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Geometrical shape optimization

@ Minimizes a certain cost functional while satisfying given
constraint.
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. Geometrical shape optimization
Introduction P2 ¢

Geometrical shape optimization

@ Minimizes a certain cost functional while satisfying given
constraint.

@ The optimization variables are subset of RY.

@ In order to numerically minimizes the cost functional, we need
to compute its shape gradient.
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Geometrical shape optimization

Introduction

Physical context

@ Mechanical contact describes the contact of deformable
solids that touch each other on parts of their boundaries
without penetration and possibly sliding with friction.

@ Mathematical model: elastic body, Signorini's law, Tresca's

friction law.

Figure: Contact between cylinders with radius R > 0.
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. Geometrical shape optimization
Introduction !

Model presentation

Let Q be a nonempty bounded connected open subset of R, d € N*.
The stress vector of Q is defined by

T(u):=on(u)n+o-(u),
where u : Q — RY is the displacement field and:

@ o, (u) is the normal stress;
@ o, (u) is the shear stress.

o0

o-(u)

Figure: An elastic body Q for d = 2. 43
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Tresca friction law

Definition (Tresca friction law)
Let Q2 defined as above and 00+ C 02. The Tresca friction law defined on

o0Qr:
lo-ll < &,
if lo-|| < g, thenu; =0;
if lo-|| = g, then it exists A\ > 0 such as u- = —\o-,

where g is a positive function on Q1 called the friction threshold.

AN
A 4
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Geometrical shape optimiz
echanical contact

Introduction

@ Equivalent formulation of the Tresca friction law:

lo-ll < g et ur-or = —g|lur|.

o If uis a scalar valued function then

|Ohu| < g and udhu = —glul.
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Objective

Objective

Let d € N*, f € H'(RY) and g € H*(RY) such as g > 0 a.e. on R?.
We consider the shape optimization problem:

where
Usg = {Q CR? | Q nonempty connected bounded open subset of R

with C*-boundary },

with the volume constraint |Q2] = A > 0 and

J :Uag — R is the energy functional defined by
17 . .
7@) =3 [ (IVul?+16af) + | glunl~ [ fun
Ja Joa Ja

and uq € H'(Q) stands for the unique solution to the Tresca friction problem

{ —Au+u=fFf inQ,

|Onu| < g and udhu + glu| = 0 on 0. (TPa)
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Introduction
al contact

Tresca friction problem

Definition (Weak solution to the Tresca friction problem)

A weak solution to the Tresca friction problem is a function
u: Qo — R such that u € HY(Qo) and for all v € HY(Qp),

VU‘V(V—U)—F/ u(v —u) + o(v) — p(u) > f(v—u).

Qo Qo Qo

Definition (Tresca functional)

The Tresca friction functional ¢ is defined

¢ : Hl(Qo) — R

v o— glvl.
00
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Objective

Tresca friction problem

Proposition (Existence and uniqueness)

The Tresca friction problem admits a unique solution characterized by
u = prox,(F),
where F is the solution the unique solution to the Neumann problem

—AF + F f in Qo,
OwF = 0 on 0%.
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Mechanical contact
Objective

Introduction

Tresca friction problem

Proposition (Existence and uniqueness)

The Tresca friction problem admits a unique solution characterized by
u = prox,(F),

where F is the solution the unique solution to the Neumann problem

OwF = 0 on 0%.
Note that ¢ € F(H'(0)). Using the weak formulation of the Neumann
problem, u is a weak solution to the Tresca friction problem iff,

d(p) = (F—u,p— u>H1(Qo) + ¢(u), Vo € HI(QO)

i.eiff F—u € 0¢(u),
i.e iff u = prox,(F). O

{—AF+F = f inQ,
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Framework Main results
Shape optimization : the Tresca friction problem Numerical simulations

Shape gradient

Let Qo € U,y be an initial shape, if § € C3°° (R, RY) then id + 0 is
C3-diffeomorphism and Qg := (id + 0) (Q) € Uag-

. 1
Figure: The shape perturbated Q.

J is shape differentiable at Qg if

£: C¥°(R4,RY) — R
6 — &(0):=J((id +6)()),

is Gateaux differential at 0, and we denote by 7/(Qq) := dc&(0) the shape gradient
of J at Q.

1C. Dapogny, An introduction to shape and topology optimization.
10/31



Framework Main results

Shape optimization : the Tresca friction problem Numerical simulations

@ Qo € Uy, 8 € C¥°(RY,RY) and t > 0 sufficiently small such that
Q= (ld + te)(Qo) € Uag.

