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Nonconvex minimization

Consider the problem

Minimize
w∈Rp

F (w) = Ex,y∼P

[
∥h(w, x)− y∥22

]

h can be defined several ways: from
Linear models to Deep Learning...

• F is nonconvex

• No access to F in general, only to h
and samples from P.

How to find a critical point ∇F (w) = 0 ?

Classical method: Gradient method

wk+1 = wk − αk∇F (wk)
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Stochastic Gradient descent

But F writes as an expectation,

F (w) = Ex,y∼P

[
∥h(w , x)− y∥22

]
= Eξ∼P [f (w , ξ)]

We do not have access to ∇F !

Suppose however we can compute f and ∇w f , and we have i.i.d. samples (ξk)k∈N.

Stochastic gradient descent (SGD)

wk+1 = wk − αk∇w f (wk , ξk)

Under reasonable assumptions, we can
switch operations E and ∇, so that
Eξ∼P [∇w f (w , ξ)] = ∇F (w) and

∇w f (wk , ξk) ≈ ∇F (wk)

Gradient descent

Stochastic Gradient Descent
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Analysis of the algorithm: the ODE approach

-If αk ↘ 0 but not too quickly,
∑

αk = +∞,
∑

α2
k < +∞

wk+1 − wk

αk
= −∇F (wk) + εk

switch E and ∇
←→ γ̇ = −∇F (γ) (1)

where εk is a “noise” (martingale difference).

Meanwhile, along a solution γ of (1)

d

dt
(F ◦ γ)(t) =

chain-rule
⟨∇F (γ(t)), γ̇(t)⟩ = −∥∇F (γ(t))∥2 ≤ 0. (2)

Suppose (wk) is bounded a.s.

- Convergence to the critical set. Combining (1) and (2), accumulation points
of (wk)k∈N is a connected set and are critical, (∇F (w) = 0).

- Convergence of the objective function. Suppose furthermore the set of
critical values (F (w) such that ∇F (w) = 0) has empty interior (Sard’s condition),
then F (wk) converges (empty interior + connected).
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Why should we care about nonsmooth functions?

In deep learning, predictions are built upon compositions.

h(w , x) = σ(ALσ(AL−1 . . . σ(A2σ(A1x + b1) + b2) + bL−1 . . .) + bL)

w = (A1,A2 . . .AL, b1, . . . , bL). σ are nonsmooth because defined with
conditional statements.

reLU(x) =

{
x if x > 0
0 if x ≤ 0

 

In this setting, can we have some kind of stochastic gradient method:

wk+1 = wk − αv(wk , ξk)

where v(wk , ξk) approximates a gradient-like object for F (wk) ?
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The Clarke subgradient

How to define a gradient-like object where F is non-differentiable ?

F

x

F (x)
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The Clarke subgradient

How to define a gradient-like object where F is non-differentiable ?

F

x

F (x)

x1 x2

∂c
F (x1)

∂c
F (x2)

Let F : Rn → R Lipschitz, differentiable on diffF of full measure. The Clarke
subgradient is

∂cF (x) = conv

{
lim

k→+∞
∇F (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
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The Clarke subgradient

How to define a gradient-like object where F is non-differentiable ?
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F (x1)
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Let F : Rn → R Lipschitz, differentiable on diffF of full measure. The Clarke
subgradient is

∂cF (x) = conv

{
lim

k→+∞
∇F (xk) : xk ∈ diffF , xk −→

k→+∞
x

}
we “fill the holes”.
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Set-valued gradients imply a set-valued formalism

Clarke subgradients are “set-valued”

+ operation is set-valued

∂cF + ∂cG := {A+ B | A ∈ ∂cF ,B ∈ ∂cG}

Integrals, expectations are set-valued

Eξ∼P [∂
cF (ξ)] =

{∫
Rm

v(s)dP(s) : v(s) ∈ ∂cF (s), v integrable

}

First-order optimality condition

Smooth: 0 = ∇F (x) , Nonsmooth: 0 ∈ ∂cF (x)

Differential equations become inclusions

Smooth: ẋ(t) = −∇F (x(t)), Nonsmooth: ẋ(t) ∈ −∂cF (x(t)) a.e. in t
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(GdR MOA days) Tam Le 10 / 20



Failure of the Clarke subgradient in stochastic optimization

Can we use the subgradient formally ?

wk+1 ∈ wk − αk∂
c
w f (wk , ξk)

No !!!

If ∂c
w f (w , ξ) is the subgradient of f with respect to w , then

∂cF (w)⊂ Eξ∼P [∂c
w f (w , ξ)]

→ Subgradient sampling is not consistent.

