Nonsmooth differential calculus and optimization, the conservative gradient approach

Edouard Pauwels (IRIT, Toulouse 3, France)
joint work with JÉrôme Bolte

Ryan Boustany, Tâm Lê, Swann Marx, Béatrice Pesquet-Popescu, Antonio Silveti-Falls, Samuel Vaiter

Journées MOA, Nice, (Octobre, 2022)

TOULOUSE

Smooth backpropagation

- $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable expressed as

$$
f=g_{\llcorner } \circ \ldots \circ g_{1} \quad \text { with } g_{i} \text { "elementary" differentiable. }
$$

Smooth backpropagation

- $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable expressed as

$$
f=g_{L} \circ \ldots \circ g_{1} \quad \text { with } g_{i} \text { "elementary" differentiable. }
$$

- backprop: efficient algorithm to compute derivatives with the chain rule. In the smooth world BP outputs: backprop $f=\operatorname{Jac} g_{L} \circ \ldots \circ$ Jac $g_{1}=\nabla f^{T}$

Smooth backpropagation

- $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable expressed as

$$
f=g_{L} \circ \ldots \circ g_{1} \quad \text { with } g_{i} \text { "elementary" differentiable. }
$$

- backprop: efficient algorithm to compute derivatives with the chain rule.

In the smooth world BP outputs: backprop $f=\operatorname{Jac} g_{L} \circ \ldots \circ$ Jac $g_{1}=\nabla f^{T}$

- Baur-Strassen: Computing cost $(f, \nabla f) \leq 5$ Computing cost (f) instead of the naive Computing cost $(f, \nabla f) \leq p$ Computing cost (f)

Smooth backpropagation

- $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable expressed as

$$
f=g_{L} \circ \ldots \circ g_{1} \quad \text { with } g_{i} \text { "elementary" differentiable. }
$$

- backprop: efficient algorithm to compute derivatives with the chain rule.

In the smooth world BP outputs: backprop $f=\operatorname{Jac} g_{L} \circ \ldots \circ$ Jac $g_{1}=\nabla f^{T}$

- Baur-Strassen: Computing cost $(f, \nabla f) \leq 5$ Computing cost (f) instead of the naive Computing cost $(f, \nabla f) \leq p$ Computing cost (f)
- Essential element in modern AI / deep learning:
- $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable expressed as

$$
f=g_{L} \circ \ldots \circ g_{1} \quad \text { with } g_{i} \text { "elementary" differentiable. }
$$

- backprop: efficient algorithm to compute derivatives with the chain rule.

In the smooth world BP outputs: backprop $f=\operatorname{Jac} g_{L} \circ \ldots \circ$ Jac $g_{1}=\nabla f^{T}$

- Baur-Strassen: Computing cost $(f, \nabla f) \leq 5$ Computing cost (f) instead of the naive Computing cost $(f, \nabla f) \leq p$ Computing cost (f)
- Essential element in modern AI / deep learning:

- Nonsmoothness is needed: $g_{i}=$ relu, sort, maxpool, implicit layers
(1) Non-smooth backpropagation
(2) Failure of nonconvex nonsmooth calculus
(3) Conservative gradients and Jacobians

4 Compositional conservative calculus
(5) Optimization with conservative gradients
(6) Beyond compositional calculus
(7) Conclusion

$F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ locally Lipschitz

$F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ locally Lipschitz, differentiable almost everywhere (Rademacher).

$F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ locally Lipschitz, differentiable almost everywhere (Rademacher).
$\operatorname{Jac}^{c} F(x)=\operatorname{conv}\left\{M \in \mathbb{R}^{p \times q}: x^{k} \rightarrow x, F\right.$ diff. at $\left.x_{k}, \operatorname{Jac} F\left(x^{k}\right) \rightarrow M\right\}$

$F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ locally Lipschitz, differentiable almost everywhere (Rademacher).
$\operatorname{Jac}^{c} F(x)=\operatorname{conv}\left\{M \in \mathbb{R}^{p \times q}: x^{k} \rightarrow x, F\right.$ diff. at $\left.x_{k}, \operatorname{Jac} F\left(x^{k}\right) \rightarrow M\right\}$

$F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ locally Lipschitz, differentiable almost everywhere (Rademacher).
$\operatorname{Jac}^{c} F(x)=\operatorname{conv}\left\{M \in \mathbb{R}^{p \times q}: x^{k} \rightarrow x, F\right.$ diff. at $\left.x_{k}, \operatorname{Jac} F\left(x^{k}\right) \rightarrow M\right\}$
Denoted by $\partial^{c} F(x)$ when $q=1$

$F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ locally Lipschitz, differentiable almost everywhere (Rademacher).
$\operatorname{Jac}^{c} F(x)=\operatorname{conv}\left\{M \in \mathbb{R}^{p \times q}: x^{k} \rightarrow x, F\right.$ diff. at $\left.x_{k}, \operatorname{Jac} F\left(x^{k}\right) \rightarrow M\right\}$
Denoted by $\partial^{c} F(x)$ when $q=1$
Set valued $\mathrm{Jac}^{c} F: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{q \times p}$

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L}

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

How does nonsmooth backprop work?

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L}

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

- Nonsmooth backprop is formal chain rule:

$$
\text { backprop }_{f} \in \mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}
$$

How does nonsmooth backprop work?

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L}

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

- Nonsmooth backprop is formal chain rule:

$$
\text { backprop }_{f} \in \operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}
$$

- backprop $_{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is a selection in the set valued field $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c}{ }^{c}{ }_{1}: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$.

How does nonsmooth backprop work?

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L}

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

- Nonsmooth backprop is formal chain rule:

$$
\text { backprop }_{f} \in \operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1}
$$

- backprop $_{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is a selection in the set valued field $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c}{ }^{c} g_{1}: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$.
- This is what common is done in:

TrensorFlow U PyTorch

How does nonsmooth backprop work?

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L}

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

- Nonsmooth backprop is formal chain rule:

$$
\text { backprop }_{f} \in \operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}
$$

- backprop $_{f}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is a selection in the set valued field $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c}{ }^{c} g_{1}: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$.
- This is what common is done in:

TF TensorFlow © PyTorch

But what does backprop output? What sort of gradient could it be?
(1) Non-smooth backpropagation
(2) Failure of nonconvex nonsmooth calculus
(3) Conservative gradients and Jacobians
(4) Compositional conservative calculus
(5) Optimization with conservative gradients
(6) Beyond compositional calculus
(7) Conclusion

Outputs are partly unpredictible

$\operatorname{relu}(t)=\max \{0, t\} \quad \operatorname{relu}_{2}(t)=\operatorname{relu}(-t)+t \quad \operatorname{relu}_{3}(t)=1 / 2\left(\operatorname{relu}(t)+\operatorname{relu}_{2}(t)\right)$

Outputs are partly unpredictible

$\operatorname{relu}(t)=\max \{0, t\} \quad \operatorname{relu}_{2}(t)=\operatorname{relu}(-t)+t \quad \operatorname{relu}_{3}(t)=1 / 2\left(\operatorname{relu}(t)+\operatorname{relu}_{2}(t)\right)$
Then relu $=$ relu $_{2}=$ relu $_{3}$.

Outputs are partly unpredictible

$\operatorname{relu}(t)=\max \{0, t\} \quad \operatorname{relu}_{2}(t)=\operatorname{relu}(-t)+t \quad \operatorname{relu}_{3}(t)=1 / 2\left(\operatorname{relu}(t)+\operatorname{relu}_{2}(t)\right)$
Then relu $=$ relu $_{2}=$ relu $_{3}$.

- TensorFlow (TF) set backprop relu(0) $=0$. TF's gives
backprop $\operatorname{relu}_{2}(0)=1$ and backprop $\operatorname{relu}_{3}(0)=1 / 2$.