We denote u; € Hl(Qt) the shape perturbed Tresca friction solution on €;:

—Aur + ue
|Onue] < g and ueOnur + gluy|

f in Qt7
0 on 0%y,

with the weak formulation

Vut~V(vfut)+/ ut(vfut)Jr/ g\v|*/ glu:l
Q; o0 o0
2/ Fv—u),  ¥veH(Q)
Q¢

Q¢

Differentiability of t € Ry v vy € H'(Q,) 7

11/31



Framework Main results

Shape optimization : the Tresca friction problem Numerical simulations

Change of variables id + t0, T; := u; o (id + t8) € H'(Qy) is solution to:

AtVEt~V(v—Et)+/ Et(V—Ut)JH-/ gtJT[|V|_/ geJr, Ut
Q 299 89

> | fJ(v—Ty), Vv € H'(Q),
Qo

Qo

where
@ f,:=fo(id + t0) € H'(RY),
@ g = go(id + tf) € H*(RY),
@ J: :=det(I + tVO) € L™(RY),
@ Ay :i=det(I+tVO)(I+tVO) 11+ tVO") ™t € L=(RY, RI*Y),
@ Jr, :=det(I+ tVO)||[(1+ tVO ") n| € C°(0N).
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Thus,
Uy = pI‘()Xd)“',)(Ft)v

where F, € H*(Qo) stands for the unique solution to the perturbed Neumann
problem

<Ft, V>H1(QO) = / ﬂJtV—/ (At — I) VHth—/ (Jt — l)Utv, VV S HI(QO),
Qo Qo

Qo

and prox,, ) : (H*(Q0), (-, Vri(ag)) (HY(Q0), (-, “H1(ag)) i the proximal
operator associated with the perturbed Tresca friction functional

o: Ry xHY(Q) — R
(t,v) +— ®(t,v) ::/ geJT,|v|.
89
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Shape optimization : the Tresca friction problem Numerical simulations

The map t € Ry — F. € H'(Q) is differentiable at t = 0, and its derivative
F§ € HY(Q) is the unique solution to the Neumann problem

(FosV)iniay = [ (Faiv(8) + VF-6)v
0

—/ (—ve —veT + div(O)I) vuo-vV—/ div(®)wov, Vv € HY(Q).
Qo

Q
@ tc Ry Jp € L™(RY) is differentiable at t = 0 with its derivative div();
@ tc R+ f:J; € L2(RY) is differentiable at t = 0 with its
derivative fdiv(0) + V£ - 6;
@ t Ry Ar € L®(RY,RI*Y) is differentiable at t = 0 with its
derivative A) := —V0 — V8T + div(8)L;

@ tc Ry geJr, € L?(0) is differentiable at t = 0 with its
derivative Vg - 0 + g(div(6) — V6n - n).
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Differentiability of t € Ry ~— T = proxe(, y(F:) € H'(Q) at t = 0.
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Differentiability of t € Ry ~— T = proxe(, y(F:) € H'(Q) at t = 0.

Theorem (S. Adly, L. Bourdin (2018))

Let (H,(-,-)5,) be a Hilbert space and ® : R* x H — RU {400} such that
forall t >0, ®(t,) €T(H). Lety : Rt — H and x : Rt — H be defined by

x(t) := proxe(, (y(t)),
for all t > 0. If the following conditions are satisfied:
@ v is differentiable at t = 0;
@ o is twice epi-differentiable at x(0) for y(0) — x(0) € 99(0, -)(x(0)),
© d24(x(0)|y(0) — x(0)) is proper function.
Then x is differentiable at t = 0 with

X (0) = PTOX26(x(0)y(0)—x(0)) (}’ (0)).

15/31
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Mosco epi-convergence

Proposition (Sequential characterization)

Let us consider (H, (-,-),,) a Hilbert space, (f;):>0 a parameterized
family of functions f; : H — RU {£oo}, for all t > 0, and
f:H— RU{xoo}.

