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The Hamilton-Jacobi equation

Given a metric space (E , d), where the metric d is generated by a
Riemannian metric 〈·, ·〉, we consider a stationary Hamilton-Jacobi (HJ)
equation of the following type

f − λHf = h,

Hf (π) := −〈grad E , grad f 〉(π) +
1
2
‖grad f ‖2(π)

where grad is the gradient associated with the metric and E an energy
functional

Difficulties: the energy functional E does not have compact sublevel sets
and a precise notion of its gradient is usually difficult or impossible to give

AIM: prove a comparison principle for viscosity solutions of the above HJ
equation
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A fundamental example

E = P2(Rd) is the space of probability measures with finite second
moment equipped with the Riemannian metric of optimal transport
(Otto metric) that generates the Wasserstein distance of order two
W2,
E(µ) =

∫
µ logµ an entropic functional satisfying EVI condition,

possibly including an interaction term

The HJ equation is expected to characterize the value function

f (ρ0) = sup
{∫ +∞

0
e−λ

−1t
[
λ−1h(ρu(t))− 1

2
‖u(t)‖2

]
dt
}
,

over all absolutely continuous curves (ρu(s))s∈[0,+∞] ⊂ P2(Rd) that are
weak solutions of the following continuity equation

ρ̇u = −gradW2E(ρu) + u, ρu(0) = ρ0

for a control u(s) ∈ Tρu(s)P2(Rd)
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A fundamental example

E = P2(Rd) is the space of probability measures with finite second
moment equipped with the Riemannian metric of optimal transport
(Otto metric) that generates the Wasserstein distance of order two
W2,
E(µ) =

∫
µ logµ an entropic functional satisfying EVI condition,

possibly including an interaction term

The HJ equation is expected to characterize the value function

f (ρ0) = sup
{∫ +∞

0
e−λ

−1t
[
λ−1h(ρu(t))− 1

2
‖u(t)‖2

]
dt
}
,

over all absolutely continuous curves (ρu(s))s∈[0,+∞] ⊂ P2(Rd) that are
weak solutions of the following continuity equation

∂tρ
u − 1

2
∆ρu +∇ · (ρuu) = 0, ρu(0) = ρ0

for a control u(s) ∈ Tρu(s)P2(Rd)
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Hamilton-Jacobi equations on infinite dimensional spaces

The starting point: the articles of Crandall and Lions ’84 on infinite
dimensional HJ equations in Hilbert spaces or Banach spaces with
Randon-Nykodim property

Our setting: HJ equations on metric spaces that are not necessarily
Hilbert, and in particular over the space of probability measures P2(Rd)
endowed with a transport-like distance

Motivation: The mean field Schrödinger problem and recent
applications in large deviations, functional inequalities, statistical
mechanics, and McKean-Vlasov control
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Different strategies in the case E = P2(Rd):

Lifting of functions:
The idea consists in associating to any v : P2(Rd)→ R a function
V defined on L2(Ω,F0,P;Rd) by setting for any random variable
X ∈ L2(Ω,F0,P;Rd)

V (X ) = v(µ)

where µ ∈ P2(Rd) is such that µ = Law(X )

As a derivative one can use Lions derivative exploiting the Hilbert
space properties of L2(Ω,F0,P;Rd)

(Bandini et al. 2019, Bensoussan, Graber and Yam 2020, Pham and
Wei 2018, etc.)
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Several different strategies:

Intrinsic approach:
It consists in working directly at the level of the space of probability
measures and develop all the relevant notions therein

use the linear derivative, as shown in the context of McKean-Vlasov
control for jump processes (Burzoni et al. 2020)

use the notion of derivative on Wasserstein spaces that comes form
optimal transport theory (Ambrosio Gigli Savaré 2008)

The connections between the intrinsic approach and the extrinsic notion
of derivative obtained through the lifting procedure have been clarified in
Gangbo and Tudorascu 2019

Intrinsic approach: other important contributions (Feng and collaborators
since 2006, Gangbo and collaborators since 2015, Wu and Zhang 2020)
Crucial assumption: the variations of the Hamiltonian w.r.t. the measure
argument can be locally controlled by the metric in some way
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Again on the fundamental example:

We recall: E is the relative entropy and (E , d) the Wasserstein space

f − λHf = h,

with Hf (π) := −〈gradW2E , gradW2 f 〉(π) + 1
2‖gradW2 f ‖2(π)

