sufficient optimality condition

Theorem

Let a PL function $f : \mathbb{R}^n \mapsto \mathbb{R}$ and a signature vector $\sigma \in \{-1, 0, 1\}^s$ be given. Assume that x_{σ} is signature optimal and that LIKQ holds at x_{σ} . Then x_{σ} is a local minimizer of f if and only if there exist Lagrange multipliers $\lambda \in \mathbb{R}^s$, such that

with $\mathring{Z} = (I_s - M - L\Sigma)^{-1}Z$, $\mathring{L} = (I_s - M - L\Sigma)^{-1}L$ and $P_{\alpha} \equiv (e_i^{\top})_{i \in \alpha}$.

No combinatorics involved, can be verified in polynomial time!

A. Griewank, A. Walther: Finite convergence of an active signature method to local minima of piecewise linear functions. OMS, 2019

21 / 30

Active Signature Method (ASM)

- = Optimization of unconstrained, piecewise linear functions
 - minimization over a sequence of polyhedra
 - new optimality conditions that can be verified in polynomial time
 - corresponding adapted QP solver on each polyhedron
 - convergence in finitely many steps

For the first time convergence to local minimizers!!

Active Signature Method (ASM)

- = Optimization of unconstrained, piecewise linear functions
 - minimization over a sequence of polyhedra
 - new optimality conditions that can be verified in polynomial time
 - corresponding adapted QP solver on each polyhedron
 - convergence in finitely many steps

For the first time convergence to local minimizers!!

Example: Nesterov-Rosenbrock function $(2^{n-1} \text{ Clarke-stationary points!})$

$$\varphi_2: \mathbb{R}^n \mapsto \mathbb{R}, \quad \varphi(x) = \frac{1}{4} |x_1 - 1| + \sum_{i=1,\dots,n-1} |x_{i+1} - 2|x_i| + 1|$$

Active Signature Method (ASM)

- = Optimization of unconstrained, piecewise linear functions
 - minimization over a sequence of polyhedra
 - new optimality conditions that can be verified in polynomial time
 - corresponding adapted QP solver on each polyhedron
 - convergence in finitely many steps

For the first time convergence to local minimizers!!

Example: Nesterov-Rosenbrock function $(2^{n-1} \text{ Clarke-stationary points!})$

$$\varphi_2 : \mathbb{R}^n \mapsto \mathbb{R}, \quad \varphi(x) = \frac{1}{4} |x_1 - 1| + \sum_{i=1,\dots,n-1} |x_{i+1} - 2|x_i| + 1|$$

Iterations numbers:

n	1	2	3	4	5	6	7	8	9	10
ASM+QP	2	4	8	16	32	64	128	256	512	1024
HANSO	3	61	494*	1341^{*}	2521*	329*	357*	326*	307*	515*
MPBNGC	3	52	9859	9978*	3561*	4166*	2547*	1959*	9420*	9807*

* = stop at non-optimal, stationary point

A. Griewank, A. Walther: Finite convergence of an active signature method to local minima of piecewise linear functions. OMS, 2019

GdR MOA 2022

22 / 30

The Constrained Case I

First, we consider PL constraints, i.e.,

$$\min_{x \in \mathbb{R}^{n}, z \in \mathbb{R}^{s}} a^{\top}x + b^{\top}z$$

s.t.
$$0 = g + Ax + Bz + C|z|,$$
$$0 \ge h + Dx + Ez + F|z|,$$
$$z = c + Zx + Mz + L|z|,$$

Hence, target function might still be unbounded.

The Constrained Case I

First, we consider PL constraints, i.e.,

$$\min_{x \in \mathbb{R}^{n}, z \in \mathbb{R}^{s}} a^{\top}x + b^{\top}z$$

s.t.
$$0 = g + Ax + Bz + C|z|,$$
$$0 \ge h + Dx + Ez + F|z|,$$
$$z = c + Zx + Mz + L|z|,$$

Hence, target function might still be unbounded.

- generalization of LIKQ and optimality conditions possible yields Constrained Active Signature Method (CASM)
- same convergence results

PhD thesis of T. Kreimeier

T. Kreimeier, A. Walther und A. Griewank: An active signature method for constrained abs-linear minimization. In revision.