Then (ft)t>0 Mosco epi-converges to f, if for all x € H the two
conditions

@ it exists (x¢)t>0 — x such that limsup f(x;) < f(x);
@ for all (x¢)e>0 — x, liminf fi(x;) > f(x);

are satisfied.
In that case we denote ME-lim f; := f the Mosco epi-limite of the
parameterized family (f;)¢>o.
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Twice epi-differentiability

Definition (S. Adly, L. Bourdin (2018))

Let f : RY x H — RU {+oo} such that for all t > 0, f(t,-) € [(H). f
is said to be twice epi-differentiable at x € f~1(-,R) for y € 9f(0,-)(x) if
(A¢f(x]y)),sq defined by

Af(xly): H — RU{+oo}
f(t,x+tz) — f(t,x) — t{y,z)y

V4
1.2
2t

for all t > 0, is Mosco epi-convergent. In that case we denote
d?f(x|y) := ME-lim A.f(x|y),
which is called the second-order epi-derivative of f at x for y.

If f is t-independent and twice differentiable at x then
A2 f (x|VF(x))(z) = D*f(x)(z, z), Vz € H.

17/31
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Shape optimization : the Tresca friction problem Numerical simulations

Reminder: ®: R, x H}{(Qp) — R

(t,v) — ®(t,v) ;:/ geJr,|vl,
a0

Proposition (Second-order difference quotient functions of ®)

For all t >0, u € HY(Qy), v € 99(0,-)(u) one has

Ad(ulv)(w) = - A G(s)(u(s)|0nv(s))(w(s))ds, Yw € HY(Qo),

where for almost all s € 0Q, G(s) is defined by

G(s): Ry xR — R
(t,x) +— G(s)(t,x) = ge(s)IT.(s)|x]|-
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Proposition (Twice epi-differentiability of G)

For almost all s € 09, if g has a directional derivative at s in any direction. Then,
for all x € R and y € 9G(s)(0, -)(x) = g(s)d|-|(x),

d2G(s)(xIy)(2) = ik, , (2)

*g(s)
+(Ve(s) - 0(s) + g(s) (div(8(s)) — VO(s)n(s) -n(s))) — =z, (1)
g(s)

for all z € R, where d2G(s)(x|y) is the second-order epi-derivative of G(s) at x for y
et ol

R six#0,
K Rt six=0ety=1,
XY ) RT six=0ety=-—1,
{0} six=0etye(-1,1).

|x+tz|—|x|—t

- 7 | &), (9)—als) y
A:G(s)(xly)(2)=gt(s)Ir,(s) 2 + Sz O
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Theorem (S. Adly, L. Bourdin (2018))

Let (H,(-,-),,) be a Hilbert space and ® : R* x H — RU {+o00} such that
forall t >0, ®(t,-) €T(H). Lety : Rt — H and x : Rt — H be defined by

x(t) := proxe ., (y(t)),
for all t > 0. If the following conditions are satisfied :
@ y is differentiable at t = 0;
@ o is twice epi-differentiable at x(0) for y(0) — x(0) € 99(0, -)(x(0));
© d2¢(x(0)|y(0) — x(0)) is proper function.
Then x is differentiable at t = 0 with

X/(O) = proxd§¢(x(0)|y(0)fx(0))(yI(O))‘
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Material derivative

Let us assume that :

@ For almost all s € 99y, g has a directional derivative at s in any direction.
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Material derivative

Let us assume that :
@ For almost all s € 99y, g has a directional derivative at s in any direction.
@ & is twice epi-differentiable at up for Fo — up € OP(0, )(wo) with

dz(uo| Fo — wo)( / d2G(s)(uo(5)|9n(Fo — uo)(s))(w(s)) ds,

for all w € HI(QO).
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Material derivative

Let us assume that :
@ For almost all s € 99y, g has a directional derivative at s in any direction.
@ & is twice epi-differentiable at up for Fo — up € OP(0, )(wo) with

dz(uo| Fo — wo)( / d2G(s)(uo(5)|9n(Fo — uo)(s))(w(s)) ds,

for all w € H'(Qo).
Then the map t € Ry — T, € H'(Qo) is differentiable at t = 0 and its
derivative Ty € H'(Qo) is given by

— . /
Ug = PIOng¢(u0\Fofuo)(Fo)~
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(T, v = Ty 2/ A0 V) (v— )
Qo

+/QO,,.VU0 (V—Eg)+/m0h'"(9)(v—ﬂé)7

forall v € Cu0 On(Fp—ug) ‘=
? I3

{w e HY(Q0) | w(s) < 0 on 9Q2€, w(s) > 0 on 9Q:E, w(s) =0 on 9Q5 €},

with

h™(0):=(Vg-0 —gV6én-n) 8,:0 + (VO + VO )Vuy -n € L2(99Q)
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Material derivative