Setting λ = 1, the formal change of variable f̃ = f − E allows to rewrite
our equation as

f (π)− 1
2
‖gradW2 f ‖2(π) + F(π) = 0,

where F(π) := 1
2‖gradW2E‖2(π) + E(π)− h(π)

PROBLEM: the assumption of the existence of an EVI gradient flow,
formally equivalent to the semiconvexity of E , does not give any control
on the growth of ‖gradW2E‖2(π)

=⇒ the techniques developed in the mentioned references cannot be
successfully applied to our case
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The abstract setting
We consider the following stationary HJ equation on (E , d)

f − λHf = h

where λ > 0 is a constant, h a real function in Cb(E ) and

Hf (π) = −〈grad E(π), grad f (π)〉+
1
2
‖grad f (π)‖2

where
(E , d) has to be geodesic space

=⇒ ∀ρ, π ∈ E there exists a geodesic, i.e. (γπρ (t))t∈[0,1] s.t.
γπρ (0) = ρ, γπρ (1) = π and ∀s, t ∈ [0, 1]

d(γπρ (s), γπρ (t)) = |t − s|d(ρ, π)

E : E → (−∞,+∞] is an extended, l.s.c., energy functional with
proper effective domain, dense in E

D(E) := {π ∈ E : E(π) < +∞} 6= ∅, D(E) = E
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NOTE: E and d do not necessarily have compact sublevel sets. In fact,
we allow E that are unbounded from below

NOTE: In the typical situations of interest, when (E , d) = (P2(Rd),W2),
E is +∞ on a dense set and nowhere differentiable, even though the
subdifferential is well defined and non empty on a subset of the domain
of E

WARNING: a precise notion of gradient for E is usually difficult or
impossible to give

We use the notion of local slope

|∂φ(ρ)| :=

{
lim supπ→ρ

(φ(ρ)−φ(π))+
d(ρ,π) if φ(ρ) < +∞

+∞ otherwise

formally |∂φ(ρ)| can be seen as the norm of the gradient of φ



Introduction The comparison principle The mean field Schrödinger problem Existence of Solutions Future directions

Hypotheses on E :

Angle condition: any geodesic γπρ (·) can be approximated for any θ > 0
with a smoother curve (γπρ )θ(·),

lim sup
t↓0

d((γπρ )θ(t), γπρ (t))

t
≤ θ,

along which the variations of E can be controlled with its local slope

lim inf
t↓0

E((γπρ )θ(t))− E(ρ)

t
≤ |∂E|(ρ)(d(ρ, π) + θ)

Remark: The angle condition is coherent with the interpretation of the
local slope as the norm of the gradient of E and can be interpreted as the
controllability of directional derivatives of the energy functional along
regularized geodesics by its local slope
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Hypotheses on E :

Existence of an EVIκ gradient flow defined on E for a given κ ∈ R:

There exists a family of continuous maps S(t) : E → E , E = D(E), such
that for all π ∈ E , the semigroup property holds

S [π](0) = π, S [π](t + s) = S [S [π](t)](s) ∀t, s ∈ (0,+∞)

and the curve (S [π](t))t≥0 satisfies the following EVIκ inequality:

∀ρ ∈ D(E),∀t ∈ [0,+∞)

1
2

d+

dt
(
d2(S [π](t), ρ)

)
≤ E(ρ)− E(S [π](t))− κ

2
d2(S [π](t), ρ)
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Remarks

We allow also a possibly negative contractivity constant κ in EVI ,
i.e. a negatively curved space

EVI implies uniqueness of the gradient flow

EVI gradient flows enjoy useful regularizing properties that include
energy dissipation and distance contraction estimates

S [π](t) solves formally d
dt S [π](t) = −grad E(S [π](t))

the Hamiltonian may be written as

Hf (π) =
d+

dt
(f (S [π](t))) |t=0 +

1
2
|∂f (π)|2
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Some properties:

For all π, ρ ∈ E the metric d formally satisfies∣∣∣∣∂π (1
2
d2(π, ρ)

)∣∣∣∣2 = d2(π, ρ)

Let µ, ν ∈ E and let (S [µ](t))t≥0,(S [ν](t))t≥0 be the corresponding
gradient flow. Then we have

d(S [µ](t),S [ν](t)) ≤ e−κtd(µ, ν) ∀t ∈ [0,+∞)
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Some properties:

For each c1 > −κ and for each ν ∈ E there exist c2, c̃2 ∈ R s.t.

