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Nonconvex minimization

Consider the problem

Minimize F(w) = E,,~p [[[h(w,x) — y|3]
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Nonconvex minimization

Consider the problem

Minimize F(w) = Ex~p [|[h(w.x) - yj3]

h can be defined several ways: from
Linear models to Deep Learning...

® [ is nonconvex

® No access to F in general, only to h
and samples from P. -10
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How to find a critical point VF(w) =07
Classical method: Gradient method

Wig41 = Wi — OszF(Wk)
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Stochastic Gradient descent

But F writes as an expectation,
F(w) =Eyynp [[[A(w,x) = y[5] = Ecup [f(w,£)]
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Stochastic Gradient descent

But F writes as an expectation,
F(w) =Eyynp [[[A(w,x) = y[5] = Ecup [f(w,£)]
We do not have access to VF !

Suppose however we can compute f and V,,f, and we have i.i.d. samples (&) ken-

Gradient descent -

Stochastic gradient descent (SGD) Stochasm/ radient pescent

Wit1 = Wk — ax Vi (Wi, k)

Under reasonable assumptions, we can
switch operations E and V, so that ‘\ S

Vo f(wi, &) = VF(wy) -
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Analysis of the algorithm: the ODE approach

-If aie \, 0 but not too quickly, > ax = +o0, Y a3 < +oo

Wit ZWe _ _GF () + ex < iy =-VF(y) (1)

(€73 switch E and V

where € is a “noise” (martingale difference).

(GdR MOA days) Tam Le 6/20



Analysis of the algorithm: the ODE approach

-If aie \, 0 but not too quickly, > ax = +o0, Y a3 < +oo

Wit ZWe _ _GF () + ex < iy =-VF(y) (1)

693 switch E and V
where € is a “noise” (martingale difference).

Meanwhile, along a solution ~y of (1)

%(FOV)U) = (VF((0).4(0) = =IVFG@)IF <0 (2)

chain-rule

(GdR MOA days) Tam Le



Analysis of the algorithm: the ODE approach

-If aie \, 0 but not too quickly, > ax = +o0, Y a3 < +oo

Wit ZWe _ _GF () + ex < iy =-VF(y) (1)

693 switch E and V
where € is a “noise” (martingale difference).

Meanwhile, along a solution ~y of (1)

%(FOV)U) = (VF((0).4(0) = =IVFG@)IF <0 (2)

chain-rule

Suppose (wy) is bounded a.s.

(GdR MOA days) Tam Le 6/20



Analysis of the algorithm: the ODE approach

-If e \( 0 but not too quickly, > ax = +o0, Za,% < 400

Wit ZWe _ _GF () + ex < iy =-VF(y) (1)
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where € is a “noise” (martingale difference).

Meanwhile, along a solution ~y of (1)
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- Convergence to the critical set. Combining (1) and (2), accumulation points
of (Wk)ken is a connected set and are critical, (VF(w) = 0).
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Analysis of the algorithm: the ODE approach

-If e \( 0 but not too quickly, > ax = +o0, Za,% < 400

Wit = Wk _ G (w) + ek — 7 =~VF(7) 1)

693 switch E and V
where € is a “noise” (martingale difference).

Meanwhile, along a solution ~y of (1)

SFot) = (VFG)3(0) =~ IVFGIP <0 ()

chain-rule

Suppose (wk) is bounded a.s.

- Convergence to the critical set. Combining (1) and (2), accumulation points
of (Wk)ken is a connected set and are critical, (VF(w) = 0).

- Convergence of the objective function. Suppose furthermore the set of
critical values (F(w) such that VF(w) = 0) has empty interior (Sard's condition),
then F(wy) converges (empty interior + connected).
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® Nonsmooth stochastic optimization
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Why should we care about nonsmooth functions?

In deep learning, predictions are built upon compositions.
h(W, X) = U(ALJ(AL_l .. O’(AQU(AlX + bl) + bg) +b_q.. ) + b[_)

w = (A1, Ax... AL, b1, ..., b). o are nonsmooth because defined with
conditional statements.

y = reLU(z)

0 ifx<0

reLU(x):{ x ifx>0
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Why should we care about nonsmooth functions?