Outputs are partly unpredictible

$\operatorname{relu}(t)=\max \{0, t\} \quad \operatorname{relu}_{2}(t)=\operatorname{relu}(-t)+t \quad \operatorname{relu}_{3}(t)=1 / 2\left(\operatorname{relu}(t)+\operatorname{relu}_{2}(t)\right)$
Then relu $=$ relu $_{2}=$ relu $_{3}$.

- TensorFlow (TF) set backprop relu(0) $=0$. TF's gives
backprop $\operatorname{relu}_{2}(0)=1$ and backprop $\operatorname{relu}_{3}(0)=1 / 2$.

- Artifacts: $\operatorname{zero}(x)=\operatorname{relu} 2(x)-\operatorname{relu}(x)=0$.

Outputs are partly unpredictible

$\operatorname{relu}(t)=\max \{0, t\} \quad \operatorname{relu}_{2}(t)=\operatorname{relu}(-t)+t \quad \operatorname{relu}_{3}(t)=1 / 2\left(\operatorname{relu}(t)+\operatorname{relu}_{2}(t)\right)$
Then relu $=$ relu $_{2}=$ relu $_{3}$.

- TensorFlow (TF) set backprop relu(0) $=0$. TF's gives
backprop $\operatorname{relu}_{2}(0)=1$ and backprop $\operatorname{relu}_{3}(0)=1 / 2$.

- Artifacts: $\operatorname{zero}(x)=\operatorname{relu} 2(x)-\operatorname{relu}(x)=0$.

- Actually $s \times$ zero $=0$ and backprop $[s \times$ zero $](0)=s \in \mathbb{R}$ arbitrary

Outputs are partly unpredictible

$\operatorname{relu}(t)=\max \{0, t\} \quad \operatorname{relu}_{2}(t)=\operatorname{relu}(-t)+t \quad \operatorname{relu}_{3}(t)=1 / 2\left(\operatorname{relu}(t)+\operatorname{relu}_{2}(t)\right)$
Then relu $=$ relu $_{2}=$ relu $_{3}$.

- TensorFlow (TF) set backprop relu(0) $=0$. TF's gives

$$
\operatorname{backprop} \operatorname{relu}_{2}(0)=1 \text { and backprop } \operatorname{relu}_{3}(0)=1 / 2
$$

- Artifacts: $\operatorname{zero}(x)=\operatorname{relu} 2(x)-\operatorname{relu}(x)=0$.

- Actually $s \times$ zero $=0$ and backprop $[s \times$ zero $](0)=s \in \mathbb{R}$ arbitrary
- Spurious critical point: identity $(x):=x-\operatorname{zero}(x)=x$ but backprop identity $(0)=0$

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.
- holds with equality if g_{1} and g_{2} are convex.

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.
- holds with equality if g_{1} and g_{2} are convex.
- holds with equality if g_{1} and g_{2} are subdifferentially regular.

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.
- holds with equality if g_{1} and g_{2} are convex.
- holds with equality if g_{1} and g_{2} are subdifferentially regular.
- no equality in general: $g: x \mapsto|x|$

$$
\partial^{c}(g-g)=\partial^{c}(x \mapsto 0)=\{0\} \subset \partial^{c}(g)+\partial^{c}(-g)=\left\{\begin{array}{ll}
0 & \text { if } x \neq 0 \\
{[-2,2]} & \text { if } x=0
\end{array}\right. \text {. }
$$

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.
- holds with equality if g_{1} and g_{2} are convex.
- holds with equality if g_{1} and g_{2} are subdifferentially regular.
- no equality in general: $g: x \mapsto|x|$

$$
\partial^{c}(g-g)=\partial^{c}(x \mapsto 0)=\{0\} \subset \partial^{c}(g)+\partial^{c}(-g)=\left\{\begin{array}{ll}
0 & \text { if } x \neq 0 \\
{[-2,2]} & \text { if } x=0
\end{array}\right. \text {. }
$$

Deep learning: no convexity, no smoothness. Calculus rules?

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.
- holds with equality if g_{1} and g_{2} are convex.
- holds with equality if g_{1} and g_{2} are subdifferentially regular.
- no equality in general: $g: x \mapsto|x|$

$$
\partial^{c}(g-g)=\partial^{c}(x \mapsto 0)=\{0\} \subset \partial^{c}(g)+\partial^{c}(-g)=\left\{\begin{array}{ll}
0 & \text { if } x \neq 0 \\
{[-2,2]} & \text { if } x=0
\end{array}\right. \text {. }
$$

Deep learning: no convexity, no smoothness. Calculus rules?

- backprop : selection in enlarged "subgradient", artifacts

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.
- holds with equality if g_{1} and g_{2} are convex.
- holds with equality if g_{1} and g_{2} are subdifferentially regular.
- no equality in general: $g: x \mapsto|x|$

$$
\partial^{c}(g-g)=\partial^{c}(x \mapsto 0)=\{0\} \subset \partial^{c}(g)+\partial^{c}(-g)=\left\{\begin{array}{ll}
0 & \text { if } x \neq 0 \\
{[-2,2]} & \text { if } x=0
\end{array}\right. \text {. }
$$

Deep learning: no convexity, no smoothness. Calculus rules?

- backprop: selection in enlarged "subgradient", artifacts
- Non uniqueness: Different programs may implement the same function.

Subgradient calculus

No convexity, no calculus: $g_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}, g_{2}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz.

$$
\partial^{c}\left(g_{1}+g_{2}\right) \subset \partial^{c} g_{1}+\partial^{c} g_{2} .
$$

- holds with equality if g_{1} and g_{2} are continuously differentiable.
- holds with equality if g_{1} and g_{2} are convex.
- holds with equality if g_{1} and g_{2} are subdifferentially regular.
- no equality in general: $g: x \mapsto|x|$

$$
\partial^{c}(g-g)=\partial^{c}(x \mapsto 0)=\{0\} \subset \partial^{c}(g)+\partial^{c}(-g)=\left\{\begin{array}{ll}
0 & \text { if } x \neq 0 \\
{[-2,2]} & \text { if } x=0
\end{array}\right. \text {. }
$$

Deep learning: no convexity, no smoothness. Calculus rules?

- backprop: selection in enlarged "subgradient", artifacts
- Non uniqueness: Different programs may implement the same function.
- Stochastic approximation: $\partial^{c}\left(\frac{1}{n} \sum_{i=1}^{n} \ell_{i}\right) \subset \frac{1}{n} \sum_{i=1}^{n} \partial^{c} \ell_{i}$.
(1) Non-smooth backpropagation

2 Failure of nonconvex nonsmooth calculus
(3) Conservative gradients and Jacobians
(4) Compositional conservative calculus
(5) Optimization with conservative gradients
(6) Beyond compositional calculus
(7) Conclusion

Conservative gradients / Jacobians in a nutshell

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).

Conservative gradients / Jacobians in a nutshell

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has none or multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_{F} if $m=1$ for conservative gradients.

Conservative gradients / Jacobians in a nutshell

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has none or multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_{F} if $m=1$ for conservative gradients.
- If conservative Jacobians exist, F is called path-differentiable.
- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has none or multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_{F} if $m=1$ for conservative gradients.
- If conservative Jacobians exist, F is called path-differentiable.
- Solve calculus issue: compatible with compositional calculus rules
- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has none or multiple conservative Jacobians $J_{F}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_{F} if $m=1$ for conservative gradients.
- If conservative Jacobians exist, F is called path-differentiable.
- Solve calculus issue: compatible with compositional calculus rules
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

Intuition: descent mechanism, chain rule along Lipschitz curves
$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz,

$$
\begin{array}{rlr}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{array}
$$

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right)$?