E(π) ≥ −c1
2
d2(π, ν)− c2,

i.e. if we set

∀π ∈ E , Ē(π) := E(π) +
c1
2
d2(π, ν) + c2,

then
inf
π∈E
Ē(π) = 0

Moreover
∀π ∈ E Ē(π) ≥ κ+ c1

2
d2(π, ν) + c̃2



Introduction The comparison principle The mean field Schrödinger problem Existence of Solutions Future directions

EVI and displacement κ-convexity

Definition: Let κ ∈ R. We say that a lower semi-continuous functional
E : E → R ∪+∞ is strongly displacement κ-convex if for all geodesic
(γ(t))0≤t≤1 ⊂ E we have

E(γ(t)) ≤ (1−t)E(γ(0))+tE(γ(1))−κ
2
t(1−t)d2(γ(0), γ(1)) for all t ∈ [0, 1]

Theorem: Daneri-Savaré 2008 Consider a lower semi-continuous
functional E : E → R ∪+∞ on a geodesic space (E , d) such that there
exists a gradient flow satisfying (EVIκ) then E is strongly displacement
κ-convex

REM the converse is not proved in general but it is true in most of the
relevant examples (Hilbert spaces, Wasserstein spaces,...)
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Our approach for the comparison theorem

Our strategy comes from a powerful approach initiated by Crandall and
Lions, Tataru, Feng and collaborators that exploits the geometry of the
underlying control problem and the EVI inequality

MAIN IDEAS:
instead of working directly with H, we construct, via EVI inequality,
suitable upper and lower bounds H† and H‡, that depend on E
rather than its gradient and that are tight enough for the
comparison principle to hold
to deal with the non compactness of the space we use of Ekeland’s
optimization principle
to deal with the arising drift term we use Tataru’s distance as a
penalization function
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Definition of viscosity super and sub solutions

Given the stationary HJ equation

f − λHf = h

Definition: We say that u : E → R is a (viscosity) subsolution if u is
bounded, upper semi-continuous and if for all f1 ∈ D(H) and ρ0 ∈ E s.t.

u(ρ0)− f1(ρ0) = sup
ρ
u(ρ)− f1(ρ)

we have
u(ρ0)− λHf1(ρ0)− h(ρ0)≤0
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Definition of viscosity super and sub solutions

Given the stationary HJ equation

f − λHf = h

Definition: We say that v : E → R is a (viscosity) supersolution if v is
bounded, lower semi-continuous and if for all f2 ∈ D(H) and ρ0 ∈ E s.t.

v(ρ0)− f2(ρ0) = inf
ρ
v(ρ)− f2(ρ),

we have
v(ρ0)− λHf2(ρ0)− h(ρ0)≥0
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The comparison principle

We aim at a comparison principle of this type:

Let u be a subsolution to f − λHf = h1 and let v be a supersolution to
f − λHf = h2. Then we have

sup
µ

u(µ)− v(µ) ≤ sup
µ

h1(µ)− h2(µ)

REM: In general, the comparison principle proof relies upon test functions
which behave like the square of distance functions

For instance, in the Rd case, these test functions take the form 1
2 |x − y |2

NOTE: In the infinite dimensional case, functions like d2 are not
necessarily included in the domain of the Hamiltonian
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IDEA: if f1(π) = 1
2ad

2(π, ρ) for some ρ ∈ E and a > 0, then formally

Hf1(π) =
1
2
a
d+

dt
(
d2(S [π](t), ρ)

)
|t=0 +

1
2

∣∣∣∣∂π (1
2
ad2(π, ρ)

)∣∣∣∣2
Applying EVI we get a proper upper bound

Hf1(π) ≤ a [E(ρ)− E(π)]− a
κ

2
d2(π, ρ) +

1
2
a2d2(π, ρ)

as soon as E(ρ) < +∞
=⇒ define a new Hamiltonian Hcan,†:

D(Hcan,†) :=

{
f1 : E → R, f1(π) =

1
2
ad2(π, ρ)

∣∣∣∣ a > 0, ρ ∈ E : E(ρ) <∞
}

and for any f1 ∈ D(Hcan,†) we set

Hcan,†f1(π) = a [E(ρ)− E(π)]− a
κ

2
d2(π, ρ) +

1
2
a2d2(π, ρ)
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Similarly, we get a formal lower bound. Let

