Farthest distance function to strongly convex sets in Hilbert spaces

Nguyen Vo Anh Thuong

Based on a joint work with: Florent Nacry (Université de Perpignan Via Domitia) Lionel Thibault (Université de Montpellier)

> Université de Perpignan Via Domitia L'Aboratoire de Modélisation Plurisdisciplinaire et Simulations

> > October 12, 2022

Content

- 1 Overview
 - Notation
 - Prox-regularity
 - Strongly convexity
- 2 Semiconcavity of the farthest distance function
 - Previous results
 - Semiconcavity property
- 3 Farthest distance and separating balls
 - Separation property
 - Some analytic formulation for the farthest distance function to a strongly convex set

Overview

- The letter X stands for (real) Hilbert spaces endowed with an inner product $\langle \cdot, \cdot \rangle$ and associated norm $\|\cdot\|$.
- For every $\emptyset \neq S \subset X$ and every $x \in X$, The distance function d_S and the farthest distance function d_{S} (resp., the nearest points and the farthest points) from S to x are defined by

$$d_S(x) := d(x, S) := \inf_{y \in S} \|x - y\|$$
 and $\operatorname{dfar}_S(x) := \operatorname{dfar}(x, S) := \sup_{y \in S} \|x - y\|$ (resp., $\operatorname{Proj}_S(x) := \operatorname{Proj}(S, x) := \{y \in S : d_S(x) = \|x - y\|\}$ and $\operatorname{Far}_S(x) := \operatorname{Far}(S, x) := \{y \in S : \operatorname{dfar}_S(x) = \|x - y\|\}$).

When $\operatorname{Proj}_{S}(x)$ (*resp.*, $\operatorname{Far}_{S}(x)$) contains one and only one vector $y \in X$, we set $\operatorname{proj}_{S}(x) := y$ (*resp.*, $\operatorname{far}_{S}(x)$).

• Let C be a convex set and let $x \in C$. The **normal cone** in the sense of convex analysis to x in C is the set of normal vector y to x such that

$$N_C(x) = \{ y \in \mathcal{H} : \langle y, z - x \rangle \leq 0, \forall z \in C \}.$$

Farthest distance and separating balls

Overview

• Let C be a convex set and let $x \in C$. The **normal cone** in the sense of convex analysis to x in C is the set of normal vector y to x such that

$$N_C(x) = \{ y \in \mathcal{H} : \langle y, z - x \rangle \leq 0, \forall z \in C \}.$$

Farthest distance and separating balls

• Let S be a nonempty subset in X. The **proximal normal cone** to S at $x \in S$ is

$$N^{P}(S; x) := \{ v \in \mathcal{H} : \exists r > 0, x \in \operatorname{Proj}_{S}(x + rv) \}.$$

Overview 000000

> • Let C be a convex set and let $x \in C$. The **normal cone** in the sense of convex analysis to x in C is the set of normal vector y to x such that

$$N_C(x) = \{ y \in \mathcal{H} : \langle y, z - x \rangle \leq 0, \forall z \in C \}.$$

Figure: N^P is often reduced to 0

• Let S be a nonempty subset in X. The **proximal normal cone** to S at $x \in S$ is

$$N^{P}(S;x) := \{v \in \mathcal{H} : \exists r > 0, x \in \operatorname{Proj}_{S}(x + rv)\}.$$

• Let S be a nonempty subset in X. The **proximal normal cone** to S at $x \in S$ is

$$N^P(S;x) := \{ v \in \mathcal{H} : \exists r > 0, x \in \operatorname{Proj}_S(x + rv) \}.$$

Farthest distance and separating balls

Farthest distance and separating balls

Overview 000000 Prox-regularity

Definition

Let S be a nonempty subset of \mathcal{H} and $r \in [0, +\infty]$. One say that S is **r-prox-regular** whenever, for all $x \in S$ and for all $v \in N^P(S, x) \cap \mathbb{B}$, one has

$$x \in \text{Proj}_{\mathcal{S}}(x + tv)$$
 for any real $t \in]0, r]$.

or equivalently

$$B(x + tv, t) \cap S = \emptyset.$$

Let S be a nonempty subset of \mathcal{H} and $r \in]0, +\infty]$. One say that S is **r-prox-regular** whenever, for all $x \in S$ and for all $v \in N^P(S, x) \cap \mathbb{B}$, one has

