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Smooth backpropagation

f : Rp → R differentiable expressed as

f = gL ◦ . . . ◦ g1 with gi “elementary” differentiable.

backprop : efficient algorithm to compute derivatives with the chain rule.

In the smooth world BP outputs: backprop f = Jac gL ◦ . . . ◦ Jac g1 = ∇f T

Baur-Strassen: Computing cost (f ,∇f ) ≤ 5 Computing cost (f ) instead of the

naive Computing cost (f ,∇f ) ≤ p Computing cost (f )

Essential element in modern AI / deep learning:

Nonsmoothness is needed: gi = relu, sort, maxpool, implicit layers
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Dealing with nonsmoothness: Clarke Subdifferential & Jacobians

F

x

F (x)

F : Rp → Rq locally Lipschitz

, differentiable almost everywhere (Rademacher).

Jac cF (x) = conv
{
M ∈ Rp×q : xk → x , F diff. at xk , JacF (xk) → M

}
Denoted by ∂cF (x) when q = 1

Set valued Jac cF : Rp ⇒ Rq×p
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How does nonsmooth backprop work?

Take f : Rp → R Lipschitz expressed from elementary blocks g1, . . . , gL

f = gL ◦ . . . ◦ g1

Ex gi = relu, sort, maxpool, output of nonsmooth numerical program.

Nonsmooth backprop is formal chain rule:

backprop f ∈ Jac cgL ◦ . . . ◦ Jac cg1

backprop f : Rp → Rp is a selection in the set valued field
Jac cgL ◦ . . . ◦ Jac cg1 : Rp ⇒ Rp.

This is what common is done in:

But what does backprop output? What sort of gradient could it be?
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Outputs are partly unpredictible

relu(t) = max{0, t} relu2(t) = relu(−t) + t relu3(t) = 1/2(relu(t) + relu2(t))

Then relu = relu2 = relu3.

TensorFlow (TF) set backprop relu(0) = 0. TF’s gives

backprop relu2(0) = 1 and backprop relu3(0) = 1/2.

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu'
relu

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu2'
relu2

2 1 0 1 2
x

0.0

0.5

1.0

1.5

2.0 relu3'
relu3

Artifacts: zero(x) = relu2(x)− relu(x) = 0.
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Actually s × zero = 0 and backprop [s × zero](0) = s ∈ R arbitrary

Spurious critical point: identity(x) := x − zero(x) = x but backprop identity(0) = 0
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Subgradient calculus

No convexity, no calculus: g1 : Rp → R, g2 : Rp → R locally Lipschitz.

∂c(g1 + g2) ⊂ ∂cg1 + ∂cg2.

holds with equality if g1 and g2 are continuously differentiable.

holds with equality if g1 and g2 are convex.

holds with equality if g1 and g2 are subdifferentially regular.

no equality in general: g : x 7→ |x |

∂c(g − g) = ∂c(x 7→ 0) = {0} ⊂ ∂c(g) + ∂c(−g) =

{
0 if x ̸= 0

[−2, 2] if x = 0
.

Deep learning: no convexity, no smoothness. Calculus rules?

backprop : selection in enlarged “subgradient”, artifacts

Non uniqueness: Different programs may implement the same function.

Stochastic approximation: ∂c
(
1
n

∑n
i=1 ℓi

)
⊂ 1

n

∑n
i=1 ∂

cℓi .
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Conservative gradients / Jacobians in a nutshell

Objects akin to Clarke’s subgradient / Jacobian (for locally Lipschitz functions).

Lipschitz F : Rn → Rm has none or multiple conservative Jacobians
JF : Rn ⇒ Rm×n. Notation DF if m = 1 for conservative gradients.

If conservative Jacobians exist, F is called path-differentiable.

Solve calculus issue: compatible with compositional calculus rules

Conservative gradients have a minimizing behavior similar to subgradients in
optimization.
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Intuition: descent mechanism, chain rule along Lipschitz curves

f : Rp → R locally Lipschitz,

f (θk+1) ≤ f (θk)?

