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Notation

The letter X stands for (real) Hilbert spaces endowed with an inner product ⟨·, ·⟩
and associated norm ∥·∥.

For every ∅ ̸= S ⊂ X and every x ∈ X , The distance function dS and the farthest
distance function dfarS (resp., the nearest points and the farthest points) from S
to x are defined by

dS(x) := d(x ,S) := inf
y∈S

∥x − y∥ and

dfarS(x) := dfar(x ,S) := sup
y∈S

∥x − y∥(
resp., ProjS(x) := Proj(S, x) := {y ∈ S : dS(x) = ∥x − y∥} and

FarS(x) := Far(S, x) := {y ∈ S : dfarS(x) = ∥x − y∥}
)
.

When ProjS(x) (resp., FarS(x)) contains one and only one vector y ∈ X , we set
projS(x) := y (resp., farS(x)).
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Prox-regularity

• Let C be a convex set and let x ∈ C. The normal cone in the sense of convex
analysis to x in C is the set of normal vector y to x such that

NC(x) = {y ∈ H :< y , z − x >≤ 0, ∀z ∈ C} .
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Prox-regularity

Definition
Let S be a nonempty subset of H and r ∈ ]0,+∞]. One say that S is r-prox-regular
whenever, for all x ∈ S and for all v ∈ NP(S, x) ∩ B, one has

x ∈ ProjS(x + tv) for any real t ∈]0, r ].

or equivalently B(x + tv , t) ∩ S = ∅.
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The set S is r -prox-regular whenever projS : Ur (S) := {x ∈ H : dS(x) < r} → X is
well-defined and norm-to-norm continuous.
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Contributors: H. Federer (1959); J.-P. Vial (1983); A. Canino (1988); A.Shapiro
(1994); F.H. Clarke, R.L. Stern, P.R. Wolenski (1995); R.A. Poliquin, R.T. Rockafellar, L.
Thibault (2000).
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Prox-regularity

Theorem ([3])
Let S be a nonempty closed subset of H and r > 0. The following are equivalent:
(a) S is r -prox-regular;
(b) for all x , x ′ ∈ S, for all v ∈ NP(S; x), one has

〈
v , x ′ − x

〉
≤

1
2r

∥v∥
∥∥x − x ′∥∥2

;

(c) the mapping projS(·) is well defined on Ur (S), and for every real s ∈]0, r [, for all
x , x ′ ∈ Us(S), ∥∥projS(x)− projS(x

′)
∥∥ ≤

1
1 − (s/r)

∥∥x − x ′∥∥ ;

(d) for any u ∈ Ur (S) \ S such that projS(u) =: x is well defined, one has

x = projS
(
x +

t
dS(u)

(u − x)
)

for all t ∈ [0, r [;

(e) the function d2
S(·) is differentiable on Ur (S) with a locally Lipschitz derivative and

∇d2
S(x) = 2

(
x − projS(x)

)
for all x ∈ Ur (S).
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S(·) is differentiable on Ur (S) with a locally Lipschitz derivative and

∇d2
S(x) = 2

(
x − projS(x)

)
for all x ∈ Ur (S).

▶ If S is r -prox-regular, then Fréchet NF , Mordukhovich limiting NL, Clarke NC )

NP(S; ·) = NF (S; ·) = NL(S; ·) = NC(S; ·) := N(S; ·).
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Strongly convexity

Definition
Let C be a nonempty subset in X . One says that C is R-strongly convex for some real
R > 0 whenever there is a nonempty set L ⊂ X such that

C =
⋂
x∈L

B[x ,R].

Contributors: H. Frankowska, C. Olech (1981), J. P. Vial (1985), E. S. Polovinkin
(1996, 2000), M. V. Balashov (2004, 2006), G. E. Ivanov (1995, 2006), A. Weber and
G. Reibig (2013).
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Strongly convexity

Theorem ([7, 10])
Let C be a nonempty closed convex bounded subset in X and let R > 0 be a real. The
following assertions are equivalent:
(a) the set C is R-strongly convex;
(b) for all x , x ′ ∈ C and for all v ∈ N(C; x), one has

〈
v , x ′ − x

〉
≤ −

∥v∥
2R

∥∥x ′ − x
∥∥2

;

(c) the mapping farC is well defined on ER(C) := {x ∈ X : dfarC(x) > R} and for
every real s > R, for all x , x ′ ∈ Es(C),

∥farC(x)− farC(x
′)∥ ≤

1
(s/R)− 1

∥x − x ′∥;

(d) for any u ∈ ER(C) such that farC(u) =: x is well defined, one has

x = farC
(
x −

t
dfarC(u)

(x − u)
)

for all t ∈]R,+∞[;

(e) the function dfar2
C(·) is differentiable on ER(C) with a locally Lipschitz derivative and

∇dfar2
C(x) = 2

(
x − farC(x)

)
for all x ∈ ER(C).
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Semiconcavity of the farthest distance function
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Previous results

The function dC is convex if and only if the
set C is convex.
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Previous results

The function dC is convex if and only if the
set C is convex.