Farthest distance and separating balls

$$x \in \operatorname{Proj}_{\mathcal{S}}(x + tv)$$
 for any real $t \in]0, r]$.

or equivalently

$$B(x + tv, t) \cap S = \emptyset.$$

Figure: Prox-regular set

Let S be a nonempty subset of \mathcal{H} and $r \in [0, +\infty]$. One say that S is **r-prox-regular** whenever, for all $x \in S$ and for all $v \in N^P(S, x) \cap \mathbb{B}$, one has

Farthest distance and separating balls

$$x \in \text{Proj}_{\mathcal{S}}(x + tv)$$
 for any real $t \in]0, r]$.

or equivalently

$$B(x + tv, t) \cap S = \emptyset.$$

Figure: Prox-regular set

The set *S* is *r*-prox-regular whenever $\operatorname{proj}_S: U_r(S) := \{x \in \mathcal{H} : d_S(x) < \underline{r}\} \to X$ is well-defined and norm-to-norm continuous.

Let S be a nonempty subset of \mathcal{H} and $r \in]0, +\infty]$. One say that S is **r-prox-regular** whenever, for all $x \in S$ and for all $v \in N^{\mathcal{P}}(S, x) \cap \mathbb{B}$, one has

$$x \in \text{Proj}_{\mathcal{S}}(x + tv)$$
 for any real $t \in]0, r]$.

or equivalently

$$B(x + tv, t) \cap S = \emptyset.$$

Figure: Prox-regular set

Figure: Nonempty closed convex ⇔ ∞-prox-regular

Figure: Lack of prox-regularity

Let S be a nonempty subset of \mathcal{H} and $r \in [0, +\infty]$. One say that S is **r-prox-regular** whenever, for all $x \in S$ and for all $v \in N^{P}(S, x) \cap \mathbb{B}$, one has

$$x \in \operatorname{Proj}_{\mathcal{S}}(x + tv)$$
 for any real $t \in]0, r]$.

or equivalently

$$B(x + tv, t) \cap S = \emptyset.$$

Figure: Prox-regular set

Figure: Nonempty closed convex ⇔ ∞-prox-regular

Figure: Lack of prox-regularity

Contributors: H. Federer (1959); J.-P. Vial (1983); A. Canino (1988); A. Shapiro (1994); F.H. Clarke, R.L. Stern, P.R. Wolenski (1995); R.A. Poliquin, R.T. Rockafellar, Logary Thibault (2000).

Theorem ([3])

Let S be a nonempty closed subset of \mathcal{H} and r > 0. The following are equivalent:

- (a) S is r-prox-regular;
- (b) for all $x, x' \in S$, for all $v \in N^P(S; x)$, one has

$$\langle v, x' - x \rangle \leq \frac{1}{2r} \|v\| \|x - x'\|^2;$$

(c) the mapping $\operatorname{proj}_{S}(\cdot)$ is well defined on $U_{r}(S)$, and for every real $s \in]0, r[$, for all $x, x' \in U_{s}(S)$,

$$\|\operatorname{proj}_{\mathcal{S}}(x) - \operatorname{proj}_{\mathcal{S}}(x')\| \le \frac{1}{1 - (s/r)} \|x - x'\|;$$

(d) for any $u \in U_r(S) \setminus S$ such that $\operatorname{proj}_S(u) =: x$ is well defined, one has

$$x = \operatorname{proj}_{S}(x + \frac{t}{d_{S}(u)}(u - x))$$
 for all $t \in [0, r]$;

(e) the function $d_S^2(\cdot)$ is differentiable on $U_r(S)$ with a locally Lipschitz derivative and

$$\nabla d_S^2(x) = 2(x - \text{proj}_S(x))$$
 for all $x \in U_r(S)$.