D(Hcan,‡) :=

{
f2 : E → R, f2(µ) = −1

2
ad2(γ, µ)

∣∣∣∣ a > 0, γ ∈ E : E(γ) <∞
}

be the corresponding domain, then for f2 ∈ D(Hcan,‡) we set

Hcan,‡f2(µ) = a [E(µ)− E(γ)] + a
κ

2
d2(γ, µ) +

1
2
a2d2(γ, µ)

and at least formally

Hcan,‡f ≤ Hf ≤ Hcan,†f

Thus, instead of establishing the comparison principle for the original
equation we aim to show it for the upper and lower bound we found for
our Hamiltonian
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The comparison principle in the finite dimensional case
Let u be a subsolution and v a supersolution, we have to prove that

sup
π

u(π)− v(π) ≤ sup
π

h1(π)− h2(π)

IDEA: use a "doubling" variables method

sup
x∈Rn

u(x)− v(x) ≤ lim inf
ε→0

sup
x,y∈Rn

u(x)− v(y)− |x − y |2

ε2
− ε(|x |2 + |y2|),

and observe that

(x , y) 7→ u(x)− v(y)− |x − y |2

ε2
− ε(|x |2 + |y2|)

admits a global maximum (xε, yε), hence

f1(x) =
|x − yε|2

ε2
+ ε(|x |2 + |yε|2) + v(yε)

can be used as a test function in the definition of subsolution to obtain

u(xε)− λHf1(xε)− h1(xε) ≤ 0
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The comparison principle in the finite dimensional case
Let u be a subsolution and v a supersolution, we have to prove that

sup
π

u(π)− v(π) ≤ sup
π

h1(π)− h2(π)

IDEA: use a "doubling" variables method

sup
x∈Rn

u(x)− v(x) ≤ lim inf
ε→0

sup
x,y∈Rn

u(x)− v(y)− |x − y |2

ε2
− ε(|x |2 + |y2|),

and observe that

(x , y) 7→ u(x)− v(y)− |x − y |2

ε2
− ε(|x |2 + |y2|)

admits a global maximum (xε, yε), hence

f2(y) = −|xε − y |2

ε2
− ε(|xε|2 + |y |2) + u(xε)

can be used as a test function in the definition of supersolution to obtain

v(yε)− λHf2(yε)− h2(yε) ≥ 0
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The comparison principle in the finite dimensional case
Let u be a subsolution and v a supersolution, we have to prove that

sup
π

u(π)− v(π) ≤ sup
π

h1(π)− h2(π)

IDEA: use a "doubling" variables method

sup
x∈Rn

u(x)− v(x) ≤ lim inf
ε→0

sup
x,y∈Rn

u(x)− v(y)− |x − y |2

ε2
− ε(|x |2 + |y2|),

and observe that

(x , y) 7→ u(x)− v(y)− |x − y |2

ε2
− ε(|x |2 + |y2|)

admits a global maximum (xε, yε), hence

sup
x∈Rn

u(x)− v(x) ≤ lim inf
ε→0

λ(Hf1(xε)− Hf2(yε)) + h1(xε)− h2(yε)

≤ sup
x∈Rn

h1(x)− h2(x)
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The comparison principle

Let u be a subsolution and v a supersolution, we have to prove that

sup
π

u(π)− v(π) ≤ sup
π

h1(π)− h2(π)

The key steps :

perform doubling variables method

prove the existence of a global maximum  Ekeland’s perturbed
optimization principle

use of sub(super)solutions properties

estimate of the difference of the Hamiltonians
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Coming back to our case: We perform the classical "doubling" variables
method using the distance function and the energy functional

sup
π∈E

u(π)− v(π) ≤ lim inf
ε→0

sup
π,µ∈E

Gε(π, µ),

where Gε : E 2 → [−∞,+∞),

Gε(π, µ) : = u(π)− v(µ)− 1
ε2

d2(π, µ) −ε(E(π) + E(µ))

PROBLEM 1: E is not bounded below, however, as we have seen, as a
consequence of EVI , E can bounded from below by a non-negative
constant times −d2  we use E

PROBLEM 2: E(π), E(µ) can be +∞, hence we cannot leave them as a
free variable in the test function  we have to quadruplicate variables
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We perform quadruplication of variables and use a different Gα,ε

sup
π∈E

u(π)− v(π) ≤ lim inf
ε→0

sup
π,µ∈Eρ,γ∈D(E)