In deep learning, predictions are built upon compositions.
h(W, X) = U(ALJ(AL_l .. O’(AQJ(AlX + bl) + bg) +b_q.. ) + b[_)

w = (A1, Ax... AL, b1, ..., b). o are nonsmooth because defined with
conditional statements.

y = reLU(z)

x ifx>0
reLU(X):{ 0 ifx<0

I z

In this setting, can we have some kind of stochastic gradient method:

Wir1 = Wi — av(wi, §k)

where v(wg, &) approximates a gradient-like object for F(wy) ?
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The Clarke subgradient

How to define a gradient-like object where F is non-differentiable ?
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The Clarke subgradient

How to define a gradient-like object where F is non-differentiable ?

O°F(x1) A

|
|
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|
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|
|
|
|
xX

1 y

Let F: R” — R Lipschitz, differentiable on diffg of full measure. The Clarke
subgradient is

c _ . . .
9°F(x) = conv {kl!TooVF(Xk) : xx € diffF, xk e x}
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The Clarke subgradient

How to define a gradient-like object where F is non-differentiable ?

OF(x)) 4F

Let F:R" — R Lipschitz, differentiable on diffg of full measure. The Clarke
subgradient is

0°F(x) = conv{ lim VF(x):x € diffe,xic  — x}
k—4o00 k—+o00

we “fill the holes”.
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Set-valued gradients imply a set-valued formalism

Clarke subgradients are “set-valued”
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Set-valued gradients imply a set-valued formalism

Clarke subgradients are “set-valued”

+ operation is set-valued
O°F+0°G:={A+B| A€ I°F,Be oG}

Integrals, expectations are set-valued

Eepl0°F(€)] = { /]R W(s)dP(s) < v(s) € O°F(s), v integrable}

First-order optimality condition
Smooth: 0 = VF(x) , Nonsmooth: 0 € 9°F(x)
Differential equations become inclusions

Smooth: x(t) = =V F(x(t)), Nonsmooth: x(t) € —9°F(x(t)) a.e. int
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Failure of the Clarke subgradient in stochastic optimization

Can we use the subgradient formally 7

Wiyl € Wi — aka\fvf(wkvgk)
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Failure of the Clarke subgradient in stochastic optimization

Can we use the subgradient formally 7
Wit1 € wi — a0y, f(wi, €k)

No !!!

If 05, f(w,&) is the subgradient of f with respect to w, then
G°F(w)C Ecnp [0, F(w, €)]

— Subgradient sampling is not consistent.

There exist (a lot of) functions F, differentiable almost everywhere, such that
O°F = [-1, 1] everywhere (see Borwein and Wang 2000).

— Sometimes, the subgradient does not contain variational information
We need a new notion of gradient, which comes along regularity.
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Conservative gradients: definition

Let F: R" — R locally Lipschitz, and a set-valued map D : R" = R". Dr is a
conservative gradient for F if
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conservative gradient for F if
® Dr is graph closed, nonempty
valued . . .
. — Existence of solutions for x € —Dg(x)
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Conservative gradients: definition

Let F: R" — R locally Lipschitz, and a set-valued map D : R" = R". Dr is a
conservative gradient for F if

® Dr is graph closed, nonempty

valued
. — Existence of solutions for x € —Dg(x)
® Dr is locally bounded

® (Dg convex)
Chain rule along curves

For all absolutely continuous curve
v :[0,1] = R",

d—i(Fofy)(t) = (v,j(t)) for all v € Dr(~(t)),

for almost all t € [0, 1].
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Conservative gradients: definition

Let F: R" — R locally Lipschitz, and a set-valued map D : R" = R". Dr is a
conservative gradient for F if

® Dr is graph closed, nonempty

valued ) ) )
— Existence of solutions for x € —Dg(x)

® Dr is locally bounded

® (Dg convex)

Chain rule along curves e Fis called path

For all absolutely continuous curve differentiable
:[0,1] — R", . . .

v+ [0,1] ® If F is path differentiable,
d i then O°F is a
E(F o )(t) = {v,¥(t)) for all v.€ Dp(7(1)), conservative gradient.

® Dr is not uni !
for almost all ¢ € [0, 1]. F is not unique

Can we have sufficient conditions for this chain rule?
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Path differentiability of piecewise affine functions
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Path differentiability in practice

Graphs of piecewise affine functions can be divided into affine pieces.