⇒ Q1: Can we characterize the set for which its distance is semiconvex?
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Previous results

The function dC is convex if and only if the
set C is convex.

⇒ Q1: Can we characterize the set for which its distance is semiconvex?

Definition
Let U a nonempty convex subset of X and σ ≥ 0 be a real. A function
f : U → R ∪ {+∞} is said to be linearly σ-semiconvex on U provided that for every
t ∈]0, 1[ and every x , y ∈ U

f
(
tx + (1 − t)y

)
≤ tf (x) + (1 − t)f (y) +

σ

2
t(1 − t) ∥x − y∥2

or equivalently if f (·) + σ/2 ∥·∥2 is convex on U.
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Previous results

The function dC is convex if and only if the
set C is convex.

⇒ Q1: Can we characterize the set for which its distance is semiconvex?

Definition
Let U a nonempty convex subset of X and σ ≥ 0 be a real. A function
f : U → R ∪ {+∞} is said to be linearly σ-semiconvex on U provided that for every
t ∈]0, 1[ and every x , y ∈ U

f
(
tx + (1 − t)y

)
≤ tf (x) + (1 − t)f (y) +

σ

2
t(1 − t) ∥x − y∥2

or equivalently if f (·) + σ/2 ∥·∥2 is convex on U.

Let S be an r -prox-regular.

G. Colombo and L. Thibault ([3]): It is equivalent to for any real 0 < s < r , the
function d2

S is s/(r − s)-semiconvex on any convex set included in Us(S).

M. V. Balashov ([6]): The function dS is (r − s)−1- semiconvex on any convex set
included in Us(S).

F. Nacry and L. Thibault ([4]): Provide a short proof of Balashov’s result by
establishing that a prox-regular set is nothing but the complement of union of
closed balls of common radius.
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Previous results

Q2: Can we replace the usual distance function by the farthest distance?

Theorem (Balashov-Golubev ([6], 2014), Nacry-N.V.A.T-Thibault (2022))
Let C be a nonempty closed bounded subset of X and let R > 0 be a positive real. The
following assertions are equivalent:
(a) the set C is R-strongly convex;
(b) for any real s > R, the function −dfarC is linearly semiconvex on nonempty convex
subset V of ER(C) with (s − R)−1 as coefficient;
(c) the function −dfarC is locally linearly semiconvex on ER(C), that is, linearly
semiconvex near each point in ER(C).
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Semiconcavity property

Main idea of the proof: (a ⇒ b)

Let C be R-strongly convex with R > 0 and let S be r -prox-regular with r > 0 such
that 0 < R < r . The set C + S is (r − R)-prox-regular, so closed ([10]).

Let S be an r -prox-regular with r > 0. Then, for all s ∈]0, r [, the set X \ S is the
union of a family of closed balls of X of radius s ([4]).

If S is the union of a collection of closed balls with a r > 0, then on each
nonempty convex set U included in cl(X \ S), then dS is r−1-semiconcave ([8]).
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• Also prove that: dfarC(u) = s + d
(
u, {dfarC ≤ s}

)
for all u ∈ Es(C).

dfarC(·) is (s − t)−1-linearly semiconcave.
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Farthest distance and separating balls
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Separation property

• Let C be a nonempty closed convex set of X and x ∈ X \ C, it is well-known that with
x⋆ := dC(x)−1(x − projC(x)

)
, the separation property for some real α

C ⊂ {⟨x⋆, ·⟩ < α} and ⟨x⋆, x⟩ > α.
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Separation property

• Let C be a nonempty closed convex set of X and x ∈ X \ C, it is well-known that with
x⋆ := dC(x)−1(x − projC(x)

)
, the separation property for some real α

C ⊂ {⟨x⋆, ·⟩ < α} and ⟨x⋆, x⟩ > α.

• Replacing {⟨x⋆, ·⟩ < α} by a general form
{
⟨x⋆, x⟩ − ∥x∥2

2r < α

}
allows to extend

the separation property, to r -prox-regular sets.

Proposition ([1])
Let S be an r-prox-regular subset of X with r > 0, x ∈ X with δ := dS(x) ∈]0, r [. Then,
with x⋆ := ( 1

r − 1
δ
)projS(x) +

1
δ

x the separation property for some α ∈ R

S ⊂
{
⟨x⋆, ·⟩ − ∥·∥2

2r < α

}
and ⟨x⋆, x⟩ − ∥x∥2

2r > α.
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Separation property

▶ Aim: provide the separation property in the case of strongly convex sets.
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Separation property

▶ Aim: provide the separation property in the case of strongly convex sets.
Given any x⋆ ∈ X , any real R > 0 and any R-strongly convex set C in X , set

qx⋆,R(x) := ⟨x⋆, x⟩ −
∥x∥2

2R
for all x ∈ X

and
ΥC,R(x) :=

( 1
R

−
1

dfarC(x)

)
farC(x) +

1
dfarC(x)

x for all x ∈ ER(C).
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▶ Aim: provide the separation property in the case of strongly convex sets.
Given any x⋆ ∈ X , any real R > 0 and any R-strongly convex set C in X , set

qx⋆,R(x) := ⟨x⋆, x⟩ −
∥x∥2

2R
for all x ∈ X

and
ΥC,R(x) :=

( 1
R

−
1

dfarC(x)

)
farC(x) +

1
dfarC(x)

x for all x ∈ ER(C).