Gα,ε(π, µ, ρ, γ),

where, for given α > 0, Gα,ε : E 4 → [−∞,+∞),

Gα,ε(π, µ, ρ, γ) : =
u(π)

1− ε
− v(µ)

1 + ε

− α

2(1− ε)
d2(ρ, π)− α

2
d2(ρ, γ)− α

2(1 + ε)
d2(γ, µ)

− ε

1− ε
E(ρ)− ε

1 + ε
E(γ)

NOTE: This procedure is actually reminiscent of the sup-convolution
procedure
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sup
π∈E

u(π)− v(π) ≤ lim inf
ε→0

sup
π,µ∈Eρ,γ∈D(E)

Gα,ε(π, µ, ρ, γ),

As it is usually done for infinite dimensional problems, to obtain
optimizers we have to use Ekeland’s perturbed optimization principle with
an appropriate penalization function

Indeed Ekeland’s perturbed optimization principle claims that, if we add a
small perturbation to the test function, we can always attain the
extremum

PROBLEM: Choose a useful penalization function to obtain good
estimates for the difference of the Hamiltonians  use Tataru distance

Note: If we modify the test functions  we have to define a new
Hamiltonian H†
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IDEA: The classical Tataru distance was defined on Hilbert spaces for

contracting gradient flows as

dT (µ, ν) := inf
t≥0
{t + d(µ,S [ν](t))}

dT is not a metric because it is not symmetric
dT is Lipschitz with respect to the metric d

dT behaves well with respect to the corresponding gradient flow

dT (S [ν](r), ν̂)− dT (ν, ν̂)

r
≤ 1

for all ∀ν, ν̂ ∈ E , r ∈ R \ {0}

PROBLEM: Our gradient flow is not necessarily contracting with respect
to the metric (a negative κ is allowed)  we have to work with an
adjusted Tataru distance
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The right generalization of Tataru distance turns out to be defined on
E × E as

dT (µ, ν) := inf
t≥0

{
t + eκ̂td(µ,S [ν](t))

}
where κ̂ = 0 ∧ κ ≤ 0

We recover the same key properties of the classical Tataru distance

In particular, we have∣∣∣∣d+

dt
(dT (S [π](t), µ))|t=0

∣∣∣∣ ≤ 1

and
|∂πdT (π, µ)| ≤ 1

dT allows us remove compactness assumptions both for the level
sets of the energy functional E and for metric balls
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we use new test functions

f1(π) =
1
2
ad2(π, ρ) + bdT (π, µ) + c

for a, b > 0, c ∈ R, and ρ, µ ∈ E such that E(ρ) <∞

f2(µ) = −1
2
ad2(γ, µ)− bdT (µ, π) + c

for a, b > 0, c ∈ R, and γ, π ∈ E such that E(γ) <∞

and using the same strategy we modify the Hamiltonians in this way

H†f1(π) = a [E(ρ)− E(π)]−aκ
2
d2(π, ρ)+b+

1
2
a2d2(π, ρ)+abd(π, ρ) +

1
2
b2

H‡f2(µ) = a [E(µ)− E(γ)] + a
κ

2
d2(γ, µ)−b +

1
2
a2d2(γ, µ)−abd(γ, µ)
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As a penalization function, we use Bε : E 4 × E 4 → [0,+∞) defined as

Bε(π, µ, ρ, γ, π̃, µ̃, ρ̃, γ̃) :=
1

1− ε
dT (π, π̃)+

1
1 + ε

dT (µ, µ̃)+dT (ρ, ρ̃)+dT (γ, γ̃)

then Bε and Gα,ε satisfy the hypotheses of Ekeland’s principle

i.e. ∃! xα = (πα, µα, ρα, γα) ∈ E 2 × (D(E))2 s.t.

Gα,ε(xα) = sup
π,µ∈Eρ,γ∈D(E)

Gα,ε(π, µ, ρ, γ)− 1
α
Bε(π, µ, ρ, γ, xα)

and

sup
π∈E

u(π)− v(π) ≤ lim inf
α→+∞

lim inf
ε→0

sup
π,µ∈Eρ,γ∈D(E)

Gα,ε(π, µ, ρ, γ)− 1
α
Bε(π, µ, ρ, γ, xα)
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Defining test functions f1, f2 so that

u(π)− f1(π) = (1− ε)[Gα,ε −
1
α
Bε(·, xα)](π, µα, ρα, γα),

and

v(µ)− f2(µ) = −(1 + ε)[Gα,ε −
1
α
Bε(·, xα)](πα, µ, ρα, γα),

we obtain, for the right choice of ε = εα → 0 as α→ +∞,

sup
π∈E

u(π)− v(π) ≤h1(πα)

