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Löıc Bourdin, XLIM, Université de Limoges
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Geometrical shape optimization

Minimizes a certain cost functional while satisfying given
constraint.

The optimization variables are subset of Rd .

In order to numerically minimizes the cost functional, we need
to compute its shape gradient.
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Physical context

Mechanical contact describes the contact of deformable
solids that touch each other on parts of their boundaries
without penetration and possibly sliding with friction.

Mathematical model: elastic body, Signorini’s law, Tresca’s
friction law.

Figure: Contact between cylinders with radius R > 0.
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Model presentation
Let Ω be a nonempty bounded connected open subset of Rd , d ∈ N∗.
The stress vector of Ω is defined by

T (u) := σn(u)n+ στ (u),

where u : Ω → Rd is the displacement field and:

σn(u) is the normal stress;

στ (u) is the shear stress.

Ω

∂Ω

σn(u)n
n

στ (u)

T (u)

Figure: An elastic body Ω for d = 2. 4 / 31
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Tresca friction law

Definition (Tresca friction law)

Let Ω defined as above and ∂ΩT ⊂ ∂Ω. The Tresca friction law defined on
∂ΩT : 

∥στ∥ ≤ g ,
if ∥στ∥ < g , then uτ = 0;
if ∥στ∥ = g , then it exists λ ≥ 0 such as uτ = −λστ ,

where g is a positive function on ∂ΩT called the friction threshold.
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Equivalent formulation of the Tresca friction law:

∥στ∥ ≤ g et uτ · στ = −g ∥uτ∥ .

If u is a scalar valued function then

|∂nu| ≤ g and u∂nu = −g |u| .
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Objective
Let d ∈ N∗, f ∈ H1(Rd) and g ∈ H2(Rd) such as g > 0 a.e. on Rd .
We consider the shape optimization problem:

min
Ω∈Uad
|Ω|=λ

J (Ω),

where

Uad :=
{
Ω ⊂ Rd | Ω nonempty connected bounded open subset of Rd

with C3-boundary } ,

with the volume constraint |Ω| = λ > 0 and

J : Uad → R is the energy functional defined by

J (Ω) :=
1

2

∫
Ω

(
∥∇uΩ∥2 + |uΩ|2

)
+

∫
∂Ω

g |uΩ| −
∫
Ω

fuΩ,

and uΩ ∈ H1(Ω) stands for the unique solution to the Tresca friction problem{
−∆u + u = f in Ω,

|∂nu| ≤ g and u∂nu + g |u| = 0 on ∂Ω.
(TPΩ)
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Tresca friction problem

Definition (Weak solution to the Tresca friction problem)

A weak solution to the Tresca friction problem is a function
u : Ω0 → R such that u ∈ H1(Ω0) and for all v ∈ H1(Ω0),∫

Ω0

∇u · ∇(v − u) +

∫
Ω0

u(v − u) + ϕ(v)− ϕ(u) ≥
∫
Ω0

f (v − u).

Definition (Tresca functional)

The Tresca friction functional ϕ is defined

ϕ : H1(Ω0) −→ R

v 7−→
∫
∂Ω0

g |v |.
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Tresca friction problem

Proposition (Existence and uniqueness)

The Tresca friction problem admits a unique solution characterized by

u = proxϕ(F ),

where F is the solution the unique solution to the Neumann problem{
−∆F + F = f in Ω0,

∂nF = 0 on ∂Ω0.

Proof.

Note that ϕ ∈ Γ(H1(Ω0)). Using the weak formulation of the Neumann
problem, u is a weak solution to the Tresca friction problem iff,

ϕ(φ) ≥ ⟨F − u, φ− u⟩H1(Ω0)
+ ϕ(u), ∀φ ∈ H1(Ω0)

i.e iff F − u ∈ ∂ϕ(u),
i.e iff u = proxϕ(F ).
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Shape gradient

Let Ω0 ∈ Uad be an initial shape, if θ ∈ C3,∞(Rd ,Rd ) then id+ θ is
C3-diffeomorphism and Ωθ := (id+ θ) (Ω0) ∈ Uad .

Figure: The shape perturbated Ωθ.
1

J is shape differentiable at Ω0 if

ξ : C3,∞(Rd ,Rd ) −→ R
θ 7−→ ξ(θ) := J ((id+ θ)(Ω0)),

is Gateaux differential at 0, and we denote by J ′(Ω0) := dG ξ(0) the shape gradient
of J at Ω0.

1C. Dapogny, An introduction to shape and topology optimization.
10 / 31
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Ω0 ∈ Uad , θ ∈ C3,∞(Rd ,Rd) and t > 0 sufficiently small such that
Ωt := (id+ tθ)(Ω0) ∈ Uad .