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

Chain rule along Lipschitz curves (Brézis, Valadier).

 Hypothesis: Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

Chain rule along Lipschitz curves (Brézis, Valadier).

 Hypothesis: Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$,
$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

Chain rule along Lipschitz curves (Brézis, Valadier).

 Hypothesis: Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$,

Under the carpet: $\alpha_{k} \rightarrow 0$, small step limit \rightarrow solutions to the differential inclusion.
$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right) .
\end{aligned}
$$

Chain rule along Lipschitz curves (Brézis, Valadier).

 Hypothesis: Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$$$
\begin{aligned}
\frac{d}{d t} f(\gamma(t)) & =\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1] \\
& =-\|\dot{\gamma}(t)\|^{2}, \quad \text { a.e. } \quad t \in[0,1]
\end{aligned}
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$,

Under the carpet: $\alpha_{k} \rightarrow 0$, small step limit \rightarrow solutions to the differential inclusion.
$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz, $\quad f\left(\theta_{k+1}\right) \leq f\left(\theta_{k}\right) ?$

$$
\begin{aligned}
\theta_{k+1} & =\theta_{k}-\alpha_{k} v_{k} \\
v_{k} & \in \partial^{c} f\left(\theta_{k}\right)
\end{aligned}
$$

Chain rule along Lipschitz curves (Brézis, Valadier).

 Hypothesis: Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$$$
\begin{aligned}
\frac{d}{d t} f(\gamma(t)) & =\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \partial^{c} f(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1] \\
& =-\|\dot{\gamma}(t)\|^{2}, \quad \text { a.e. } \quad t \in[0,1]
\end{aligned}
$$

Suppose: $\dot{\gamma}(t) \in-\partial^{c} f(\gamma(t))$ for almost all $t \in[0,1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^{c} f(\gamma(t))$.

Under the carpet: $\alpha_{k} \rightarrow 0$, small step limit \rightarrow solutions to the differential inclusion.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^{c} f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Davis et .al. 2019, Bolte et. al. 2007: Subgradient projection formula implies chain rule along Lipschitz curves.

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$,

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$,
For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable, D is a conservative gradient for f (could be many). Conservative Jacobians defined similarly

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable, D is a conservative gradient for f (could be many). Conservative Jacobians defined similarly
- Gradient a.e.: $D(x)=\{\nabla f(x)\}$ for almost all $x \in \mathbb{R}^{p}$.

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable, D is a conservative gradient for f (could be many). Conservative Jacobians defined similarly
- Gradient a.e.: $D(x)=\{\nabla f(x)\}$ for almost all $x \in \mathbb{R}^{p}$.
- Minimal convex conservative gradient: $\partial^{c} f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^{p}$.

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable, D is a conservative gradient for f (could be many). Conservative Jacobians defined similarly
- Gradient a.e.: $D(x)=\{\nabla f(x)\}$ for almost all $x \in \mathbb{R}^{p}$.
- Minimal convex conservative gradient: $\partial^{c} f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^{p}$.
- Fermat rule: $0 \in \operatorname{conv}(D(x))$ for all local minima $x \in \mathbb{R}^{p}$.

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded,
For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable, D is a conservative gradient for f (could be many). Conservative Jacobians defined similarly
- Gradient a.e.: $D(x)=\{\nabla f(x)\}$ for almost all $x \in \mathbb{R}^{p}$.
- Minimal convex conservative gradient: $\partial^{c} f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^{p}$.
- Fermat rule: $0 \in \operatorname{conv}(D(x))$ for all local minima $x \in \mathbb{R}^{p}$.
- Equivalent caracterization: f is path-differentiable, if and only if ∂f^{c} is conservative.

Conservative gradient

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

$f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ locally Lipschitz
$D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$, closed graph, non empty valued, locally bounded, For any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$

$$
\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in D(\gamma(t)), \quad \text { a.e. } \quad t \in[0,1]
$$

- f is path differentiable, D is a conservative gradient for f (could be many). Conservative Jacobians defined similarly
- Gradient a.e.: $D(x)=\{\nabla f(x)\}$ for almost all $x \in \mathbb{R}^{p}$.
- Minimal convex conservative gradient: $\partial^{c} f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^{p}$.
- Fermat rule: $0 \in \operatorname{conv}(D(x))$ for all local minima $x \in \mathbb{R}^{p}$.
- Equivalent caracterization: f is path-differentiable, if and only if ∂f^{c} is conservative.
- Tame functions are path-differentiable (generic in applications): chain rule for ∂^{c}.
(1) Non-smooth backpropagation
(2) Failure of nonconvex nonsmooth calculus
(3) Conservative gradients and Jacobians
(4) Compositional conservative calculus
(5) Optimization with conservative gradients
(6) Beyond compositional calculus
(7) Conclusion

Conservative (outer) sum rule (Bolte-Pauwels 2019): $f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$, $\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall t \in E_{i}, \quad \lambda\left(E_{i}^{c}\right)=0$ Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$. Inversion of quantifiers: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$,

Conservative (outer) sum rule (Bolte-Pauwels 2019):
$f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$. Then $D=\sum_{i} \partial^{c} f_{i}$ is conservative for $f=\sum_{i} f_{i}$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$,

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t))
$$

Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$.
Inversion of quantificrs: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$,

Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):

$f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$. Then $D=\sum_{i} \partial^{c} f_{i}$ is conservative for $f=\sum_{i} f_{i}$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$,

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall t \in E_{i}, \quad \lambda\left(E_{i}^{c}\right)=0
$$

Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$.
Inversion of quantifiers: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$,

Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):

$f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$. Then $D=\sum_{i} \partial^{c} f_{i}$ is conservative for $f=\sum_{i} f_{i}$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$,

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall t \in E_{i}, \quad \lambda\left(E_{i}^{c}\right)=0
$$

Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$.
Inversion of quantifiers: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$,

Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):

$f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$. Then $D=\sum_{i} \partial^{c} f_{i}$ is conservative for $f=\sum_{i} f_{i}$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$,

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall t \in E_{i}, \quad \lambda\left(E_{i}^{c}\right)=0
$$

Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$.
Inversion of quantifiers: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$, that is

Conservative (outer) sum rule (Bolte-Pauwels 2019):

$f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$. Then $D=\sum_{i} \partial^{c} f_{i}$ is conservative for $f=\sum_{i} f_{i}$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$,

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall t \in E_{i}, \quad \lambda\left(E_{i}^{c}\right)=0
$$

Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$.
Inversion of quantifiers: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$, that is

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall i=1, \ldots, n .
$$

Conservative (outer) sum rule (Bolte-Pauwels 2019):

$f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$. Then $D=\sum_{i} \partial^{c} f_{i}$ is conservative for $f=\sum_{i} f_{i}$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$,

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall t \in E_{i}, \quad \lambda\left(E_{i}^{c}\right)=0
$$

Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$.
Inversion of quantifiers: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$, that is

$$
\begin{aligned}
& \frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall i=1, \ldots, n . \\
& \sum_{i=1}^{n} \frac{d}{d t} f_{i}(\gamma(t))=\sum_{i=1}^{n}\left\langle v_{i}, \dot{\gamma}(t)\right\rangle=\left\langle\sum_{i=1}^{n} v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \forall i=1, \ldots
\end{aligned}
$$

Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):

$f_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1, \ldots, n$. Then $D=\sum_{i} \partial^{c} f_{i}$ is conservative for $f=\sum_{i} f_{i}$.