1− εα
− h2(µα)

1 + εα
+ λ
( 1
1− εα

H†f1(πα)− 1
1 + εα

H‡f2(µα)
)

+O(α−1/2).

useful estimates for the difference of the Hamiltonians are recovered

using EVI inequality and the properties of the gradient flow
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Comparison with the master equation

The master equation, arising in the theory of mean field games, shares
some properties with infinite dimensional HJ equations characterizing the
value function of McKean-Vlasov control problems, see Bensoussan,
Frehse and Yam 2013

As explained in Carmona, Delarue, and Lachapelle 2013 Mean Field
games and McKean-Vlasov control problems remain conceptually
different, essentially the two methods differ in the order in which
optimization and passage to the limit are performed

Comparing the monotonicity assumption that is typically imposed on the
coefficients of the master equation and the geodesic convexity of the
energy functional that underlies our computations, these two geometrical
assumptions are not directly related and enter the respective equations in
a different way

Gangbo and Mészáros 2020 use displacement convexity (in a different
way than we do) to prove well-posedness of potential master equations
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The Schrödinger problem

The Schrödinger problem (SP) is the problem of finding the most likely
evolution of a cloud of independent Brownian particles conditionally on
the observation of their initial and final configuration,
i.e. an entropy minimization problem with marginal constraints

SP is the object of a very dynamic research activity:

It has powerful connections with the theory of Large Deviations, PDEs,
Optimal transport, statistical machine learning and numerical algorithms
for PDE related problems

KEY IDEA: SP may be viewed as a (entropic) regularization of the
Optimal Transport problem
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The Mean Field Schrödinger problem
The Mean Field Schrödinger Problem (MFSP) is obtained by replacing in
the previous description the independent particles by interacting ones

Interacting Particle System

(Ω,Ft ,FT ) where Ω = C ([0,T ];Rd) with the uniform topology and
{Ft}t∈[0,T ] the coordinate filtration

Interaction Potential: a symmetric C2 function W : Rd → R s.t.
supz,v∈Rd ,|v |=1 v · ∇2W (z) · v < +∞

For N large, we consider Brownian particles (X i,N
t )t∈[0,T ],1≤i≤N{

dX i,N
t = − 1

N

∑N
k=1∇W (X i,N

t − X k,N
t )dt + dB i

t

X i,N
0 ∼ µin ∈ P2(Rd)

Driving Question: If at time T we observe that the sequence of
empirical path measures

1
N

N∑
i=1

δX i,N
T
≈ µfin ∈ P2(Rd),

what have done the particles in between?
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Denote by

Π(µin, µfin) :=
{
P ∈ P1(C ([0,T ];Rd)) : P0 = µin,PT = µfin

}
and for P,Q ∈ P1(C ([0,T ];Rd)), let H(P|Q) denote the relative
entropy of P with respect to Q,

H(P|Q) =

{
EP

[
log
(
dP
dQ

)]
P � Q

+∞ otherwise

dP
dQ denotes the Radon-Nikodym density of P against Q
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The mean field Schrödinger problem can be stated as

CT (µin, µfin) := inf
{
H(P|Γ(P)) : P ∈ Π(µin, µfin)

}
where Γ(P) is the law of the unique solution to{

dXt = −∇W ∗ Pt(Xt)dt + dBt

X0 ∼ µin

Its optimal value is called mean field entropic transportation cost
and its optimizers are called mean field Schrödinger bridges (MFSB)

Theorem (Backhoff, Conforti, Gentil, Léonard ’19)
Under mild assumptions MFSB exist

Uniqueness is still an open question
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Connections with MFG
Theorem (BCGL ’19)
Let P be an optimizer for (MFSP). Then there exists a weak gradient
field Ψ s.t.

dXt = (Ψt(Xt)−∇W ∗ Pt(Xt))dt + dBt

Now, set µt = (Xt)#P for all t ∈ [0,T ] and let µ and Ψ be C1,2, µ > 0
Then there exists ψ : [0,T ]× Rd → R such that

Ψt(x) = ∇ψt(x) ∀t ∈ [0,T ], x ∈ Rd

and (ψ(·), µ(·)) is a classical solution of the following mean field planning
PDE system