We denote ut ∈ H1(Ωt) the shape perturbed Tresca friction solution on Ωt :{
−∆ut + ut = f in Ωt ,

|∂nut | ≤ g and ut∂nut + g |ut | = 0 on ∂Ωt ,

with the weak formulation∫
Ωt

∇ut · ∇(v − ut) +

∫
Ωt

ut(v − ut) +

∫
∂Ωt

g |v | −
∫
∂Ωt

g |ut |

≥
∫
Ωt

f (v − ut), ∀v ∈ H1(Ωt).

Differentiability of t ∈ R+ 7→ ut ∈ H1(Ωt) ?
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Change of variables id+ tθ, ut := ut ◦ (id+ tθ) ∈ H1(Ω0) is solution to:∫
Ω0

At∇ut · ∇(v − ut) +

∫
Ω0

ut(v − ut)Jt +

∫
∂Ω0

gtJTt |v | −
∫
∂Ω0

gtJTt |ut |

≥
∫
Ω0

ftJt(v − ut), ∀v ∈ H1(Ω0),

where

ft := f ◦ (id+ tθ) ∈ H1(Rd),

gt := g ◦ (id+ tθ) ∈ H2(Rd),

Jt := det(I+ t∇θ) ∈ L∞(Rd),

At := det(I+ t∇θ)(I+ t∇θ)−1(I+ t∇θ⊤)−1 ∈ L∞(Rd ,Rd×d),

JTt := det(I+ t∇θ)∥(I+ t∇θ⊤)−1n∥ ∈ C0(∂Ω0).
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Thus,
ut = proxϕ(t,·)(Ft),

where Ft ∈ H1(Ω0) stands for the unique solution to the perturbed Neumann
problem

⟨Ft , v⟩H1(Ω0)
=

∫
Ω0

ftJtv−
∫
Ω0

(At − I)∇ut ·∇v−
∫
Ω0

(Jt − 1) utv , ∀v ∈ H1(Ω0),

and proxϕ(t,·) : (H
1(Ω0), ⟨·, ·⟩H1(Ω0)

) → (H1(Ω0), ⟨·, ·⟩H1(Ω0)
) is the proximal

operator associated with the perturbed Tresca friction functional

Φ : R+ ×H1(Ω0) −→ R

(t, v) 7−→ Φ(t, v) :=

∫
∂Ω0

gtJTt |v |.
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Lemma

The map t ∈ R+ 7→ Ft ∈ H1(Ω0) is differentiable at t = 0, and its derivative
F ′
0 ∈ H1(Ω0) is the unique solution to the Neumann problem

〈
F ′
0, v

〉
H1(Ω0)

=

∫
Ω0

(f div(θ) +∇f · θ) v

−
∫
Ω0

(
−∇θ −∇θ⊤ + div(θ)I

)
∇u0 ·∇v−

∫
Ω0

div(θ)u0v , ∀v ∈ H1(Ω0).

Proof.

t ∈ R+ 7→ Jt ∈ L∞(Rd ) is differentiable at t = 0 with its derivative div(θ);

t ∈ R+ 7→ ftJt ∈ L2(Rd ) is differentiable at t = 0 with its
derivative f div(θ) +∇f · θ;
t ∈ R+ 7→ At ∈ L∞(Rd ,Rd×d ) is differentiable at t = 0 with its
derivative A′

0 := −∇θ −∇θ⊤ + div(θ)I;

t ∈ R+ 7→ gtJTt ∈ L2(∂Ω0) is differentiable at t = 0 with its
derivative ∇g · θ + g(div(θ)−∇θn · n).

14 / 31



Introduction
Shape optimization : the Tresca friction problem

Framework Main results
Numerical simulations

Differentiability of t ∈ R+ 7→ ut = proxΦ(t,·)(Ft) ∈ H1(Ω0) at t = 0.

Theorem (S. Adly, L. Bourdin (2018))

Let
(
H, ⟨·, ·⟩H

)
be a Hilbert space and Φ : R+ ×H → R ∪ {+∞} such that

for all t ≥ 0, Φ(t, ·) ∈ Γ(H). Let y : R+ → H and x : R+ → H be defined by

x(t) := proxΦ(t,·)(y(t)),

for all t ≥ 0. If the following conditions are satisfied:

1 y is differentiable at t = 0;

2 Φ is twice epi-differentiable at x(0) for y(0)− x(0) ∈ ∂Φ(0, ·)(x(0));
3 d2

e ϕ(x(0)|y(0)− x(0)) is proper function.

Then x is differentiable at t = 0 with

x ′(0) = proxd2eΦ(x(0)|y(0)−x(0))(y
′(0)).