θk+1 = θk − αkvk ⇔ θk+1 − θk
αk

∈ −∂c f (θk)

vk ∈ ∂c f (θk).

Chain rule along Lipschitz curves (Brézis, Valadier).
Hypothesis: Fix any Lipschitz curve γ : [0, 1] 7→ Rp

d

dt
f (γ(t)) = ⟨v , γ̇(t)⟩ ∀v ∈ ∂c f (γ(t)), a.e. t ∈ [0, 1]

= −∥γ̇(t)∥2, a.e. t ∈ [0, 1]

Suppose: γ̇(t) ∈ −∂c f (γ(t)) for almost all t ∈ [0, 1],

then t 7→ f (γ(t)) decreases, strictly if 0 ̸∈ ∂c f (γ(t)).

Under the carpet: αk → 0, small step limit → solutions to the differential inclusion.
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Generic triviality, generic rigidity

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz
function (in sup norm), then

∂c f is the unit ball everywhere (no chain rule, no subgradient algorithm).
local minimizers are dense: there is a local minimizer arbitrarily close to any argument.
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Let f be a tame locally Lipschitz function (“generic” in applications),

piecewise polynomial.
semi-algebraic.
definable.

Davis et .al. 2019, Bolte et. al. 2007: Subgradient projection formula implies chain rule
along Lipschitz curves.
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Conservative gradient

Summary:

Clarke’s subdifferential / Jacobian not compatible with differential calculus.

Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):
f : Rp → R locally Lipschitz
D : Rp ⇒ Rp,

closed graph, non empty valued, locally bounded,

For any Lipschitz curve γ : [0, 1] 7→ Rp

d

dt
f (γ(t)) = ⟨v , γ̇(t)⟩ ∀v ∈ D(γ(t)), a.e. t ∈ [0, 1]

f is path differentiable, D is a conservative gradient for f (could be many).
Conservative Jacobians defined similarly

Gradient a.e.: D(x) = {∇f (x)} for almost all x ∈ Rp.

Minimal convex conservative gradient: ∂c f (x) ⊂ conv(D(x)) for all x ∈ Rp.

Fermat rule: 0 ∈ conv(D(x)) for all local minima x ∈ Rp.

Equivalent caracterization: f is path-differentiable, if and only if ∂f c is conservative.

Tame functions are path-differentiable (generic in applications): chain rule for ∂c .
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Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):
fi : Rp → R path differentiable (locally Lipschitz), for i = 1, . . . , n. Then D =

∑
i ∂

c fi
is conservative for f =

∑
i fi .

Fix any Lipschitz curve γ : [0, 1] 7→ Rp, for any i = 1, . . . , n,

d

dt
fi (γ(t)) = ⟨vi , γ̇(t)⟩ ∀vi ∈ ∂c fi (γ(t)), ∀t ∈ Ei , λ(E c

i ) = 0

Set E = ∩iEi , we have λ(E c) = λ(∪iE
c
i ) = 0.

Inversion of quantifiers: for all t in E , t ∈ Ei for all i = 1, . . . , n, that is

d

dt
fi (γ(t)) = ⟨vi , γ̇(t)⟩ ∀vi ∈ ∂c fi (γ(t)), ∀i = 1, . . . , n.

n∑
i=1

d

dt
fi (γ(t)) =

n∑
i=1

⟨vi , γ̇(t)⟩ =

〈
n∑

i=1

vi , γ̇(t)

〉
∀vi ∈ ∂c fi (γ(t)), ∀i = 1, . . . , n.

d

dt

n∑
i=1

fi (γ(t)) =
d

dt
f (γ(t)) = ⟨v , γ̇(t)⟩ ∀v ∈

n∑
i=1

∂c fi (γ(t)) = D(γ(t)).
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More calculus on calculus and chain rule

Artifacts: zero(x) = relu(−x)− relu(x) + x = 0. (relu(t) = max{0, t}).