—Aﬂé +H6 = —A(B . VUo) +0-Vu in Qo,

Uy =0 on 90,

Oty = h™(6) on 90,

Ty <0, Owtg < h™(0), Ty (Outg — h™(0)) = 0 on 9Q%,
Uy >0, 8ulip > h™(8), Tp (9nTp — h™(6)) = 0 on 9%,

where:
- h"(0) := (Vg - 0gV6n-n) 222 4 (VO + VO )Vuo - n € L?(990);
- 900 = ONRE U OQRE U 90 E U 0QLE with

DT = {s€ 00, uo(s) = 0 and Duun(s) € (~(5), £(5))}
oe = {s €0, u(s) # 0},

00LE = {s € 0, u(s) =0 and dnuo(s) = g(s)},

INLE = {s€ 0, uw(s)=0and dnuo(s) = —g(s)}.
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Main result

Theorem (Shape gradient)

The energy functional J admits a shape gradient at Qo in the direction
0 € C*>(RY,R?) given by

oon( IV eoll? + [uol?

T(0)(6) = [ 5

a9

— fug + Hg |uo|

, On
— 6On (UO(I)HUO) + guov <ﬂ> . Il> )
g

where H is the mean curvature of 0S).
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Proof

Let @ € (R, RY), t > 0 and Q; := (id + t0)(Q) € Usg. Then

J((id + t0)(Q)) = —%/ (H (I + tV9T> Vi, 2 + |Et|2) Je

Qo

:J(QO)J/ (|\vuo\|2+\u0\2)(1iv(9)+ Vo - VOVt + (T, o) o), +0(t).

2 Ja, . H1(Q)

T (20)(0)
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Proof

<EE)7 v 7E6>H1(Qo) > AO —A (0 - Vu) (V 7ﬁ6)

+/0Vuo v—u0)+/ ™(0) (v — ),

Yv € Cu on(Fg—ug) ‘=

05 G

{W € HY(Q0) | w(s) < 0 on QL% w(s) >0 on dQLE, w(s) =0 on BQ“DO’g} .

o00¢ {s € 9Q0, uo(s) = 0 and Anup(s) € (—g(s),g(s))},
00 = {s€ 00, up(s) =0 and dauo(s) = g(s)},
o0k {s € 9Q0, up(s) =0 and O up(s) = —g(s)}.

@ Since U\ + up € CUO on(Fo—up) » then
’ g

<U6, U0>H1(QO) = /Q —A (9 . Vuo) ug +/Q upf - Vug + /89 uohm(e).
o o o
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azi, /)
Q=X

where

Uag := {Q CR? | Q nonempty connected bounded open subset of R?
with C*-boundary },

with the volume constraint |Q2] = X\ > 0.
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azi, /)
Q=X

where
Uag = {Q CcR? | Q nonempty connected bounded open subset of R?
with C*-boundary },

with the volume constraint |Q2] = X\ > 0.

Starting from an initial shape o, then we solve numerically

—A6g +6y =0 in Qp,
ve 2 2 P
VO = — (w — fuy + Hg |ug| — On (upOnug) + gu0V<()“TuO> -n+ po) n on 99,

then Q1 := (id 4 760)().

27/31



Shape optimization : the Tresca friction problem Numerical simulations

Example

@ Let us consider the dimension d = 2.
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Example

@ Let us consider the dimension d = 2.
@ The volume constraint A\ = .

@ The initial shape Qo is an ellipse with semi-major axis a = 1.3 and
semi-minor axis b = 1/a.
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Example

@ Let us consider the dimension d = 2.
@ The volume constraint A = 7.
@ The initial shape Qo is an ellipse with semi-major axis a = 1.3 and
semi-minor axis b = 1/a.
@ The source term f € H(R?) is defined by
f R> — R

5—x%—y? 4+ x
(X7y) — f(Xa.y) = %na

28/31
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Example

@ Let us consider the dimension d = 2.
@ The volume constraint A\ = .

@ The initial shape Qo is an ellipse with semi-major axis a = 1.3 and
semi-minor axis b = 1/a.

@ The source term f € H(R?) is defined by
f R> — R
(xy) — floy) = XYY,
@ The friction threshold g, € H?(R?) is defined by
gy : R> — R
(y) — gxy)=y (1 + (Sigg)2> n,

with v > 0 andt 1 a cut-off function.
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Optimale shape (1)

Figure: v = 0.49. Left: Optimal shape of the Tresca friction problem.
Right: Optimal shape of the homogeneous Dirichlet problem.