Fix any Lipschitz curve $\gamma:[0,1] \mapsto \mathbb{R}^{p}$, for any $i=1, \ldots, n$,

$$
\frac{d}{d t} f_{i}(\gamma(t))=\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall t \in E_{i}, \quad \lambda\left(E_{i}^{c}\right)=0
$$

Set $E=\cap_{i} E_{i}$, we have $\lambda\left(E^{c}\right)=\lambda\left(\cup_{i} E_{i}^{c}\right)=0$.
Inversion of quantifiers: for all t in $E, t \in E_{i}$ for all $i=1, \ldots, n$, that is

$$
\begin{aligned}
\frac{d}{d t} f_{i}(\gamma(t)) & =\left\langle v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \quad \forall i=1, \ldots, n . \\
\sum_{i=1}^{n} \frac{d}{d t} f_{i}(\gamma(t)) & =\sum_{i=1}^{n}\left\langle v_{i}, \dot{\gamma}(t)\right\rangle=\left\langle\sum_{i=1}^{n} v_{i}, \dot{\gamma}(t)\right\rangle \quad \forall v_{i} \in \partial^{c} f_{i}(\gamma(t)), \forall i=1, \ldots
\end{aligned}
$$

$$
\frac{d}{d t} \sum_{i=1}^{n} f_{i}(\gamma(t))=\frac{d}{d t} f(\gamma(t))=\langle v, \dot{\gamma}(t)\rangle \quad \forall v \in \sum_{i=1}^{n} \partial^{c} f_{i}(\gamma(t))=D(\gamma(t)) .
$$

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e.,

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t.

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t :

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t :

- $\gamma(t) \neq 0: \gamma^{\prime}(t) \times D(\gamma(t))=\gamma^{\prime}(t) \times 0=0$. Suppose in addition $\gamma(t)=0$.
- the set $\left\{t \in[0,1], \gamma(t)=0, \gamma^{\prime}(t) \neq 0\right\}$ is denumerable (zero measure).

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t :

- $\gamma(t) \neq 0: \gamma^{\prime}(t) \times D(\gamma(t))=\gamma^{\prime}(t) \times 0=0$. Suppose in addition $\gamma(t)=0$.
- the set $\left\{t \in[0,1], \gamma(t)=0, \gamma^{\prime}(t) \neq 0\right\}$ is denumerable (zero measure).

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t :

- $\gamma(t) \neq 0: \gamma^{\prime}(t) \times D(\gamma(t))=\gamma^{\prime}(t) \times 0=0$. Suppose in addition $\gamma(t)=0$.
- $\gamma(t)=0, \gamma^{\prime}(t)=0: \gamma^{\prime}(t) \times D(\gamma(t))=0 \times[-1,1]=0$.
- the set $\left\{t \in[0,1], \gamma(t)=0, \gamma^{\prime}(t) \neq 0\right\}$ is denumerable (zero measure).

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t :

- $\gamma(t) \neq 0: \gamma^{\prime}(t) \times D(\gamma(t))=\gamma^{\prime}(t) \times 0=0$. Suppose in addition $\gamma(t)=0$.
- $\gamma(t)=0, \gamma^{\prime}(t)=0: \gamma^{\prime}(t) \times D(\gamma(t))=0 \times[-1,1]=0$.
- $\gamma(t)=0, \gamma^{\prime}(t) \neq 0$:
- the set $\left\{t \in[0,1], \gamma(t)=0, \gamma^{\prime}(t) \neq 0\right\}$ is denumerable (zero measure).

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t :

- $\gamma(t) \neq 0: \gamma^{\prime}(t) \times D(\gamma(t))=\gamma^{\prime}(t) \times 0=0$. Suppose in addition $\gamma(t)=0$.
- $\gamma(t)=0, \gamma^{\prime}(t)=0: \gamma^{\prime}(t) \times D(\gamma(t))=0 \times[-1,1]=0$.
- $\gamma(t)=0, \gamma^{\prime}(t) \neq 0$: for some $\epsilon>0, \gamma(s) \neq 0$ for $s \neq t$ and $s \in(t-\epsilon, t+\epsilon)$.

More calculus on calculus and chain rule

Artifacts: $\operatorname{zero}(x)=\operatorname{relu}(-x)-\operatorname{relu}(x)+x=0 .(\operatorname{relu}(t)=\max \{0, t\})$.

Calculus,

$$
D: x \rightrightarrows-\partial^{c} \operatorname{relu}(-x)-\partial^{c} \operatorname{relu}(x)+\partial^{c}(x)= \begin{cases}0-1+1=0 & x>0 \\ -1+0+1=0 & x<0 \\ {[-1,0]-[0,1]+1=[-1,1]} & x=0\end{cases}
$$

Chain rule intuition: $\gamma:[0,1] \rightarrow \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{d t} \operatorname{zero}(\gamma(t))=\gamma^{\prime}(t) \times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t :

- $\gamma(t) \neq 0: \gamma^{\prime}(t) \times D(\gamma(t))=\gamma^{\prime}(t) \times 0=0$. Suppose in addition $\gamma(t)=0$.
- $\gamma(t)=0, \gamma^{\prime}(t)=0: \gamma^{\prime}(t) \times D(\gamma(t))=0 \times[-1,1]=0$.
- $\gamma(t)=0, \gamma^{\prime}(t) \neq 0$: for some $\epsilon>0, \gamma(s) \neq 0$ for $s \neq t$ and $s \in(t-\epsilon, t+\epsilon)$.
- the set $\left\{t \in[0,1], \gamma(t)=0, \gamma^{\prime}(t) \neq 0\right\}$ is denumerable (zero measure).

Beyond sums: backprop is an oracle for a conservative gradient

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L},

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

Beyond sums: backprop is an oracle for a conservative gradient

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L},

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

- Nonsmooth backprop is formal chain rule:

$$
\text { backprop }_{f} \in \operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}
$$

Beyond sums: backprop is an oracle for a conservative gradient

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L},

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

- Nonsmooth backprop is formal chain rule:

$$
\text { backprop }_{f} \in \mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}
$$

- Conservative chain rule: if g_{1}, \ldots, g_{L} are path differentiable, then the set valued field $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$ is conservative for f.

Beyond sums: backprop is an oracle for a conservative gradient

- Take $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ Lipschitz expressed from elementary blocks g_{1}, \ldots, g_{L},

$$
f=g_{L} \circ \ldots \circ g_{1}
$$

Ex $g_{i}=$ relu, sort, maxpool, output of nonsmooth numerical program.

- Nonsmooth backprop is formal chain rule:

$$
\text { backprop }_{f} \in \mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}
$$

- Conservative chain rule: if g_{1}, \ldots, g_{L} are path differentiable, then the set valued field $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$ is conservative for f.
- Widespread "conservative gradients oracles":

T TensorFlow © PyTorch

(1) Non-smooth backpropagation
(2) Failure of nonconvex nonsmooth calculus
(3) Conservative gradients and Jacobians

4 Compositional conservative calculus
(5) Optimization with conservative gradients
(6) Beyond compositional calculus
(7) Conclusion

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_{0} \in \mathbb{R}^{p},\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ positive sequence

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}}=\operatorname{backprop} \ell\left(\theta_{k}\right) \in\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)\left(\theta_{k}\right)
$$

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_{0} \in \mathbb{R}^{p},\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ positive sequence

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}}=\operatorname{backprop} \ell\left(\theta_{k}\right) \in\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)\left(\theta_{k}\right)
$$

Theorem (Bolte-Pauwels 2019-2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k} \rightarrow 0$.
- Accumulation points satisfy $0 \in \operatorname{conv}\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)(\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$
- Same result for any definable conservative gradient instead of $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}$

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_{0} \in \mathbb{R}^{p},\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ positive sequence

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}}=\operatorname{backprop} \ell\left(\theta_{k}\right) \in\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)\left(\theta_{k}\right)
$$