∂tψt(x) + 1

2∆ψt(x) + 1
2 |∇ψt(x)|2=

∫
Rd∇W (x − x̃)·(∇ψt(x)−∇ψt(x̃))µt(dx̃)

∂tµt(x)− 1
2∆µt(x) +∇ · ((−∇W ∗ µt(x) +∇ψt(x))µt(x)) = 0

µ0(x) = µin(x), µT (x) = µfin(x)

This type of PDE system has a similar structure to the planning MFG
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The HJ equation on the space of probability measures

Mimicking the well-known duality between the Monge-Kantorovich
problem and the Hamilton-Jacobi equation, the MFSP can be formally
seen as in duality with the solution of an infinite dimensional
Hamilton-Jacobi (HJ) equation in P2(Rd)

Let us modify the problem adding a penalization at the final time and
removing the corresponding marginal constraint

For all t ∈ [0,T ] and µ ∈ P2(Rd) we define

u(t, µ) := inf{H(P|Γ(P)) + G(PT ) : P ∈ P2(Ω),Pt = µ}
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As for the classical MFSP, the previous problem can be rewritten
equivalently as

u(t, µ) := inf
1
2

∫ T

t

∫
Rd

∣∣∣∣ws(z) +
1
2
∇ logµs(z) +∇W ∗ µs(z)

∣∣∣∣2µs(dz)ds + G(µT )

over all absolutely continuous curves (µs)s∈[t,T ] ⊂ P2(Rd) s.t. that are
weak solutions of the following continuity equation

∂sµs +∇ · (wµs) = 0 µt = µ,

Then the optimal value u(t, µ) is a candidate solution for an HJ equation
on the space of probability measures
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The HJ equation on the space of probability measures

Formally the HJ equation looks like{
−∂tu(t, µ) + Hu(t, µ) = 0,
u(T , µ) = G(µT )

where the Hamiltonian is written as an operator over functions on P2(Rd)

Hu(µ) =
1
2

∫
Rd

〈gradW2u(µ), gradW2F̃(µ)〉µ(dx)+
1
2

∫
Rd

|gradW2u(µ)|2µ(dx)

where the free energy functional is defined for µ ∈ P2(Rd) as

µ 7→ F̃(µ) :=

{ ∫
logµ(x)µ(dx) +

∫ ∫
W (x − y)µ(dy)µ(dx) µ� L

+∞ otherwise
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Existence of Solutions

Let (E , d) be (P2(Rd),W2)

IDEA: show that

f (ρ) = sup
{∫ +∞

0
e−λ

−1t
[
λ−1h(ρu(t))− 1

2
‖u(t)‖2L2ρu(t)

]
dt
}
,

where the sup is taken over all (ρu(·), u(·)) weak solution of

∂tρ
u − 1

2
∆ρu +∇ · (ρuu) = 0, ρu(0) = ρ,

is a viscosity solution of

f − λHf = h,

Hf (π) := −〈grad E , grad f 〉(π) +
1
2
‖grad f ‖2(π)

where E(µ) =
∫
µ logµ
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Definition of viscosity super and sub solutions

Given the stationary HJ equation

f − λHf = h

Definition: We say that u : E → R is a (viscosity) subsolution if u is
bounded, upper semi-continuous and if for all f1 ∈ D(H) and ρ0 ∈ E s.t.

u(ρ0)− f1(ρ0) = sup
ρ
u(ρ)− f1(ρ)

we have
u(ρ0)− λHf1(ρ0)− h(ρ0)≤0
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Definition of viscosity super and sub solutions

Given the stationary HJ equation

f − λHf = h

Definition: We say that v : E → R is a (viscosity) supersolution if v is
bounded, lower semi-continuous and if for all f2 ∈ D(H) and ρ0 ∈ E s.t.

v(ρ0)− f2(ρ0) = inf
ρ
v(ρ)− f2(ρ),

we have
v(ρ0)− λHf2(ρ0)− h(ρ0)≥0
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Ingredients:
use smooth test functions (the Tataru distance is not smooth)
relax the control problem to prove weak regularity of the value
function
use the Dynamic Programming Principle
use a modified EVI inequality satisfied by a the controlled gradient
flow
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Future directions

Our Aims are:
conclude the result on Existence of solutions for HJ
Time dependent problem
Long time behavior
study a richer class of equations, possibly including a stochastic
component modeling a source of common noise
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