Theorem
Let C be an R-strongly convex set in X for some real R > 0 and let x ∈ X with
δ := dfarC(x) > 2R. Then, with x⋆ = ΥC,R(x), for some α ∈ R,

C ⊂
{
⟨x⋆, ·⟩ − ∥·∥2

2R > α

}
and qx⋆,R(x) < α ≤ infc∈C qx⋆,R(c).
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Some analytic formulation for the farthest distance function to a strongly convex set

The farthest distance in terms of support function

Let C be a closed convex set in X , the distance function dC has been described in
terms of the support function σ(·,C) at x⋆ := dC(x)−1(x − projC(x)

)
dC(x) = ⟨x⋆, x⟩ − σ(x⋆,C).

It has been extended to the context of a prox-regular set (in [4]), that means for an
r -prox-regular set S with r > 0, one has

dS(x)
(

1 −
dS(x)

2r

)
= qx⋆,r (x)− ϕS,r (x⋆),

where ϕS,r (x⋆) := supu∈S qx⋆,r (u) with qx⋆,r (x) := ⟨x⋆, x⟩ − ∥x∥2

2r for all x ∈ X .
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Some analytic formulation for the farthest distance function to a strongly convex set

The farthest distance in terms of support function

Let C be a closed convex set in X , the distance function dC has been described in
terms of the support function σ(·,C) at x⋆ := dC(x)−1(x − projC(x)

)
dC(x) = ⟨x⋆, x⟩ − σ(x⋆,C).

It has been extended to the context of a prox-regular set (in [4]), that means for an
r -prox-regular set S with r > 0, one has

dS(x)
(

1 −
dS(x)

2r

)
= qx⋆,r (x)− ϕS,r (x⋆),

where ϕS,r (x⋆) := supu∈S qx⋆,r (u) with qx⋆,r (x) := ⟨x⋆, x⟩ − ∥x∥2

2r for all x ∈ X .

Aim: provide the formula of farthest distance in terms of support function in the
case of strongly convex sets.

Lemma
Let C be an R-strongly convex subset of X for some real R > 0 and let x ∈ X with
dfarC(x) > R. Then, there exists one and only one x⋆ ∈ X with
∥x⋆ − R−1x∥ = R−1dfarC(x)− 1 (namely, x⋆ := ΥC,R(x)) such that

dfarC(x)
(

1 −
dfarC(x)

2R

)
= qx⋆,R(x)− ΦC,R(x

⋆)

where ΦC,R(x⋆) := infc∈C qx⋆,R(c).
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Some analytic formulation for the farthest distance function to a strongly convex set

The farthest distance in terms of supporting hyperplanes

In ([2]): the distance of a point to prox-regular set is the maximum of the distances
of the point from boundaries of all such complements separating the set and the
point.
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Some analytic formulation for the farthest distance function to a strongly convex set

The farthest distance in terms of supporting hyperplanes

In ([2]): the distance of a point to prox-regular set is the maximum of the distances
of the point from boundaries of all such complements separating the set and the
point.

⇒ Develop in case of strongly convex set.
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Some analytic formulation for the farthest distance function to a strongly convex set

The farthest distance in terms of supporting hyperplanes

In ([2]): the distance of a point to prox-regular set is the maximum of the distances
of the point from boundaries of all such complements separating the set and the
point.

⇒ Develop in case of strongly convex set.

Setting ΦC,R(x
⋆) := inf

c∈C
qx⋆,R(c) and Lx⋆,R,α :=

{
qx⋆,R ≥ α

}
Theorem
Let C be an R-strongly subset of X for some R > 0 and let x ∈ X with
δ := dfar(x ,C) > 2R. One has

δ = min
{
dfar(x , Ly⋆,R,α) : (y⋆, α) ∈ X × R,C ⊂ Ly⋆,R,α, x /∈ Ly⋆,R,α

}
.

The minimum is attained at (x⋆, β) with x⋆ := ΥC,R(x) and β := ΦC,R(x⋆).
Further, for all y⋆ ∈ X with

∥∥y⋆ − R−1x
∥∥ = R−1δ − 1 and all α ∈ R, one has

δ = d(x , Ly⋆,r,α),
C ⊂ Ly⋆,r,α, x /∈ Ly⋆,r,α

}
⇒ (y⋆, α) =

(
x⋆,ΦC,R(x

⋆)
)
.
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Some analytic formulation for the farthest distance function to a strongly convex set

Conclusion: In this paper,

1 Develop some properties of strongly convex sets through the farthest distance
function, especially semiconvavity.

2 Provide the separation to strongly convex sets from an outside point in Hilbert
space.

Perspective the research
1 Involving strong convexity to some aspects of Variational Analysis.

2 Involving strong convexity in differential inclusion (Sweeping process theory).

3 Consider metric regularity of d(C ∩ S; x).

4 Study in Banach spaces.
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