Theorem (Bolte-Pauwels 2019-2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k} \rightarrow 0$.
- Accumulation points satisfy $0 \in \operatorname{conv}\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1}\right)(\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$
- Same result for any definable conservative gradient instead of $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}$

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_{0} \in \mathbb{R}^{p},\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ positive sequence

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}}=\operatorname{backprop} \ell\left(\theta_{k}\right) \in\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1}\right)\left(\theta_{k}\right)
$$

Theorem (Bolte-Pauwels 2019-2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k} \rightarrow 0$.
- Accumulation points satisfy $0 \in \operatorname{conv}\left(\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)(\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$.
- Same result for any definable conservative gradient instead of $\mathrm{Jac}^{c} g_{L}$ 。

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_{0} \in \mathbb{R}^{p},\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ positive sequence

$$
\frac{\theta_{k+1}-\theta_{k}}{\alpha_{k}}=\text { backprop } \ell\left(\theta_{k}\right) \in\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)\left(\theta_{k}\right)
$$

Theorem (Bolte-Pauwels 2019-2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k} \rightarrow 0$.
- Accumulation points satisfy $0 \in \operatorname{conv}\left(\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)(\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$.
- Same result for any definable conservative gradient instead of $\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}$.

Composite tame optimization: extensions

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{n} \sum_{i=1}^{n} g_{i, L} \circ \ldots \circ g_{i, 1}(\theta)
$$

Qualitatively similar results under appropriate assumptions.

- Subsampling: at step k sample $i_{k} \subset\{1, \ldots, n\}$ uniformly at random.

$$
\theta_{k+1} \in \theta_{k}-a_{k}\left(\operatorname{Jac}^{c} g_{k}, L 0 \ldots \circ \operatorname{Jac}^{c} g_{i_{k}, 1}\right)\left(\theta_{k}\right)
$$

- Incremental: cycle through each element of the sum, for $i=1, \ldots, n$

$$
\theta_{k, i+1} \in o_{k, i}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i, L} 0 \ldots \circ \operatorname{Jac}^{c} g_{i, 1}\right)\left(0_{k, i}\right)
$$

- Step size: scalar adaptive step size (adagrad).
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

Composite tame optimization: extensions

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{n} \sum_{i=1}^{n} g_{i, L} \circ \ldots \circ g_{i, 1}(\theta)
$$

Qualitatively similar results under appropriate assumptions.

- Subsampling: at step k sample $i_{k} \subset\{1, \ldots, n\}$ uniformly at random.

$$
\theta_{k+1} \in \theta_{k}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i_{k}, L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i_{k}, 1}\right)\left(\theta_{k}\right)
$$

- Incremental: cycle through each element of the sum, for $i=1, \ldots, n$

$$
\theta_{k, i+1} \in \theta_{k, i}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i, L} \circ \ldots \operatorname{Jac}^{c} g_{i, i}\right)\left(\theta_{k, i}\right)
$$

- Step size: scalar adaptive step size (adagrad).
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

Composite tame optimization: extensions

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{n} \sum_{i=1}^{n} g_{i, L} \circ \ldots \circ g_{i, 1}(\theta)
$$

Qualitatively similar results under appropriate assumptions.

- Subsampling: at step k sample $i_{k} \subset\{1, \ldots, n\}$ uniformly at random.

$$
\theta_{k+1} \in \theta_{k}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i_{k}, L} \circ \ldots \circ \mathrm{Jac}^{c} g_{i_{k}, 1}\right)\left(\theta_{k}\right)
$$

- Incremental: cycle through each element of the sum, for $i=1, \ldots, n$

$$
\theta_{k, i+1} \in \theta_{k, i}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i, L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i, i}\right)\left(\theta_{k, i}\right) .
$$

- Step size: scalar adaptive step size (adagrad)
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{n} \sum_{i=1}^{n} g_{i, L} \circ \ldots \circ g_{i, 1}(\theta)
$$

Qualitatively similar results under appropriate assumptions.

- Subsampling: at step k sample $i_{k} \subset\{1, \ldots, n\}$ uniformly at random.

$$
\theta_{k+1} \in \theta_{k}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i_{k}, L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i_{k}, 1}\right)\left(\theta_{k}\right)
$$

- Incremental: cycle through each element of the sum, for $i=1, \ldots, n$

$$
\theta_{k, i+1} \in \theta_{k, i}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i, L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i, 1}\right)\left(\theta_{k, i}\right)
$$

- Step size: scalar adaptive step size (adagrad)
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019)

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{n} \sum_{i=1}^{n} g_{i, L} \circ \ldots \circ g_{i, 1}(\theta)
$$

Qualitatively similar results under appropriate assumptions.

- Subsampling: at step k sample $i_{k} \subset\{1, \ldots, n\}$ uniformly at random.

$$
\theta_{k+1} \in \theta_{k}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i_{k}, L} \circ \ldots \circ \mathrm{Jac}^{c} g_{i_{k}, 1}\right)\left(\theta_{k}\right)
$$

- Incremental: cycle through each element of the sum, for $i=1, \ldots, n$

$$
\theta_{k, i+1} \in \theta_{k, i}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i, L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i, 1}\right)\left(\theta_{k, i}\right)
$$

- Step size: scalar adaptive step size (adagrad).
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

$$
\min _{\theta \in \mathbb{R}^{p}} \ell(\theta):=\frac{1}{n} \sum_{i=1}^{n} g_{i, L} \circ \ldots \circ g_{i, 1}(\theta)
$$

Qualitatively similar results under appropriate assumptions.

- Subsampling: at step k sample $i_{k} \subset\{1, \ldots, n\}$ uniformly at random.

$$
\theta_{k+1} \in \theta_{k}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i_{k}, L} \circ \ldots \circ \mathrm{Jac}^{c} g_{i_{k}, 1}\right)\left(\theta_{k}\right)
$$

- Incremental: cycle through each element of the sum, for $i=1, \ldots, n$

$$
\theta_{k, i+1} \in \theta_{k, i}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{i, L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i, 1}\right)\left(\theta_{k, i}\right)
$$

- Step size: scalar adaptive step size (adagrad).
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian.
- Exist for the majority of applications.
- Compatible with compositional calculus rules
- Have a minimizing behavior similar to subgradients in optimization.

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian.
- Exist for the majority of applications.
- Compatible with compositional calculus rules
- Have a minimizing behavior similar to subgradients in optimization.

Despite differential calculus artifacts, optimization works with nonsmooth autodiff:

(1) Non-smooth backpropagation
(2) Failure of nonconvex nonsmooth calculus
(3) Conservative gradients and Jacobians
(4) Compositional conservative calculus
(5) Optimization with conservative gradients
6) Beyond compositional calculus
(7) Conclusion

Abstract integrals (with Bolte, Le, 2021)

$$
\begin{aligned}
& f: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R} \\
& \mu \text { measure on } \mathbb{R}^{m}, f(x, \cdot) \mu \text {-integrable for all } x . \\
& F: x \mapsto \int_{\mathbb{R}^{m}} f(x, s) d \mu(s) \text {. }
\end{aligned}
$$

Abstract integrals (with Bolte, Le, 2021)

$$
\begin{aligned}
& f: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R} \\
& \mu \text { measure on } \mathbb{R}^{m}, f(x, \cdot) \mu \text {-integrable for all } x . \\
& F: x \mapsto \int_{\mathbb{R}^{m}} f(x, s) d \mu(s) \text {. }
\end{aligned}
$$

Inversion integral / derivative:

$x \mapsto f(x, s)$, smooth, for all s,

$$
\forall(x, s),\left\|\nabla_{x} f(x, s)\right\| \leq \kappa(s)
$$

for $\kappa: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}, \mu$ integrable.