2 1 0 1 2
x

0.00

0.25

0.50

0.75

1.00 zero'
zero

Calculus,

D : x ⇒ −∂crelu(−x)− ∂crelu(x) + ∂c(x) =


0− 1 + 1 = 0 x > 0

−1 + 0 + 1 = 0 x < 0

[−1, 0]− [0, 1] + 1 = [−1, 1] x = 0.

Chain rule intuition: γ : [0, 1] → R Lipschitz, differentiable a.e.,
Need to check d

dt
zero(γ(t)) = γ′(t)× D(γ(t)) = 0 for almost all t.

Suppose γ differentiable at t:

γ(t) ̸= 0: γ′(t)× D(γ(t)) = γ′(t)× 0 = 0. Suppose in addition γ(t) = 0.

γ(t) = 0, γ′(t) = 0: γ′(t)× D(γ(t)) = 0× [−1, 1] = 0.

γ(t) = 0, γ′(t) ̸= 0:

for some ϵ > 0, γ(s) ̸= 0 for s ̸= t and s ∈ (t − ϵ, t + ϵ).

the set {t ∈ [0, 1], γ(t) = 0, γ′(t) ̸= 0} is denumerable (zero measure).
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−1 + 0 + 1 = 0 x < 0

[−1, 0]− [0, 1] + 1 = [−1, 1] x = 0.

Chain rule intuition: γ : [0, 1] → R Lipschitz, differentiable a.e.,
Need to check d

dt
zero(γ(t)) = γ′(t)× D(γ(t)) = 0 for almost all t.

Suppose γ differentiable at t:

γ(t) ̸= 0: γ′(t)× D(γ(t)) = γ′(t)× 0 = 0. Suppose in addition γ(t) = 0.

γ(t) = 0, γ′(t) = 0: γ′(t)× D(γ(t)) = 0× [−1, 1] = 0.

γ(t) = 0, γ′(t) ̸= 0: for some ϵ > 0, γ(s) ̸= 0 for s ̸= t and s ∈ (t − ϵ, t + ϵ).

the set {t ∈ [0, 1], γ(t) = 0, γ′(t) ̸= 0} is denumerable (zero measure).
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Beyond sums: backprop is an oracle for a conservative gradient

Take f : Rp → R Lipschitz expressed from elementary blocks g1, . . . , gL,

f = gL ◦ . . . ◦ g1

Ex gi = relu, sort, maxpool, output of nonsmooth numerical program.

Nonsmooth backprop is formal chain rule:

backprop f ∈ Jac cgL ◦ . . . ◦ Jac cg1

Conservative chain rule: if g1, . . . , gL are path differentiable, then the set valued
field Jac cgL ◦ . . . ◦ Jac cg1 : Rp ⇒ Rp is conservative for f .

Widespread “conservative gradients oracles”:
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Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 − θk
αk

= backprop ℓ(θk) ∈ (Jac cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2019-2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).

Same result for any definable conservative gradient instead of Jac cgL ◦ . . . ◦ Jac cg1.

19 / 28



Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 − θk
αk

= backprop ℓ(θk) ∈ (Jac cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2019-2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).

Same result for any definable conservative gradient instead of Jac cgL ◦ . . . ◦ Jac cg1.

19 / 28



Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 − θk
αk

= backprop ℓ(θk) ∈ (Jac cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2019-2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).

Same result for any definable conservative gradient instead of Jac cgL ◦ . . . ◦ Jac cg1.

19 / 28



Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 − θk
αk

= backprop ℓ(θk) ∈ (Jac cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2019-2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).

Same result for any definable conservative gradient instead of Jac cgL ◦ . . . ◦ Jac cg1.

19 / 28



Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 − θk
αk

= backprop ℓ(θk) ∈ (Jac cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2019-2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).