‘8nu| < &y
if |Ohu| < gy, thenu=0;
if |Ohu| = gy, thenitexists A >0 such as u= —Ad,u.
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Optimal shape (2)

¢

Figure: Optimal shape of the Tresca friction problem for
v =0.43,0.37,0.31. The red boundary is for u = 0 and the black
boundary for |Onu| = g,.
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Optimal shape (3)

Figure: v = 0.01. left: Optimal shape of the Tresca friction problem.
right: Optimal shape of the homogeneous Neumann problem.
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Second order epi-derivative of ®

D2®(uo|Fo — wo)(w) = tx w)

0 Bn(FggfL/Q) (
+ [ (Va(s)- 0(5) + (5) (@v(6(5)) - VO(sIa(s)- “(S””W w(s)ds,

for all w € H'(Q0), where C, ou(F—uy is the nonempty closed convex subset of
Oaf

H'(Q) defined by

C,p o 1= {w € (@) | w(s) € K

g

on(Ey—up)s) Tor almost all s € 690} s

uo(s) 2(5)

which is also

C  onrp—uy) =

uo, G

{w € HY() | w(s) < 0 on 922, w(s) > 0 on QL% w(s) =0 on an%g}



Definition (Signorini's law)

Let Q defined as above and 0Q2s C 0S2. The Signorini's law on 00 is

un <0, on <0 and unon = 0 on 095,

where oy, is the normal stress.

In a scalar case :

u<0, Ohu<0and udyu =0 on 9fs.



The Signorini's problem:

—Au4+uv = f inQ,
u = 0 ondQp,
Onu = h on 0Ny,
u<0,0hu<hand u(Gpu—h) = 0 on s,
u>0,0hu>hand u(Ohu—h) = 0 on 0Nsy,

where 0Qp, 0Qn, 0Qg_, Qg are four measurable pairwise
disjoint subsets of 92 such that 9Q2 = 9Qp U 0Qx U 0Qs_ U0Qs,
and with f € HY(R?) and h € L2(09Q).



Definition (Strong solution to the scalar Signorini problem)

A (strong) solution to the scalar Signorini problem is a function

u € HY(Q) such that —Au+ u=f in C(Q), u=w a.e. on dQp, and
also O,u € L2(09) with Oyu = { a.e. on OQN, u < w, Oyu < £ and
(u—w)(Ohu—£)=0a.e ondIs_, u>w, Oqu>"¢

and (u—w)(Opu—£) =0 a.e. on s .




Definition (Weak solution to the Signorini's problem)

A weak solution to the Signorini problem is a function u € Ky,(Q) such that

/QVU-V(V—U)—i—/Qu(v—u)Z/Qf(v—u)—&-/mh(v—u),

where K*(Q) is the nonempty closed convex subset of H(Q) defined by

KNQ) = {v €HYQ), v<00ndQs_, v=0o0nd et v>0on BQs+}.

v




Proposition (Existence and uniqueness)

The scalar Signorini problem admits a unique weak solution u € H(Q)
characterized by

u= pI’OjKl(Q)(F),

where F is the unique solution to the Neumann problem

—-AF+F = f in€,
OF = h ondQ,

with proji(q) is the classical projection operator onto K*(2) of H(Q)
for the usual scalar product (-, -)yp1(q)-




Definition (Consistent decomposition)
The decomposition 02 = 0QAn UOQp UONs_ UONs. is said to be consistent if

@ For almost all s € O0s— (resp. Isy), s € intpa(9Ns—) (resp.
s € intpa(00s+)), where the notation intsq stands for the interior
relative to 0S2;

@ The nonempty closed convex subset IC&V/2(8Q) of HY/2(0Q) defined by

K/2(09) :={ v e H/2(0Q) | v < w a.e. on 9Qs_,

v=w a.e ondQp and v > w a.e.on 00s; },

is dense in the nonempty closed convex subset K% (0Q) of L?(0Q) defined
by

Ko,(09) :={vel?dQ)|v<wae ondQs-,

v=w a.e ondp and v > w a.e. on Qs }.




Definition (Strong solution to the Tresca friction problem)

A strong solution to the Tresca friction problem is a function u € H'(),
such that —Au+ u = f in D'(Q), Ohu € L2(09Q), |0nu(s)| < g(s) and
u(s)0nu(s) = —g(s)|u(s)| for almost all s € 09Q.