There exist (a lot of) functions F , differentiable almost everywhere, such that
∂cF = [−1, 1] everywhere (see Borwein and Wang 2000).

→ Sometimes, the subgradient does not contain variational information

We need a new notion of gradient, which comes along regularity.
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Conservative gradients: definition

Let F : Rn → R locally Lipschitz, and a set-valued map DF : Rn ⇒ Rn. DF is a
conservative gradient for F if

• DF is graph closed, nonempty
valued

• DF is locally bounded

• (DF convex)

→ Existence of solutions for ẋ ∈ −DF (x)

Chain rule along curves
For all absolutely continuous curve
γ : [0, 1]→ Rn,

d

dt
(F ◦ γ)(t) = ⟨v , γ̇(t)⟩ for all v ∈ DF (γ(t)),

for almost all t ∈ [0, 1].

• F is called path
differentiable

• If F is path differentiable,
then ∂cF is a
conservative gradient.

• DF is not unique !

Can we have sufficient conditions for this chain rule?
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Path differentiability of piecewise affine functions
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Path differentiability in practice

Graphs of piecewise affine functions can be divided into affine pieces.

They are furthermore built with simple operations (≤,=,−,+, ·, if, else), see for
instance reLU function.

We guess some relation

“Compositional formula ∼ Graph structure”
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Path differentiability in practice

Definable geometry generalizes this equivalence for other dictionary of
operations. For instance, suppose we have a function implemented with

(exp, log,≤,=,−,+, ·,×, if, else)

we call it a definable function.

Then by Definable geometry, its graph can be
divided into nice pieces (C r -manifolds) and locally looks like piecewise affine
functions.

Definable functions are path differentiable.
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Compatibility with subgradient sampling

Theorem (Interchanging E and conservative gradient)

Suppose f definable. Under measurability, integrability assumptions,

Eξ∼P [∂c
w f (·, ξ)] is a conservative gradient for F := Eξ∼P [f (·, ξ)].

Sampling ∂c
w f (w , ξ), ξ ∼ P averages a descent direction at w

(GdR MOA days) Tam Le 16 / 20



Application to stochastic optimization

We study the convergence of nonsmooth SGD:

wk+1 ∈ wk − αk∂
c
w f (wk , ξk)

Main assumptions

• ∑
αk = +∞, αk → 0

• f : Rp × Rm → R is definable (semialgebraic, globally subanalytic).

• Integrability assumption: For almost all s ∈ Rm, x , y ∈ Rp

|f (x , s)− f (y , s)| ≤ κ(s)(1 + (∥x∥+ ∥y∥)r )∥x − y∥

κn is P-integrable for all n ∈ N.

Theorem (Weak convergence of nonsmooth stochastic gradient descent)

Let (wk) generated by nonsmooth SGD. Suppose (wk) is bounded a.s., then any
essential accumulation point a of (wk) satisfies

0 ∈ Eξ∼P [∂c
w f (a, ξ)] , a.s.
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Application to stochastic optimization

a is an essential accumulation point if for all neighborhood U of a,

lim sup
k→∞

∑k
i=0 αi1wi∈U∑k

i=0 αi

> 0

interpretation: the proportion of time spent around a doesn’t vanish as k →∞.

Suppose furthermore

• ∑
α2
i < +∞

• P ≪ λ has a definable density, with compact support → Sard’s condition
(“Definability” of integrals, Cluckers and Miller 2009).

Theorem (Convergence of stochastic subgradient descent)

F (wk) converges, and any accumulation point a of (wk) satisfies

0 ∈ Eξ∼P [∂c f (a, ξ)] , a.s.
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Genericity of Clarke criticality

Question: If F has conservative gradient DF , then DF = ∇F almost everywhere.
Can we have 0 ∈ ∂cF (a) instead?
Answer: Randomizing w0, (αk) is sufficient.

Theorem (Genericity of Clarke criticality)

Suppose αk = α0

k+1 . When randomizing w0 and α0 (Gaussian or uniformly) then
a.s., any accumulation point a satisfies

0 ∈ ∂cF (a)
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Conclusion

- The theory of conservative gradients allows to study stochastic subgradient
methods on nonsmooth functions since it encompasses its keystone principles:

• descent mechanism (chain rule along curves)

• compatibility with (sub)gradient sampling

- Definable theory allows to retrieve classical subgradient criticality with
randomized initialization.
- Gradient descent is widely used in Deep Learning with nonsmooth gradient
oracle like backpropagation or implicit differentiation → conservative gradient also
models these.

Subgradient sampling for Nonsmooth Nonconvex minimization
https://arxiv.org/abs/2202.13744

Thanks for listening!
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