Theorem ([3])

Let S be a nonempty closed subset of \mathcal{H} and r > 0. The following are equivalent:

(a) S is r-prox-regular:

(b) for all $x, x' \in S$, for all $v \in N^P(S; x)$, one has

$$\langle v, x' - x \rangle \leq \frac{1}{2r} \|v\| \|x - x'\|^2;$$

(c) the mapping $\operatorname{proj}_{S}(\cdot)$ is well defined on $U_r(S)$, and for every real $s \in]0, r[$, for all $x, x' \in U_s(S)$.

$$\|\operatorname{proj}_{S}(x) - \operatorname{proj}_{S}(x')\| \leq \frac{1}{1 - (s/r)} \|x - x'\|;$$

(d) for any $u \in U_r(S) \setminus S$ such that $\operatorname{proj}_S(u) =: x$ is well defined, one has

$$x = \operatorname{proj}_{\mathcal{S}}(x + \frac{t}{d_{\mathcal{S}}(u)}(u - x))$$
 for all $t \in [0, r]$;

(e) the function $d_S^2(\cdot)$ is differentiable on $U_r(S)$ with a locally Lipschitz derivative and

$$\nabla d_S^2(x) = 2(x - \operatorname{proj}_S(x))$$
 for all $x \in U_r(S)$.

▶ If S is r-prox-regular, then Fréchet N^F , Mordukhovich limiting N^L , Clarke N^C $N^{P}(S;\cdot) = N^{F}(S;\cdot) = N^{L}(S;\cdot) = N^{C}(S;\cdot) := N(S;\cdot).$

Strongly convexity

Overview

Definition

Let C be a nonempty subset in X. One says that C is R-strongly convex for some real R > 0 whenever there is a nonempty set $L \subset X$ such that

$$C = \bigcap_{x \in L} B[x, R].$$

Contributors: H. Frankowska, C. Olech (1981), J. P. Vial (1985), E. S. Polovinkin (1996, 2000), M. V. Balashov (2004, 2006), G. E. Ivanov (1995, 2006), A. Weber and G. Reibig (2013).

Theorem ([7, 10])

Let C be a nonempty closed convex bounded subset in X and let R > 0 be a real. The following assertions are equivalent:

Farthest distance and separating balls

- (a) the set C is R-strongly convex;
- (b) for all $x, x' \in C$ and for all $v \in N(C; x)$, one has

$$\langle v, x' - x \rangle \leq -\frac{\|v\|}{2R} \|x' - x\|^2;$$

(c) the mapping far_C is well defined on $\mathcal{E}_R(C) := \{x \in X : \operatorname{dfar}_C(x) > R\}$ and for every real s > R, for all $x, x' \in \mathcal{E}_s(C)$,

$$\|far_{\mathcal{C}}(x) - far_{\mathcal{C}}(x')\| \le \frac{1}{(s/R) - 1} \|x - x'\|;$$

(d) for any $u \in \mathcal{E}_{R}(C)$ such that $far_{C}(u) =: x$ is well defined, one has

$$x = \operatorname{far}_{\mathcal{C}} (x - \frac{t}{\operatorname{dfar}_{\mathcal{C}}(u)}(x - u))$$
 for all $t \in]R, +\infty[$;

(e) the function ${
m dfar}_C^2(\cdot)$ is differentiable on ${\cal E}_R(C)$ with a locally Lipschitz derivative and ${
m MOA}$

UPVD

Previous resul

The function d_C is convex if and only if the set C is convex.

Previous results

The function d_C is convex if and only if the set C is convex.

 \Rightarrow Q1: Can we characterize the set for which its distance is semiconvex?

The function d_C is convex if and only if the set C is convex.

⇒ Q1: Can we characterize the set for which its distance is semiconvex?

Definition

Let *U* a nonempty convex subset of *X* and $\sigma > 0$ be a real. A function $f: U \to \mathbb{R} \cup \{+\infty\}$ is said to be linearly σ -semiconvex on U provided that for every $t \in]0,1[$ and every $x,y \in U$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \frac{\sigma}{2}t(1-t)\|x-y\|^2$$

or equivalently if $f(\cdot) + \sigma/2 \|\cdot\|^2$ is convex on U.

The function d_C is convex if and only if the set C is convex.

Farthest distance and separating balls

⇒ Q1: Can we characterize the set for which its distance is semiconvex?

Definition

Let *U* a nonempty convex subset of *X* and $\sigma \geq 0$ be a real. A function $f: U \to \mathbb{R} \cup \{+\infty\}$ is said to be linearly σ -semiconvex on U provided that for every $t \in]0,1[$ and every $x,y \in U$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \frac{\sigma}{2}t(1-t)\|x-y\|^2$$

or equivalently if $f(\cdot) + \sigma/2 \|\cdot\|^2$ is convex on U.

Let S be an r-prox-regular.