23 / 30

Robust gas network optimization

Here: Uncertainties in demand and in the physical parameters Leads to PL constrained problem in inner loop of bundle method

Test instance GasLib134, i.e., the Greek gas network

T. Kreimeier, M. Kuchlbauer, F. Liers, M. Stingl, A. Walther: Towards the Solution of Robust Gas Network Optimization Problems Using the Constrained Active Signature Method, INOC 2022

24 / 30

Results for Subproblem of GasLib-134

Results for Subproblem of GasLib-134

A. Walther

Nonsmooth Optimization via Abs-Linearization

The Optimization of PL Functions

Second, we consider

$$\min_{x \in \mathbf{C}, z \in \mathbb{R}^s} a^\top x + b^\top z$$

s.t. $z = c + Zx + Mz + L|z|$,

for a convex, closed, and polyhedral feasible set C.

The Optimization of PL Functions

Second, we consider

$$\begin{split} \min_{x \in \boldsymbol{C}, z \in \mathbb{R}^s} & \boldsymbol{a}^\top \boldsymbol{x} + \boldsymbol{b}^\top \boldsymbol{z} \\ \text{s.t.} \boldsymbol{z} &= \boldsymbol{c} + \boldsymbol{Z} \boldsymbol{x} + \boldsymbol{M} \boldsymbol{z} + \boldsymbol{L} |\boldsymbol{z}| \;, \end{split}$$

for a convex, closed, and polyhedral feasible set C.

Existence on minimizers guaranteed!

The Optimization of PL Functions

The Constrained Case II

Second, we consider

$$\min_{x \in C, z \in \mathbb{R}^s} a^\top x + b^\top z$$

s.t. $z = c + Zx + Mz + L|z|$

for a convex, closed, and polyhedral feasible set C.

Existence on minimizers guaranteed!

 \Rightarrow Use adapted version of ASM!

- again minimization over sequence of polyhedra now incorporating additional constraints and Q = 0
- optimality conditions like ASM, can be again verified in polynomial time
- LP solver on each polyhedron, here: HiGHS as solver

26 / 30

Again: The Nesterov-Rosenbrock function

We had for the Nesterov-Rosenbrock function

n	1	2	3	4	5	6	7	8	9	10
ASM+QP	2	4	8	16	32	64	128	256	512	1024
HANSO	3	61	494*	1341*	2521*	329*	357*	326*	307*	515*
MPBNGC	3	52	9859	9978*	3561*	4166*	2547*	1959^{*}	9420*	9807*

Again: The Nesterov-Rosenbrock function

We had for the Nesterov-Rosenbrock function

n	1	2	3	4	5	6	7	8	9	10
ASM+QP	2	4	8	16	32	64	128	256	512	1024
HANSO	3	61	494*	1341*	2521*	329*	357*	326*	307*	515*
MPBNGC	3	52	9859	9978*	3561*	4166*	2547*	1959^{*}	9420*	9807*

Introducing additional bounds not interfering with the minimizer, we get

n	1	2	3	4	5	6	7	8	9	10
polyh.	1	8	32	128	512	2048	8192	32768	131072	524288
aASM	1	2	4	8	16	32	64	128	256	512
splx	0	0	0	0	0	0	0	0	0	0
n	11	12	13	14	15	16	17	18	19	20
aASM	1024	2048	4096	8192	16384	32768	65536	131072	262144	524288
splx	0	0	0	0	0	0	0	0	0	0

The local PL model allows the optimization approach

$$x_{k+1} = x_k + \arg\min_{\Delta x} \left\{ \Delta f(x_k; \Delta x) + \frac{q}{2} \|\Delta x\|^2 \right\}$$

= Successive Abs-Linear MIN imization with a proximal term = SALMIN

The local PL model allows the optimization approach

$$x_{k+1} = x_k + \arg\min_{\Delta x} \left\{ \Delta f(x_k; \Delta x) + \frac{q}{2} \|\Delta x\|^2 \right\}$$

= Successive Abs-Linear **MIN**imization with a proximal term = SALMIN Pros:

- piecewise linear local model can be generated by AD
- convergence theory and convergence rates (Griewank, Walther 2019)
- optimality can be verified in polynomial time using optimality conditions for the abs-smooth case, see Griewank, Walther (2016)