Same result for any definable conservative gradient instead of Jac cgL ◦ . . . ◦ Jac cg1.

19 / 28



Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 − θk
αk

= backprop ℓ(θk) ∈ (Jac cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2019-2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).

Same result for any definable conservative gradient instead of Jac cgL ◦ . . . ◦ Jac cg1.

19 / 28



Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 − θk
αk

= backprop ℓ(θk) ∈ (Jac cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2019-2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

For “most” such sequences, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).

Same result for any definable conservative gradient instead of Jac cgL ◦ . . . ◦ Jac cg1.

19 / 28



Composite tame optimization: extensions

min
θ∈Rp

ℓ(θ) :=
1

n

n∑
i=1

gi,L ◦ . . . ◦ gi,1(θ)

Qualitatively similar results under appropriate assumptions.

Subsampling: at step k sample ik ⊂ {1, . . . , n} uniformly at random.

θk+1 ∈ θk − αk (Jac
cgik ,L ◦ . . . ◦ Jac

cgik ,1) (θk).

Incremental: cycle through each element of the sum, for i = 1, . . . , n

θk,i+1 ∈ θk,i − αk (Jac
cgi,L ◦ . . . ◦ Jac cgi,1) (θk,i ).

Step size: scalar adaptive step size (adagrad).

Algorithms: discretization of continuous time dynamics with Lyapunov functions
(second order INNA, Castera et.al. 2019).
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In a nutshell

Conservative gradients / Jacobians:

Objects akin to Clarke’s subgradient / Jacobian.

Exist for the majority of applications.

Compatible with compositional calculus rules

Have a minimizing behavior similar to subgradients in optimization.

Despite differential calculus artifacts, optimization works with nonsmooth autodiff:
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Abstract integrals (with Bolte, Le, 2021)

f : Rp × Rm → R
µ measure on Rm, f (x , ·) µ-integrable for all x .
F : x 7→

∫
Rm f (x , s)dµ(s).

Inversion integral / derivative:

x 7→ f (x , s), smooth, for all s,

∀(x , s), ∥∇x f (x , s)∥ ≤ κ(s)

for κ : Rm → R+, µ integrable.

Gradient of F

x 7→
∫
Rm

∇f (x , s)dµ(s)

Nonsmooth inversion:
x 7→ f (x , s), path-differentiable,

∀(x , s), ∀v ∈ ∂c
x f (x , s), ∥v∥ ≤ κ(s)

for κ : Rm → R+, µ integrable.

Conservative gradient of F

x ⇒
∫
Rm

∂c
x f (x , s)dµ(s).

Applications: Stochastic optimization, chain rule for parametric integrals (assumption).
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Ordinary differential equations (with Marx, 2022)

F : Rm → Rm Lipschitz

d

dt
X (t, θ) = F (X (t, θ))

X (0) = θ ∈ Rm.

Sensitivity equation:

F , smooth.

d

dt
M(t, θ) = JacF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (1)

θ 7→ X (t, θ) is smooth, Jacobian:

θ 7→ M(t, θ), s.t. M solution to (1).

Nonsmooth sensitivity equation:

F , path differentiable.

d

dt
M(t, θ) ∈ Jac cF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (2)

Conservative jacobian of θ 7→ X (t, θ)

θ ⇒ {M(t, θ), ∀M solution to (2).}

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

24 / 28



Ordinary differential equations (with Marx, 2022)

F : Rm → Rm Lipschitz

d

dt
X (t, θ) = F (X (t, θ))

X (0) = θ ∈ Rm.

Sensitivity equation:

F , smooth.

d

dt
M(t, θ) = JacF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (1)

θ 7→ X (t, θ) is smooth, Jacobian:

θ 7→ M(t, θ), s.t. M solution to (1).