Gradient of F

$x \mapsto \int \nabla f(x, s) d \mu(s)$

Abstract integrals (with Bolte, Le, 2021)

$$
\begin{aligned}
& f: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R} \\
& \mu \text { measure on } \mathbb{R}^{m}, f(x, \cdot) \mu \text {-integrable for all } x \text {. } \\
& F: x \mapsto \int_{\mathbb{R}^{m}} f(x, s) d \mu(s) \text {. }
\end{aligned}
$$

Inversion integral / derivative:
$x \mapsto f(x, s)$, smooth, for all s,

$$
\forall(x, s),\left\|\nabla_{x} f(x, s)\right\| \leq \kappa(s)
$$

for $\kappa: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}, \mu$ integrable.

Gradient of F

$$
x \mapsto \int_{\mathbb{R}^{m}} \nabla f(x, s) d \mu(s)
$$

Abstract integrals (with Bolte, Le, 2021)

$$
\begin{aligned}
& f: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R} \\
& \mu \text { measure on } \mathbb{R}^{m}, f(x, \cdot) \mu \text {-integrable for all } x \text {. } \\
& F: x \mapsto \int_{\mathbb{R}^{m}} f(x, s) d \mu(s)
\end{aligned}
$$

Inversion integral / derivative:
$x \mapsto f(x, s)$, smooth, for all s,

$$
\forall(x, s),\left\|\nabla_{x} f(x, s)\right\| \leq \kappa(s)
$$

for $\kappa: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}, \mu$ integrable.

Gradient of F

$$
x \mapsto \int_{\mathbb{R}^{m}} \nabla f(x, s) d \mu(s)
$$

Nonsmooth inversion:

$x \mapsto f(x, s)$, path-differentiable,

$$
\forall(x, s), \forall v \in \partial_{x}^{c} f(x, s), \quad\|v\| \leq \kappa(s)
$$

for $\kappa: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}, \mu$ integrable.

Conservative gradient of F

$$
x \rightrightarrows \int_{\mathbb{R}^{m}} \partial_{x}^{c} f(x, s) d \mu(s)
$$

Abstract integrals (with Bolte, Le, 2021)

$$
\begin{aligned}
& f: \mathbb{R}^{p} \times \mathbb{R}^{m} \rightarrow \mathbb{R} \\
& \mu \text { measure on } \mathbb{R}^{m}, f(x, \cdot) \mu \text {-integrable for all } x \\
& F: x \mapsto \int_{\mathbb{R}^{m}} f(x, s) d \mu(s) \text {. }
\end{aligned}
$$

Inversion integral / derivative:
$x \mapsto f(x, s)$, smooth, for all s,

$$
\forall(x, s),\left\|\nabla_{x} f(x, s)\right\| \leq \kappa(s)
$$

for $\kappa: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}, \mu$ integrable.

Gradient of F

$$
x \mapsto \int_{\mathbb{R}^{m}} \nabla f(x, s) d \mu(s)
$$

Nonsmooth inversion:

$x \mapsto f(x, s)$, path-differentiable,

$$
\forall(x, s), \forall v \in \partial_{x}^{c} f(x, s), \quad\|v\| \leq \kappa(s)
$$

for $\kappa: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}, \mu$ integrable.

Conservative gradient of F

$$
x \rightrightarrows \int_{\mathbb{R}^{m}} \partial_{x}^{c} f(x, s) d \mu(s)
$$

Applications: Stochastic optimization, chain rule for parametric integrals (assumption).

Ordinary differential equations (with Marx, 2022)

$F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz

$$
\begin{aligned}
\frac{d}{d t} X(t, \theta) & =F(X(t, \theta)) \\
X(0) & =\theta \in \mathbb{R}^{m} .
\end{aligned}
$$

Ordinary differential equations (with Marx, 2022)

$F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz

$$
\begin{aligned}
\frac{d}{d t} X(t, \theta) & =F(X(t, \theta)) \\
X(0) & =\theta \in \mathbb{R}^{m} .
\end{aligned}
$$

Sensitivity equation:

F, smooth.

$$
\begin{aligned}
M(t, \theta) & =\operatorname{Jac} F(X(t, \theta)) M(t, \theta) \\
M(0) & =I \in \mathbb{R}^{m \times m}
\end{aligned}
$$

Ordinary differential equations (with Marx, 2022)

$F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz

$$
\begin{aligned}
\frac{d}{d t} X(t, \theta) & =F(X(t, \theta)) \\
X(0) & =\theta \in \mathbb{R}^{m} .
\end{aligned}
$$

Sensitivity equation:

F, smooth.

$$
\begin{align*}
\frac{d}{d t} M(t, \theta) & =\operatorname{Jac} F(X(t, \theta)) M(t, \theta) \\
M(0) & =I \in \mathbb{R}^{m \times m} . \tag{1}
\end{align*}
$$

$\theta \mapsto X(t, \theta)$ is smooth, Jacobian: $\theta \mapsto M(t, \theta), \quad$ s.t. $\quad M$ solution to (1)

Ordinary differential equations (with Marx, 2022)

$F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz

$$
\begin{aligned}
\frac{d}{d t} X(t, \theta) & =F(X(t, \theta)) \\
X(0) & =\theta \in \mathbb{R}^{m} .
\end{aligned}
$$

Sensitivity equation:

F, smooth.

$$
\begin{align*}
\frac{d}{d t} M(t, \theta) & =\operatorname{Jac} F(X(t, \theta)) M(t, \theta) \\
M(0) & =I \in \mathbb{R}^{m \times m} \tag{1}
\end{align*}
$$

$\theta \mapsto X(t, \theta)$ is smooth, Jacobian:
$\theta \mapsto M(t, \theta)$, s.t. M solution to (1).

Ordinary differential equations (with Marx, 2022)

$F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz

$$
\begin{aligned}
\frac{d}{d t} X(t, \theta) & =F(X(t, \theta)) \\
X(0) & =\theta \in \mathbb{R}^{m} .
\end{aligned}
$$

Sensitivity equation:

F, smooth.

$$
\begin{align*}
\frac{d}{d t} M(t, \theta) & =\operatorname{Jac} F(X(t, \theta)) M(t, \theta) \\
M(0) & =I \in \mathbb{R}^{m \times m} \tag{1}
\end{align*}
$$

$\theta \mapsto X(t, \theta)$ is smooth, Jacobian:
$\theta \mapsto M(t, \theta), \quad$ s.t. M solution to (1).

Nonsmooth sensitivity equation:

F, path differentiable.

$$
\begin{align*}
\frac{d}{d t} M(t, \theta) & \in \operatorname{Jac}^{c} F(X(t, \theta)) M(t, \theta) \\
M(0) & =I \in \mathbb{R}^{m \times m} \tag{2}
\end{align*}
$$

Conservative jacobian of $\theta \mapsto X(t, \theta)$
$\theta \rightrightarrows\{M(t, \theta), \quad \forall M$ solution to (2). $\}$

Ordinary differential equations (with Marx, 2022)

$F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz

$$
\begin{aligned}
\frac{d}{d t} X(t, \theta) & =F(X(t, \theta)) \\
X(0) & =\theta \in \mathbb{R}^{m}
\end{aligned}
$$

Sensitivity equation:

F, smooth.

$$
\begin{align*}
\frac{d}{d t} M(t, \theta) & =\operatorname{Jac} F(X(t, \theta)) M(t, \theta) \\
M(0) & =I \in \mathbb{R}^{m \times m} \tag{1}
\end{align*}
$$

$\theta \mapsto X(t, \theta)$ is smooth, Jacobian:
$\theta \mapsto M(t, \theta), \quad$ s.t. M solution to (1).