- **G.** Colombo and L. Thibault ([3]): It is equivalent to for any real 0 < s < r, the function d_S^2 is s/(r-s)-semiconvex on any convex set included in $U_s(S)$.
- M. V. Balashov ([6]): The function d_S is $(r-s)^{-1}$ semiconvex on any convex set included in $U_s(S)$.
- F. Nacry and L. Thibault ([4]): Provide a short proof of Balashov's result by establishing that a prox-regular set is nothing but the complement of union of closed balls of common radius.

Previous results

Q2: Can we replace the usual distance function by the farthest distance?

Previous results

Q2: Can we replace the usual distance function by the farthest distance?

Theorem (Balashov-Golubev ([6], 2014), Nacry-N.V.A.T-Thibault (2022))

Let C be a nonempty closed bounded subset of X and let R>0 be a positive real. The following assertions are equivalent: (a) the set C is R-strongly convex;

Farthest distance and separating balls

Q2: Can we replace the usual distance function by the farthest distance?

Theorem (Balashov-Golubev ([6], 2014), Nacry-N.V.A.T-Thibault (2022))

Let C be a nonempty closed bounded subset of X and let R > 0 be a positive real. The following assertions are equivalent:

- (a) the set C is R-strongly convex;
- (b) for any real s > R, the function $-\mathrm{dfar}_C$ is linearly semiconvex on nonempty convex subset V of $\mathcal{E}_R(C)$ with $(s-R)^{-1}$ as coefficient;

Farthest distance and separating balls

Q2: Can we replace the usual distance function by the farthest distance?

Theorem (Balashov-Golubev ([6], 2014), Nacry-N.V.A.T-Thibault (2022))

Let C be a nonempty closed bounded subset of X and let R > 0 be a positive real. The following assertions are equivalent:

- (a) the set C is R-strongly convex;
- (b) for any real s > R, the function $-\operatorname{dfar}_C$ is linearly semiconvex on nonempty convex subset V of $\mathcal{E}_R(C)$ with $(s-R)^{-1}$ as coefficient;
- (c) the function $-\operatorname{dfar}_C$ is locally linearly semiconvex on $\mathcal{E}_R(C)$, that is, linearly semiconvex near each point in $\mathcal{E}_R(C)$.

Overview

Main idea of the proof: $(a \Rightarrow b)$

- Let C be R-strongly convex with R > 0 and let S be r-prox-regular with r > 0 such that 0 < R < r. The set C + S is (r R)-prox-regular, so closed ([10]).
- Let S be an r-prox-regular with r > 0. Then, for all $s \in]0, r[$, the set $X \setminus S$ is the union of a family of closed balls of X of radius s ([4]).
- If *S* is the union of a collection of closed balls with a r > 0, then on each nonempty convex set *U* included in $cl(X \setminus S)$, then d_S is r^{-1} -semiconcave ([8]).

Overview

Main idea of the proof: $(a \Rightarrow b)$

- Let C be R-strongly convex with R > 0 and let S be r-prox-regular with r > 0 such that 0 < R < r. The set C + S is (r R)-prox-regular, so closed ([10]).
 - \Rightarrow The set $D := \{ \operatorname{dfar}_C \geq s \}$ is (s R)-prox-regular.
- Let S be an r-prox-regular with r > 0. Then, for all $s \in]0, r[$, the set $X \setminus S$ is the union of a family of closed balls of X of radius s ([4]).
- If S is the union of a collection of closed balls with a r > 0, then on each nonempty convex set U included in $cl(X \setminus S)$, then d_S is r^{-1} -semiconcave ([8]).

Semiconcavity property

Main idea of the proof: $(a \Rightarrow b)$

- Let C be R-strongly convex with R > 0 and let S be r-prox-regular with r > 0 such that 0 < R < r. The set C + S is (r R)-prox-regular, so closed ([10]).
 - \Rightarrow The set $D:=\{\mathrm{dfar}_C\geq s\}$ is (s-R)-prox-regular.
- Let S be an r-prox-regular with r > 0. Then, for all $s \in]0, r[$, the set $X \setminus S$ is the union of a family of closed balls of X of radius s ([4]).
 - \Rightarrow $S := X \setminus D = \{ dfar_C < s \}$ is the union of a collection of closed balls with radius s t for any $t \in]R, s[$.
- If S is the union of a collection of closed balls with a r > 0, then on each nonempty convex set U included in $cl(X \setminus S)$, then d_S is r^{-1} -semiconcave ([8]).