Nonsmooth sensitivity equation:

F , path differentiable.

d

dt
M(t, θ) ∈ Jac cF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (2)

Conservative jacobian of θ 7→ X (t, θ)

θ ⇒ {M(t, θ), ∀M solution to (2).}

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

24 / 28



Ordinary differential equations (with Marx, 2022)

F : Rm → Rm Lipschitz

d

dt
X (t, θ) = F (X (t, θ))

X (0) = θ ∈ Rm.

Sensitivity equation:

F , smooth.

d

dt
M(t, θ) = JacF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (1)

θ 7→ X (t, θ) is smooth, Jacobian:

θ 7→ M(t, θ), s.t. M solution to (1).

Nonsmooth sensitivity equation:

F , path differentiable.

d

dt
M(t, θ) ∈ Jac cF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (2)

Conservative jacobian of θ 7→ X (t, θ)

θ ⇒ {M(t, θ), ∀M solution to (2).}

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

24 / 28



Ordinary differential equations (with Marx, 2022)

F : Rm → Rm Lipschitz

d

dt
X (t, θ) = F (X (t, θ))

X (0) = θ ∈ Rm.

Sensitivity equation:

F , smooth.

d

dt
M(t, θ) = JacF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (1)

θ 7→ X (t, θ) is smooth, Jacobian:

θ 7→ M(t, θ), s.t. M solution to (1).

Nonsmooth sensitivity equation:

F , path differentiable.

d

dt
M(t, θ) ∈ Jac cF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (2)

Conservative jacobian of θ 7→ X (t, θ)

θ ⇒ {M(t, θ), ∀M solution to (2).}

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

24 / 28



Ordinary differential equations (with Marx, 2022)

F : Rm → Rm Lipschitz

d

dt
X (t, θ) = F (X (t, θ))

X (0) = θ ∈ Rm.

Sensitivity equation:

F , smooth.

d

dt
M(t, θ) = JacF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (1)

θ 7→ X (t, θ) is smooth, Jacobian:

θ 7→ M(t, θ), s.t. M solution to (1).

Nonsmooth sensitivity equation:

F , path differentiable.

d

dt
M(t, θ) ∈ Jac cF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (2)

Conservative jacobian of θ 7→ X (t, θ)

θ ⇒ {M(t, θ), ∀M solution to (2).}

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

24 / 28



Ordinary differential equations (with Marx, 2022)

F : Rm → Rm Lipschitz

d

dt
X (t, θ) = F (X (t, θ))

X (0) = θ ∈ Rm.

Sensitivity equation:

F , smooth.

d

dt
M(t, θ) = JacF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (1)

θ 7→ X (t, θ) is smooth, Jacobian:

θ 7→ M(t, θ), s.t. M solution to (1).

Nonsmooth sensitivity equation:

F , path differentiable.

d

dt
M(t, θ) ∈ Jac cF (X (t, θ))M(t, θ)

M(0) = I ∈ Rm×m. (2)

Conservative jacobian of θ 7→ X (t, θ)

θ ⇒ {M(t, θ), ∀M solution to (2).}

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

24 / 28



Implicit differentiation (with Bolte, Le, Silveti, 2021)

F : Rn × Rm → Rm Lipschitz and F (θ̂, x̂) = 0

Classical implicit differentiation:

F smooth, assume

[A,B] = JacF (θ̂, x̂), B invertible.

Solutions to F (θ, x) = 0 locally
parametrized by G : U → Rn, smooth:

F (θ,G(θ)) = 0.

Implicit jacobian of G :

θ → −B−1A : [A,B] = JacF (θ,G(θ)).

Nonsmooth implicit differentiation:

F path differentiable, assume

∀[A,B] ∈ Jac cF (θ̂, x̂), B invertible.

Solutions locally parametrized by G :
U → Rn, path-differentiable:

F (θ,G(θ)) = 0.

Implicit conservative jacobian for G :

θ ⇒
{
−B−1A : [A B] ∈ JaccF (θ,G(θ))

}
.