Definition (Mosco convergence)

The outer, weak-outer, inner and weak-inner limits of a parameterized
family (St)e>o of subsets of H are respectively defined by

limsupSe = {x € H | 3(tapen = 07, F(m)pen = %, YN EN, x0 € Sty |,
wlimsupS; = {x € H | (tn)nen — 07, I (xn)peny — X, Vn EN, x5 € stn},

liminf St = {x € M| V(tahen = 07, F(ta)pey = %, INEN, Vn > N, x0 € Sty },
wliminf S, = {x € H | Y(tn)nen = 07, 3 (xa)pey = X INEN, Vn > N, x, € sfn}.

The family (St)t>o Is said to be Mosco convergent if
w-limsup S; C liminf S;.

In that case all the previous limits are equal and we write

M-lim S; := liminf S; = limsup S; = w-lim inf $; = w-lim sup S;.




Definition (Mosco epi-convergence)

Let (ft)t>0 be a parameterized family of functions

fr: H— RU{xoo} forall t > 0. We say that (f;)¢~0 is Mosco
epi-convergent if (epi(f;))t>o0 is Mosco convergent in H x R. Then
we denote by ME-lim f; : H — R U {£o00} the function
characterized by its epigraph epi (ME-lim f;) := M-lim epi (f;)
and we say that (fi)t~o Mosco epi-converges to ME-lim f;.




For all u € HY(Q), let us consider the problem

—Av+v=0 inQ,
{ duv(s) € dg(s)|-|(u(s)) on 09Q, (2)

A solution is a function function v € H}(Q) such that
~Av+v=0inD'(Q), v € L?(09Q) and
Onv(s) € 9g(s)|-|(u(s)) for almost all s € 99Q.

Let u € HY(Q). Then,
09(0, -)(u) = the set of solutions to Problem (2),

where ®(0, -) is the parameterized Tresca friction funtional at
t=0.
v




Proposition

Let us consider 8 € C*(R?,R%) and v € W*'(Q). Then

(0-Vv+ vdiv(0) — v(V6On - n)) = / 0 -n(0,v + Hv).

o0 o0

Proposition

Let v € H'(Q) be such that Av € 1.2(Q), and consider
V € C*(R?,RY) N W-=(R? RY). Then

A(V-Vv) = div ((Av) V —div(V)Vv + (VV + va)vV) in C§° (%)




Theorem (Shape derivative)

The shape derivative defined by uy := Ty — Vuo - 8 € H'(Q), is the unique
weak solution to the Signorini’s problem

7Au6 1F u(') =0 in Qq,
up,&
up = —6-Vuy ondQE,
Onuy = h%(6) on Q08
uh < —6 - Vug, dnul < h°(0) and (uf + 6 - Vup) (dnuf — h°(8)) = 0 on 90 L€,
ug = —6 -+ Vug, dnuj > h*(6) and (uf + 0 - Vup) (Onuh — h°(8)) = 0 on 998,

oir h*(8) := Vruo - V(6 -m) — gV(222) . 9 € L*(Io)



least-square functional

Let us consider the least-square functional
5@) = [ lu(@) - wi.
Q

with w € H!(RY) a target displacement. Thus one gets

J(@)0) = [

|up — W]20-n—/ 2(uo—W)Vuo-9-|-/ 2(up—w)up.
BQO Qo Q0

with U6 the material derivative.



least-square functional

—Ap+p = —2(up — w) in Qo,

p=0 on OQNE,

Oup =0 on 9O,

p<0,0up>0and pOup =0 on 0Q¢"%,
p>0,d,p<0and pdyp =0 on 905,

Weak formulation:

(P, — P>H1(QO) < / —2(up — w)(p — ), Vo € Cuo on(Eg—up)

Qo ’ g



least-square functional

J(Q0)(6) <

/ 0.n<\u0 — W\2_|_p(uo—f)—|—Vp.Vuo—Hp8nuo—8n(p8nuo)+pgv(%) .n).
9



Particular case of the second-order epi-derivative

Let us denote

691‘(?’g = {S € 0%, UO(S) #* 0}.

o JQ¢ has a null measure;
o If |up| > C a.e. on IQ%, with C > 0;

@ If the dimension d = 2, 092 is diffeomorphic to the unit disk,
ug and O, ug are continuous on 0f2.
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