Overview

Main idea of the proof: $(a \Rightarrow b)$

■ Let C be R-strongly convex with R > 0 and let S be r-prox-regular with r > 0 such that 0 < R < r. The set C + S is (r - R)-prox-regular, so closed ([10]).

Farthest distance and separating balls

- \Rightarrow The set $D := \{ dfar_C > s \}$ is (s R)-prox-regular.
- Let S be an r-prox-regular with r > 0. Then, for all $s \in]0, r[$, the set $X \setminus S$ is the union of a family of closed balls of X of radius s ([4]).
 - $\Rightarrow S := X \setminus D = \{ \operatorname{dfar}_C < s \}$ is the union of a collection of closed balls with radius s - t for any $t \in]R, s[$.
- If S is the union of a collection of closed balls with a r > 0, then on each nonempty convex set *U* included in $cl(X \setminus S)$, then d_S is r^{-1} -semiconcave ([8]).
 - $\Rightarrow d(\cdot, S)$ is $(s-t)^{-1}$ -linearly semiconcave on $U \subset D$.

Farthest distance and separating balls

Main idea of the proof: $(a \Rightarrow b)$

- Let C be R-strongly convex with R > 0 and let S be r-prox-regular with r > 0 such that 0 < R < r. The set C + S is (r R)-prox-regular, so closed ([10]).
 - \Rightarrow The set $\mathit{D} := \{ \mathrm{dfar}_{\mathit{C}} \geq \mathit{s} \}$ is $(\mathit{s} \mathit{R})$ -prox-regular.
- Let S be an r-prox-regular with r > 0. Then, for all $s \in]0, r[$, the set $X \setminus S$ is the union of a family of closed balls of X of radius s ([4]).
 - \Rightarrow $S:=X\setminus D=\{\mathrm{dfar}_C< s\}$ is the union of a collection of closed balls with radius s-t for any $t\in]R,s[$.
- If S is the union of a collection of closed balls with a r > 0, then on each nonempty convex set U included in $cl(X \setminus S)$, then d_S is r^{-1} -semiconcave ([8]).
 - $\Rightarrow d(\cdot, S)$ is $(s t)^{-1}$ -linearly semiconcave on $U \subset D$.
- Also prove that: $\operatorname{dfar}_C(u) = s + d(u, \{\operatorname{dfar}_C \leq s\})$ for all $u \in \mathcal{E}_s(C)$.

 $\operatorname{dfar}_{\mathcal{C}}(\cdot)$ is $(s-t)^{-1}$ -linearly semiconcave.

Farthest distance and separating balls

• Let C be a nonempty closed convex set of X and $x \in X \setminus C$, it is well-known that with $x_* := d_C(x)^{-1}(x - \text{proj}_C(x))$, the separation property for some real α

Farthest distance and separating balls

000000

$$C \subset \{\langle x_{\star}, \cdot \rangle < \alpha\}$$
 and $\langle x_{\star}, x \rangle > \alpha$.

Separation property

• Let C be a nonempty closed convex set of X and $x \in X \setminus C$, it is well-known that with $x_* := d_C(x)^{-1}(x - \operatorname{proj}_C(x))$, the separation property for some real α

$$C \subset \{\langle x_{\star}, \cdot \rangle < \alpha\}$$
 and $\langle x_{\star}, x \rangle > \alpha$.

• Replacing $\{\langle x_\star, \cdot \rangle < \alpha\}$ by a general form $\left\{\langle x_\star, x \rangle - \frac{\|x\|^2}{2r} < \alpha\right\}$ allows to extend the separation property, to r-prox-regular sets.

Proposition ([1])

Let S be an r-prox-regular subset of X with r > 0, $x \in X$ with $\delta := d_S(x) \in]0, r[$. Then, with $x_* := (\frac{1}{r} - \frac{1}{\delta}) \operatorname{proj}_{\mathcal{S}}(x) + \frac{1}{\delta} x$ the separation property for some $\alpha \in \mathbb{R}$

$$S \subset \left\{ \langle x_\star, \cdot \rangle - \frac{\| \cdot \|^2}{2r} < \alpha \right\} \quad \text{and} \quad \langle x_\star, x \rangle - \frac{\| x \|^2}{2r} > \alpha.$$

Separation property

▶ Aim: provide the separation property in the case of strongly convex sets.