Flz,y) =yl

&

They are furthermore built with simple operations (<, =, — +. - if else), see for
instance reLU function.

(GdR MOA days) Tam Le 14 /20



Path differentiability in practice

Graphs of piecewise affine functions can be divided into affine pieces.

Flz,y) =yl

L

They are furthermore built with simple operations (<, =, — +. - if else), see for
instance reLU function.

We guess some relation

“Compositional formula ~ Graph structure”
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Path differentiability in practice

Definable geometry generalizes this equivalence for other dictionary of
operations. For instance, suppose we have a function implemented with

(exp, log, <,=, —,+, -, X, if, else)

we call it a definable function.
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Path differentiability in practice

Definable geometry generalizes this equivalence for other dictionary of
operations. For instance, suppose we have a function implemented with

(exp, log, <,=, —, +, -, X, if, else)

we call it a definable function. Then by Definable geometry, its graph can be
divided into nice pieces (C"-manifolds) and locally looks like piecewise affine
functions.

Definable functions are path differentiable.
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Compatibility with subgradient sampling

Theorem (Interchanging E and conservative gradient)

Suppose f definable. Under measurability, integrability assumptions,

Eep [05,f(-,€)] is a conservative gradient for F := E¢p[f(-,§)].

Sampling 95 f(w, &), £ ~ P averages a descent direction at w

(GdR MOA days) Tam Le 16 / 20



Application to stochastic optimization

We study the convergence of nonsmooth SGD:

Wiy1 € Wi — Oéka,‘,:vf(Wk,fk)
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Application to stochastic optimization

We study the convergence of nonsmooth SGD:
Wiy1 € Wi — aka‘fvf(wk,fk)

Main assumptions
® > ay =400, ay =0
® f:RP x R™ — R is definable (semialgebraic, globally subanalytic).
® Integrability assumption: For almost all s € R™, x,y € RP

[F(x;8) = F(y, 9)] < m(s)(L + (I + ly D)X = vl

k™ is P-integrable for all n € N.

Theorem (Weak convergence of nonsmooth stochastic gradient descent)

Let (wy) generated by nonsmooth SGD. Suppose (wy) is bounded a.s., then any
essential accumulation point a of (wy) satisfies

0 € Eeup [0 f(a,8)], as.
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Application to stochastic optimization

a is an essential accumulation point if for all neighborhood U of a,

. Zf':o ailw;GU
limsup == —"— >0
k—o00 ZI:O (e

interpretation: the proportion of time spent around a doesn't vanish as k — co.
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Application to stochastic optimization

a is an essential accumulation point if for all neighborhood U of a,

. Zf':o Oli]-w;eU
limsup == —"— >0
k—o00 ZI:O (e

interpretation: the proportion of time spent around a doesn't vanish as k — co.
Suppose furthermore
2
® > af < +oo

® P < A has a definable density, with compact support — Sard'’s condition
( “Definability” of integrals, Cluckers and Miller 2009).
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Genericity of Clarke criticality

Question: If F has conservative gradient Dg, then D — VF almost everywhere.
Can we have 0 € 9°F(a) instead?
Answer: Randomizing wy, (ay) is sufficient.

Theorem (Genericity of Clarke criticality)

o » . .
Suppose oy = k_-fl When. randomIIZI.ng wo and ag (Gaussian or uniformly) then
a.s., any accumulation point a satisfies

0 € 8°F(a)
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Conclusion

- The theory of conservative gradients allows to study stochastic subgradient
methods on nonsmooth functions since it encompasses its keystone principles:

® descent mechanism (chain rule along curves)

® compatibility with (sub)gradient sampling
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Conclusion

- The theory of conservative gradients allows to study stochastic subgradient
methods on nonsmooth functions since it encompasses its keystone principles:

® descent mechanism (chain rule along curves)
® compatibility with (sub)gradient sampling

- Definable theory allows to retrieve classical subgradient criticality with
randomized initialization.

- Gradient descent is widely used in Deep Learning with nonsmooth gradient
oracle like backpropagation or implicit differentiation — conservative gradient also
models these.

Subgradient sampling for Nonsmooth Nonconvex minimization
https://arxiv.org/abs/2202.13744

Thanks for listening!
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