Applications: Differentiate G(x) uniquely defined as F (x ,G(x)) = 0.
parametric optimization, bilevel optimization, implicit modeling, hyperparameter tuning.
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Algorithmic unrolling (with Bolte, Vaiter, 2022)

F : Rn × Rm → Rm, algorithmic recursion, x0(θ) ∈ Rn

xk+1(θ) = F (θ, xk(θ)).

For all θ, x → F (x , θ) is ρ Lipschitz, ρ < 1: xk(θ) →
k→∞

x̄(θ).

Classical asymptotics (Gilbert 92):

F smooth.

Forward jacobian propagation:

Jac xk+1(θ) = BJac xk(θ) + A

[A,B] = JacF (θ, xk(θ))

Limiting jacobian.

Jac xk(θ) →
k→∞

Jac x̄(θ)

= (I − B)−1A, [A,B] = JacF (θ, x̄(θ))

Nonsmooth unrolling :

F path-differentiable.

Conservative jacobian propagation:

Dk+1(θ) =
{
BDk(θ) + A

[A,B] ∈ Jac cF (θ, xk(θ))
}

Limiting conservative jacobian:

Dk(θ) →
k→∞

D̄(θ)

⊃
{
(I − B)−1A, [A,B] ∈ Jac cF (θ, x̄(θ))

}

Applications: Differentiation of forward-backward, Douglas-Rachford, ADMM).
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Ongoing work on “conservative calculus”

Initial motivation an results:

study nonsmooth automatic differentiation.

compositional calculus rules: sum, product, composition.

require chain rule along Lipschitz curves: ubiquitous in applications.

optimization: qualitative convergence of first order methods.

Extensions:

Optimization algorithm variations.

Extensions of conservative calculus.

Not presented

Proof details.

Parametric optimality for max structured functions.

Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks.
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Composite tame optimization

min
θ∈Rp

ℓ(θ) := gL ◦ . . . ◦ g1(θ)

Assumption:

gi is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix θ0 ∈ Rp, (αk)k∈N positive sequence

θk+1 ∈ θk − αk (Jac
cgL ◦ . . . ◦ Jac cg1) (θk).

Theorem (Bolte-Pauwels 2020):

Step size condition:
∑+∞

k=1 αk = +∞ and αk → 0.

Accumulation points satisfy 0 ∈ conv (Jac cgL ◦ . . . ◦ Jac cg1) (θ)

There is a meagre Lebesgue null set X0 and finite set Λ ∈ R+ such that if θ0 ̸∈ X0 and
αk ̸∈ Λ, k ∈ N, accumulation points are Clarke critical 0 ∈ ∂cℓ(θ).
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Semi-algebraic?

Basic set: Solution set of finitely many polynomial inequalities.
Set: Finite union of Basic semi-algebraic sets.
Function, set valued map: Semi-algebraic graph.
Examples: polynomials, square root, quotients, norm, relu, rank . . .

Tarski Seidenberg: first order formula involving semi-algebraic sets → semi-algebraic.

gradient / subgradient of semi-algebraic function, partial minima, composition . . ..
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Tame characterization: stratification, variational projection

Variational stratification: [Bolte-Daniilidis-Lewis (2007)]
Example: Projection formula .
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Tame characterization: stratification, variational projection

Let D : Rp ⇒ Rp be a semi-algebraic (or definable), graph closed, locally bounded and
f : Rp → R, r ∈ N∗. Then the following are equivalent

D is a conservative field for f .

(f ,D) has a C r variational stratification: there exists a stratification {Mi}i∈I of Rp

such that
▶ The restriction fMi

of f to Mi is C r for all i ∈ I .
▶ For all x ∈ Rp , set Mx the active stratum, Tx its tangent space at x .

PTxD(x) = {grad fMx (x)}.

Whitney stratification: finite partition of Rp into C r embedded manifolds (+ technical
condition).

Applies to backprop:

Morse-Sard condition.

artefacts are “negligible” in a geometric sense.
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