Overview

▶ Aim: provide the separation property in the case of strongly convex sets.

Given any $x^* \in X$, any real R > 0 and any R-strongly convex set C in X, set

$$q_{x^*,R}(x) := \langle x^*, x \rangle - \frac{\|x\|^2}{2R}$$
 for all $x \in X$

Farthest distance and separating balls

000000

and

$$\varUpsilon_{C,R}(x) := \left(\frac{1}{R} - \frac{1}{\operatorname{dfar}_C(x)}\right)\operatorname{far}_C(x) + \frac{1}{\operatorname{dfar}_C(x)}x \quad \text{for all } x \in \mathcal{E}_R(C).$$

Overview

▶ Aim: provide the separation property in the case of strongly convex sets.

Given any $x^* \in X$, any real R > 0 and any R-strongly convex set C in X, set

$$q_{x^*,R}(x) := \langle x^*, x \rangle - \frac{\|x\|^2}{2R}$$
 for all $x \in X$

Farthest distance and separating balls

000000

and

$$\varUpsilon_{C,R}(x) := \left(\frac{1}{R} - \frac{1}{\operatorname{dfar}_C(x)}\right) \operatorname{far}_C(x) + \frac{1}{\operatorname{dfar}_C(x)} x \quad \text{for all } x \in \mathcal{E}_R(C).$$

Theorem

Let C be an R-strongly convex set in X for some real R > 0 and let $x \in X$ with $\delta := \operatorname{dfar}_{C}(x) > 2R$. Then, with $x^{*} = \Upsilon_{C,R}(x)$, for some $\alpha \in \mathbb{R}$,

$$C \subset \left\{ \langle x^\star, \cdot
angle - rac{\|\cdot\|^2}{2R} > lpha
ight\} \quad ext{and} \quad q_{x^\star, R}(x) < lpha \leq \inf_{c \in C} q_{x^\star, R}(c).$$

The farthest distance in terms of support function

■ Let C be a closed convex set in X, the distance function d_C has been described in terms of the support function $\sigma(\cdot, C)$ at $x_* := d_C(x)^{-1}(x - \text{proj}_C(x))$

$$d_C(x) = \langle x_{\star}, x \rangle - \sigma(x_{\star}, C).$$

It has been extended to the context of a prox-regular set (in [4]), that means for an r-prox-regular set S with r > 0, one has

$$d_{\mathcal{S}}(x)\left(1-\frac{d_{\mathcal{S}}(x)}{2r}\right)=q_{X_{\star},r}(x)-\phi_{\mathcal{S},r}(x_{\star}),$$

where $\phi_{S,r}(x_\star) := \sup_{u \in S} q_{x_\star,r}(u)$ with $q_{x_\star,r}(x) := \langle x_\star, x \rangle - \frac{\|x\|^2}{2r}$ for all $x \in X$.

Overview

The farthest distance in terms of support function

■ Let C be a closed convex set in X, the distance function d_C has been described in terms of the support function $\sigma(\cdot, C)$ at $x_* := d_C(x)^{-1} (x - \text{proj}_C(x))$

$$d_C(x) = \langle x_{\star}, x \rangle - \sigma(x_{\star}, C).$$

It has been extended to the context of a prox-regular set (in [4]), that means for an r-prox-regular set S with r > 0, one has

$$d_{\mathcal{S}}(x)\left(1-\frac{d_{\mathcal{S}}(x)}{2r}\right)=q_{X_{\star},r}(x)-\phi_{\mathcal{S},r}(X_{\star}),$$

where
$$\phi_{S,r}(x_\star) := \sup_{u \in S} q_{x_\star,r}(u)$$
 with $q_{x_\star,r}(x) := \langle x_\star, x \rangle - \frac{\|x\|^2}{2r}$ for all $x \in X$.

Aim: provide the formula of farthest distance in terms of support function in the case of strongly convex sets.

Lemma

Overview

Let C be an R-strongly convex subset of X for some real R>0 and let $x\in X$ with $\mathrm{dfar}_C(x)>R$. Then, there exists one and only one $x^*\in X$ with $\|x^*-R^{-1}x\|=R^{-1}\mathrm{dfar}_C(x)-1$ (namely, $x^*:=\varUpsilon_{C,R}(x)$) such that

$$\mathrm{dfar}_{\mathcal{C}}(x)\left(1-\frac{\mathrm{dfar}_{\mathcal{C}}(x)}{2R}\right)=q_{x^{\star},R}(x)-\Phi_{\mathcal{C},R}(x^{\star})$$

dr MOA

where $\Phi_{C,B}(x^*) := \inf_{c \in C} q_{x^*,B}(c)$.