Nonsmooth sensitivity equation:
F, path differentiable.

$$
\begin{align*}
\frac{d}{d t} M(t, \theta) & \in \operatorname{Jac}^{c} F(X(t, \theta)) M(t, \theta) \\
M(0) & =I \in \mathbb{R}^{m \times m} \tag{2}
\end{align*}
$$

Conservative jacobian of $\theta \mapsto X(t, \theta)$
$\theta \rightrightarrows\{M(t, \theta), \quad \forall M$ solution to (2). $\}$

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz and $F(\hat{\theta}, \hat{x})=0$

$$
F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \text { Lipschitz and } F(\hat{\theta}, \hat{x})=0
$$

Classical implicit differentiation:

F smooth, assume
$[A, B]=\operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B$ invertible.

Solutions to $F(\theta, x)=0$ locally
parametrized by $G: U \rightarrow \mathbb{R}^{n}$, smooth:

$$
F(\theta, G(\theta))=0 .
$$

Implicit jacobian of G :
$\theta \rightarrow-B^{-1} A:[A, B]=\operatorname{Jac} F(\theta, G(\theta))$.

$$
F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \text { Lipschitz and } F(\hat{\theta}, \hat{x})=0
$$

Classical implicit differentiation:

F smooth, assume

$$
[A, B]=\operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text { invertible. }
$$

Solutions to $F(\theta, x)=0$ locally parametrized by $G: U \rightarrow \mathbb{R}^{n}$, smooth:

$$
F(\theta, G(\theta))=0
$$

Implicit jacobian of G :
$\theta \rightarrow-B^{-1} A:[A, B]=\operatorname{Jac} F(\theta, G(\theta))$.

Implicit differentiation (with Bolte, Le, Silveti, 2021)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz and $F(\hat{\theta}, \hat{x})=0$

Classical implicit differentiation:
F smooth, assume

$$
[A, B]=\operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text { invertible. }
$$

Solutions to $F(\theta, x)=0$ locally parametrized by $G: U \rightarrow \mathbb{R}^{n}$, smooth:

$$
F(\theta, G(\theta))=0
$$

Implicit jacobian of G :
$\theta \rightarrow-B^{-1} A:[A, B]=\operatorname{Jac} F(\theta, G(\theta))$.

Implicit differentiation (with Bolte, Le, Silveti, 2021)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz and $F(\hat{\theta}, \hat{x})=0$

Classical implicit differentiation:
F smooth, assume

$$
[A, B]=\operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text { invertible. }
$$

Solutions to $F(\theta, x)=0$ locally parametrized by $G: U \rightarrow \mathbb{R}^{n}$, smooth:

$$
F(\theta, G(\theta))=0
$$

Implicit jacobian of G :
$\theta \rightarrow-B^{-1} A:[A, B]=\operatorname{Jac} F(\theta, G(\theta))$.

Nonsmooth implicit differentiation:
F path differentiable, assume

$$
\forall[A, B] \in \operatorname{Jac}^{c} F(\hat{\theta}, \hat{x}), \quad B \text { invertible. }
$$

Solutions locally parametrized by G : $U \rightarrow \mathbb{R}^{n}$, path-differentiable:

$$
F(\theta, G(\theta))=0
$$

Implicit conservative jacobian for G :
$\theta \rightrightarrows\left\{-B^{-1} A:[A B] \in \operatorname{Jac}_{F}^{c}(\theta, G(\theta))\right\}$.

Implicit differentiation (with Bolte, Le, Silveti, 2021)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ Lipschitz and $F(\hat{\theta}, \hat{x})=0$

Classical implicit differentiation:
F smooth, assume

$$
[A, B]=\operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text { invertible. }
$$

Solutions to $F(\theta, x)=0$ locally parametrized by $G: U \rightarrow \mathbb{R}^{n}$, smooth:

$$
F(\theta, G(\theta))=0
$$

Implicit jacobian of G :
$\theta \rightarrow-B^{-1} A:[A, B]=\operatorname{Jac} F(\theta, G(\theta))$.

Nonsmooth implicit differentiation:
F path differentiable, assume

$$
\forall[A, B] \in \operatorname{Jac}^{c} F(\hat{\theta}, \hat{x}), \quad B \text { invertible. }
$$

Solutions locally parametrized by G : $U \rightarrow \mathbb{R}^{n}$, path-differentiable:

$$
F(\theta, G(\theta))=0 .
$$

Implicit conservative jacobian for G :
$\theta \rightrightarrows\left\{-B^{-1} A:[A B] \in \operatorname{Jac}_{F}^{c}(\theta, G(\theta))\right\}$.

Applications: Differentiate $G(x)$ uniquely defined as $F(x, G(x))=0$. parametric optimization, bilevel optimization, implicit modeling, hyperparameter tuning.

Algorithmic unrolling (with Bolte, Vaiter, 2022)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{n}$

$$
x_{k+1}(\theta)=F\left(\theta, x_{k}(\theta)\right)
$$

Algorithmic unrolling (with Bolte, Vaiter, 2022)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{n}$

$$
x_{k+1}(\theta)=F\left(\theta, x_{k}(\theta)\right)
$$

For all $\theta, x \rightarrow F(x, \theta)$ is ρ Lipschitz, $\rho<1$:

$$
x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta)
$$

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{n}$

$$
x_{k+1}(\theta)=F\left(\theta, x_{k}(\theta)\right)
$$

For all $\theta, x \rightarrow F(x, \theta)$ is ρ Lipschitz, $\rho<1$:

$$
x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta)
$$

Classical asymptotics (Gilbert 92):

 F smooth.Forward jacobian propagation:
$\operatorname{Jac} x_{k+1}(\theta)=B \operatorname{Jac} x_{k}(\theta)+A$ $[A, B]=\operatorname{Jac} F\left(\theta, x_{k}(\theta)\right)$

Limiting jacobian.

$\operatorname{Jac}_{k}(\theta) \xrightarrow[k]{\rightarrow} \operatorname{Jac} \bar{x}(\theta)$

Algorithmic unrolling (with Bolte, Vaiter, 2022)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{n}$

$$
x_{k+1}(\theta)=F\left(\theta, x_{k}(\theta)\right)
$$

For all $\theta, x \rightarrow F(x, \theta)$ is ρ Lipschitz, $\rho<1$:

$$
x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta)
$$

Classical asymptotics (Gilbert 92): F smooth.

Forward jacobian propagation:
$\operatorname{Jac} x_{k+1}(\theta)=B \operatorname{Jac} x_{k}(\theta)+A$

$$
[A, B]=\operatorname{Jac} F\left(\theta, x_{k}(\theta)\right)
$$

Limiting jacobian.
$\operatorname{Jac}_{k}(\theta) \rightarrow \operatorname{Jac} \bar{x}(\theta)$
$B)^{-1} A,[A, B]=\operatorname{Jac} F(\theta, \bar{x}(\theta))$

Algorithmic unrolling (with Bolte, Vaiter, 2022)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{n}$

$$
x_{k+1}(\theta)=F\left(\theta, x_{k}(\theta)\right)
$$

For all $\theta, x \rightarrow F(x, \theta)$ is ρ Lipschitz, $\rho<1$:

$$
x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta)
$$

Classical asymptotics (Gilbert 92): F smooth.