The local PL model allows the optimization approach

$$x_{k+1} = x_k + \arg\min_{\Delta x} \left\{ \Delta f(x_k; \Delta x) + \frac{q}{2} \|\Delta x\|^2 \right\}$$

= Successive Abs-Linear **MIN**imization with a proximal term = SALMIN Pros:

- piecewise linear local model can be generated by AD
- convergence theory and convergence rates (Griewank, Walther 2019)
- optimality can be verified in polynomial time using optimality conditions for the abs-smooth case, see Griewank, Walther (2016)

Cons: For large-scale problems (large *s*!)

- computing the abs-linear form is expensive matrices are usually sparse, but sparsity ignored so far
- optimization process is slow since inner loop to compute $\arg \min_{\Delta x}(...)$ stops at every kink

28 / 30

The local PL model allows the optimization approach

$$x_{k+1} = x_k + \arg\min_{\Delta x} \left\{ \Delta f(x_k; \Delta x) + \frac{q}{2} \|\Delta x\|^2 \right\}$$

= Successive Abs-Linear **MIN**imization with a proximal term = SALMIN Pros:

- piecewise linear local model can be generated by AD
- convergence theory and convergence rates (Griewank, Walther 2019)
- optimality can be verified in polynomial time using optimality conditions for the abs-smooth case, see Griewank, Walther (2016)

Cons: For large-scale problems (large *s*!)

- computing the abs-linear form is expensive matrices are usually sparse, but sparsity ignored so far
- optimization process is slow since inner loop to compute $\arg \min_{\Delta x}(...)$ stops at every kink
- \Rightarrow Developement of nonsmooth CG method (PhD topic of Franz Bethke)

Simulation of Gas Networks

by combining Least-Squares Collocation and SALMIN

Control valve

Circuit symbol, set-point values and nonsmooth model

aggregated classic/generalized gradient calls

Comparison SALMIN vs. SciPy solver (transient control valve)

GdR MOA 2022

·ks

Simulation of Gas Networks

by combining Least-Squares Collocation and SALMIN

Control valve

$$\begin{split} \dot{q} &= \frac{1}{\gamma} \max(-1, \min(1, \max(-\gamma \cdot q, \min(p_L - \underline{p}_L, \min(\overline{p}_R, p_L) - p_R, \min(\overline{p}_R, p_L) - p_R, \max(\gamma \cdot (q_{\text{set}} - q), p_L - \overline{p}_L, p_R - p_R))) \end{split}$$

Circuit symbol, set-point values and nonsmooth model

aggregated classic/generalized gradient calls

Comparison SALMIN vs. SciPy solver (transient control valve)

- faster convergence/better numerical stability than state-of-art solvers
- applied also to a 70 node extended network derived from GasLib40 (now including a close to real world compressor station)

T. Kreimeier, H. Sauter, T. Streubel, C. Tischendorf, A. Walther: Solving Least-Squares Collocated Differential Algebraic Equations by Successive Abs-Linear Minimization - A Case Study on Gas Network Simulation. TRR 154 preprint, in review

GdR MOA 2022

29 / 30

• classes of nonsmooth optimization problems and their properties

- classes of nonsmooth optimization problems and their properties
- abs-smooth functions and the local PL model via abs-linearization

- classes of nonsmooth optimization problems and their properties
- abs-smooth functions and the local PL model via abs-linearization
- optimization of PL functions
 - algorithmic idea
 - convergence results
 - numerical results

serves as work horse for nonsmooth optimization

- classes of nonsmooth optimization problems and their properties
- abs-smooth functions and the local PL model via abs-linearization
- optimization of PL functions
 - algorithmic idea
 - convergence results
 - numerical results

serves as work horse for nonsmooth optimization

optimization of abs-smooth functions without constraints

- classes of nonsmooth optimization problems and their properties
- abs-smooth functions and the local PL model via abs-linearization
- optimization of PL functions
 - algorithmic idea
 - convergence results
 - numerical results

serves as work horse for nonsmooth optimization

- optimization of abs-smooth functions without constraints
- future work: optimization of abs-smooth functions with constraints

30 / 30