Nguyen Vo Anh Thuong

UPVD

Farthest distance function to strongly convex sets in Hilbert space

The farthest distance in terms of supporting hyperplanes

In ([2]): the distance of a point to prox-regular set is the maximum of the distances of the point from boundaries of all such complements separating the set and the point.

Overview

The farthest distance in terms of supporting hyperplanes

- In ([2]): the distance of a point to prox-regular set is the maximum of the distances of the point from boundaries of all such complements separating the set and the point.
- ⇒ Develop in case of strongly convex set.

Overview

Some analytic formulation for the farthest distance function to a strongly convex set

The farthest distance in terms of supporting hyperplanes

- In ([2]): the distance of a point to prox-regular set is the maximum of the distances of the point from boundaries of all such complements separating the set and the point.
- ⇒ Develop in case of strongly convex set.

Setting
$$\Phi_{C,R}(x^*) := \inf_{c \in C} q_{x^*,R}(c)$$
 and $L_{x^*,R,\alpha} := \{q_{x^*,R} \ge \alpha\}$

Theorem

Overview

Let C be an R-strongly subset of X for some R > 0 and let $x \in X$ with $\delta := dfar(x, C) > 2R$. One has

$$\delta = \min \left\{ \operatorname{dfar}(x, L_{y^{\star}, R, \alpha}) : (y^{\star}, \alpha) \in X \times \mathbb{R}, C \subset L_{y^{\star}, R, \alpha}, x \notin L_{y^{\star}, R, \alpha} \right\}.$$

The minimum is attained at (x^*, β) with $x^* := \Upsilon_{C,R}(x)$ and $\beta := \Phi_{C,R}(x^*)$. Further, for all $y^* \in X$ with $||y^* - R^{-1}x|| = R^{-1}\delta - 1$ and all $\alpha \in \mathbb{R}$, one has

$$\left. \begin{array}{l} \delta = d(x, L_{y^\star, r, \alpha}), \\ C \subset L_{y^\star, r, \alpha}, x \notin L_{y^\star, r, \alpha} \end{array} \right\} \Rightarrow (y^\star, \alpha) = \big(x^\star, \Phi_{C, R}(x^\star)\big).$$

Conclusion: In this paper,

Overview

- Develop some properties of strongly convex sets through the farthest distance function, especially semiconvavity.
- Provide the separation to strongly convex sets from an outside point in Hilbert space.

Perspective the research

- Involving strong convexity to some aspects of Variational Analysis.
- 2 Involving strong convexity in differential inclusion (Sweeping process theory).
- **3** Consider metric regularity of $d(C \cap S; x)$.
- Study in Banach spaces.

S. Adly, F. Nacry, L. Thibault, *Prox-regular sets and Legendre-Fenchel transform related to separation properties*. Optimization 71 (2022), 2097-2129.

S. Adly, F. Nacry, L. Thibault, *New metric properties for prox-regular sets*. Math. Program. 189 (2021), Ser. B, 7-36.

G. Colombo, L. Thibault, *Prox-regular sets and applications*. Handbook of nonconvex analysis and applications, 99-182 (2010), Int. Press, Somerville, MA.

F. Nacry, L. Thibault, *Distance function associated to a prox-regular set.* Set-Valued Var. Anal 30 (2022), 731-750.

M. V. Balashov, Weak convexity of the distance function. J. Convex Anal, 20 (2013), 93-106.

M. V. Balashov, M. O. Golubev, *Weak concavity of the antidistance function.* J. Convex Anal. 21 (2014), 951-964.

M. V. Balashov, G. E. Ivanov, *On farthest points of sets*. Mathematical Notes, 80 (2006), 159-166.

P. Cannarsa, C. Sinestrari, *Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control.* Birkhäuser Boston, Inc., Boston, MA, 2004.

F. Deutsch, *Best Approximation in Inner Product Spaces*. CMS Books in Mathematics, 7, Springer-Verlag, New-York, 2001.

G. E. Ivanov, Weakly Convex Sets and Functions: Theory and Applications. Fizmatlit, Moscow (2006) (in Russian).