Forward jacobian propagation:

$$
\begin{aligned}
\operatorname{Jac} x_{k+1}(\theta) & =B \operatorname{Jac} x_{k}(\theta)+A \\
{[A, B] } & =\operatorname{Jac} F\left(\theta, x_{k}(\theta)\right)
\end{aligned}
$$

Limiting jacobian.

$$
\begin{aligned}
& \operatorname{Jac} x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \operatorname{Jac} \bar{x}(\theta) \\
= & (I-B)^{-1} A,[A, B]=\operatorname{Jac} F(\theta, \bar{x}(\theta))
\end{aligned}
$$

Algorithmic unrolling (with Bolte, Vaiter, 2022)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{n}$

$$
x_{k+1}(\theta)=F\left(\theta, x_{k}(\theta)\right)
$$

For all $\theta, x \rightarrow F(x, \theta)$ is ρ Lipschitz, $\rho<1$:

$$
x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta)
$$

Classical asymptotics (Gilbert 92): F smooth.

Forward jacobian propagation:

$$
\begin{aligned}
\operatorname{Jac} x_{k+1}(\theta) & =B \operatorname{Jac} x_{k}(\theta)+A \\
{[A, B] } & =\operatorname{Jac} F\left(\theta, x_{k}(\theta)\right)
\end{aligned}
$$

Limiting jacobian.

$$
\begin{aligned}
& \operatorname{Jac} x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \operatorname{Jac} \bar{x}(\theta) \\
= & (I-B)^{-1} A,[A, B]=\operatorname{Jac} F(\theta, \bar{x}(\theta))
\end{aligned}
$$

Nonsmooth unrolling :
F path-differentiable.
Conservative jacobian propagation:

$$
\begin{aligned}
& D_{k+1}(\theta)=\left\{B D_{k}(\theta)+A\right. \\
& \left.\quad[A, B] \in \operatorname{Jac}^{c} F\left(\theta, x_{k}(\theta)\right)\right\}
\end{aligned}
$$

Limiting conservative jacobian:

$$
\begin{aligned}
& D_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{D}(\theta) \\
\supset & \left\{(I-B)^{-1} A, \quad[A, B] \in \operatorname{Jac}^{c} F(\theta, \bar{x}(\theta))\right\}
\end{aligned}
$$

Algorithmic unrolling (with Bolte, Vaiter, 2022)

$F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, algorithmic recursion, $x_{0}(\theta) \in \mathbb{R}^{n}$

$$
x_{k+1}(\theta)=F\left(\theta, x_{k}(\theta)\right)
$$

For all $\theta, x \rightarrow F(x, \theta)$ is ρ Lipschitz, $\rho<1$:

$$
x_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{x}(\theta)
$$

Classical asymptotics (Gilbert 92): F smooth.

Forward jacobian propagation:

$$
\begin{aligned}
\operatorname{Jac} x_{k+1}(\theta) & =B \operatorname{Jac} x_{k}(\theta)+A \\
{[A, B] } & =\operatorname{Jac} F\left(\theta, x_{k}(\theta)\right)
\end{aligned}
$$

Limiting jacobian.

$$
\begin{aligned}
& \operatorname{Jac} x_{k}(\theta) \xrightarrow[k \rightarrow \infty]{\rightarrow} \operatorname{Jac} \bar{x}(\theta) \\
= & (I-B)^{-1} A,[A, B]=\operatorname{Jac} F(\theta, \bar{x}(\theta))
\end{aligned}
$$

Nonsmooth unrolling :
F path-differentiable.
Conservative jacobian propagation:

$$
\begin{aligned}
D_{k+1}(\theta) & =\left\{B D_{k}(\theta)+A\right. \\
& {\left.[A, B] \in \operatorname{Jac}^{c} F\left(\theta, x_{k}(\theta)\right)\right\} }
\end{aligned}
$$

Limiting conservative jacobian:

$$
\begin{aligned}
& D_{k}(\theta) \underset{k \rightarrow \infty}{\rightarrow} \bar{D}(\theta) \\
\supset & \left\{(I-B)^{-1} A, \quad[A, B] \in \operatorname{Jac}^{c} F(\theta, \bar{x}(\theta))\right\}
\end{aligned}
$$

Applications: Differentiation of forward-backward, Douglas-Rachford, ADMM).

Plan

(1) Non-smooth backpropagation
(2) Failure of nonconvex nonsmooth calculus
(3) Conservative gradients and Jacobians
(4) Compositional conservative calculus
(5) Optimization with conservative gradients
(6) Beyond compositional calculus
(7) Conclusion

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions:

- Ontimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks.

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions:

- Optimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks.

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions:

- Optimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details.
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions:

- Optimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details.
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks.

Composite tame optimization

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_{0} \in \mathbb{R}^{p},\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ positive sequence

$$
\theta_{k+1} \in \theta_{k}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)\left(\theta_{k}\right)
$$

Theorem (Bolte-Pauwels 2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k} \rightarrow 0$.
- Accumulation points satisfy $0 \in \operatorname{conv}\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1}\right)(\theta)$
- There is a meagre Lebesgue null set X_{0} and finite set $\Lambda \in \mathbb{R}_{+}$such that if $\theta_{0} \notin X_{0}$ and $\alpha_{k} \notin \Lambda, k \in \mathbb{N}$, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$

$$
\min _{\theta \in \mathbb{R}^{P}} \ell(\theta):=g_{L} \circ \ldots \circ g_{1}(\theta)
$$

Assumption:

- g_{i} is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_{0} \in \mathbb{R}^{p},\left(\alpha_{k}\right)_{k \in \mathbb{N}}$ positive sequence

$$
\theta_{k+1} \in \theta_{k}-\alpha_{k}\left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)\left(\theta_{k}\right)
$$

Theorem (Bolte-Pauwels 2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_{k}=+\infty$ and $\alpha_{k} \rightarrow 0$.
- Accumulation points satisfy $0 \in \operatorname{conv}\left(\mathrm{Jac}^{c} g_{L} \circ \ldots \circ \mathrm{Jac}^{c} g_{1}\right)(\theta)$
- There is a meagre Lebesgue null set X_{0} and finite set $\Lambda \in \mathbb{R}_{+}$such that if $\theta_{0} \notin X_{0}$ and $\alpha_{k} \notin \Lambda, k \in \mathbb{N}$, accumulation points are Clarke critical $0 \in \partial^{c} \ell(\theta)$.

Semi-algebraic?

Basic set: Solution set of finitely many polynomial inequalities.
Set: Finite union of Basic semi-algebraic sets.
Function, set valued map: Semi-algebraic graph.
Examples: polynomials, square root, quotients, norm, relu, rank...

Tarski Seidenberg: first order formula involving semi-algebraic sets $\quad \rightarrow$ semi-algebraic.

- gradient / subgradient of semi-algebraic function, partial minima, composition

Variational stratification: [Bolte-Daniilidis-Lewis (2007)]

 Example: Projection formula.

Tame characterization: stratification, variational projection

Variational stratification: [Bolte-Daniilidis-Lewis (2007)] Example: Projection formula $f\left(x_{1}, x_{2}\right)=\left|x_{1}\right|+\left|x_{2}\right|$.

Let $D: \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$ be a semi-algebraic (or definable), graph closed, locally bounded and $f: \mathbb{R}^{p} \rightarrow \mathbb{R}, r \in \mathbb{N}^{*}$. Then the following are equivalent

- D is a conservative field for f.
- (f, D) has a C^{r} variational stratification: there exists a stratification $\left\{M_{i}\right\}_{i \in I}$ of \mathbb{R}^{p} such that
- The restriction $f_{M_{i}}$ of f to M_{i} is C^{r} for all $i \in I$.
- For all $x \in \mathbb{R}^{p}$, set M_{x} the active stratum, T_{x} its tangent space at x.

$$
P_{T_{x}} D(x)=\left\{\operatorname{grad} f_{M_{x}}(x)\right\} .
$$

Whitney stratification: finite partition of \mathbb{R}^{p} into C^{r} embedded manifolds (+ technical condition).

Applies to backprop:

- Morse-Sard condition.
- artefacts are "negligible" in a geometric sense.