15 / 31
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Mosco epi-convergence

Proposition (Sequential characterization)

Let us consider (H, ⟨·, ·⟩H) a Hilbert space, (ft)t≥0 a parameterized
family of functions ft : H → R ∪ {±∞}, for all t ≥ 0, and
f : H → R ∪ {±∞}.
Then (ft)t≥0 Mosco epi-converges to f , if for all x ∈ H the two
conditions

1 it exists (xt)t≥0 → x such that lim sup ft(xt) ≤ f (x);

2 for all (xt)t≥0 ⇀ x, lim inf ft(xt) ≥ f (x);

are satisfied.
In that case we denote ME-lim ft := f the Mosco epi-limite of the
parameterized family (ft)t≥0.
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Twice epi-differentiability

Definition (S. Adly, L. Bourdin (2018))

Let f : R+ ×H → R ∪ {+∞} such that for all t ≥ 0, f (t, ·) ∈ Γ(H). f
is said to be twice epi-differentiable at x ∈ f −1(·,R) for y ∈ ∂f (0, ·)(x) if
(∆t f (x |y))t>0 defined by

∆t f (x |y) : H −→ R ∪ {+∞}

z 7−→
f (t, x + tz)− f (t, x)− t ⟨y , z⟩H

1
2 t

2
,

for all t > 0, is Mosco epi-convergent. In that case we denote

d2e f (x |y) := ME-lim ∆t f (x |y),

which is called the second-order epi-derivative of f at x for y .

If f is t-independent and twice differentiable at x then

d2e f (x |∇f (x))(z) = D2f (x)(z , z), ∀z ∈ H.
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Reminder: Φ : R+ ×H1(Ω0) −→ R

(t, v) 7−→ Φ(t, v) :=

∫
∂Ω0

gtJTt |v |,

Proposition (Second-order difference quotient functions of Φ)

For all t > 0, u ∈ H1(Ω0), v ∈ ∂Φ(0, ·)(u) one has

∆tΦ(u|v)(w) =

∫
∂Ω0

∆tG (s)(u(s)|∂nv(s))(w(s))ds, ∀w ∈ H1(Ω0),

where for almost all s ∈ ∂Ω0, G (s) is defined by

G (s) : R+ × R −→ R
(t, x) 7−→ G (s)(t, x) := gt(s)JTt (s)|x |.
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Proposition (Twice epi-differentiability of G )

For almost all s ∈ ∂Ω0, if g has a directional derivative at s in any direction. Then,
for all x ∈ R and y ∈ ∂G(s)(0, ·)(x) = g(s)∂|·|(x),

d2eG(s)(x |y)(z) = ιK
x,

y
g(s)

(z)

+ (∇g(s) · θ(s) + g(s) (div(θ(s))−∇θ(s)n(s) · n(s)))
y

g(s)
z, (1)

for all z ∈ R, where d2eG(s)(x |y) is the second-order epi-derivative of G(s) at x for y
et où

Kx,y :=


R si x ̸= 0,
R+ si x = 0 et y = 1,
R− si x = 0 et y = −1,
{0} si x = 0 et y ∈ (−1, 1).

Proof.

∆tG(s)(x |y)(z)=gt(s)JTt (s)
|x+tz|−|x|−t y

g(s)
z

t2
+

gt (s)JTt (s)−g(s)

t
y

g(s)
z.
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Theorem (S. Adly, L. Bourdin (2018))

Let
(
H, ⟨·, ·⟩H

)
be a Hilbert space and Φ : R+ ×H → R ∪ {+∞} such that

for all t ≥ 0, Φ(t, ·) ∈ Γ(H). Let y : R+ → H and x : R+ → H be defined by

x(t) := proxΦ(t,·)(y(t)),

for all t ≥ 0. If the following conditions are satisfied :

1 y is differentiable at t = 0;

2 Φ is twice epi-differentiable at x(0) for y(0)− x(0) ∈ ∂Φ(0, ·)(x(0));
3 d2

e ϕ(x(0)|y(0)− x(0)) is proper function.

Then x is differentiable at t = 0 with

x ′(0) = proxd2eΦ(x(0)|y(0)−x(0))(y
′(0)).
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Material derivative

Let us assume that :

1 For almost all s ∈ ∂Ω0, g has a directional derivative at s in any direction.

2 Φ is twice epi-differentiable at u0 for F0 − u0 ∈ ∂Φ(0, ·)(u0) with

d2
eΦ(u0|F0 − u0)(w) =

∫
∂Ω0

d2
eG(s)(u0(s)|∂n(F0 − u0)(s))(w(s))ds,

for all w ∈ H1(Ω0).

Then the map t ∈ R+ 7→ ut ∈ H1(Ω0) is differentiable at t = 0 and its
derivative u′

0 ∈ H1(Ω0) is given by

u′
0 = proxd2

eΦ(u0|F0−u0)
(F ′

0).
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〈
u′
0, v − u′

0

〉
H1(Ω0)

≥
∫
Ω0

−∆(θ · ∇u0)
(
v − u′

0

)
+

∫
Ω0

θ · ∇u0
(
v − u′

0

)
+

∫
∂Ω0

hm(θ)
(
v − u′

0

)
,

for all v ∈ C
u0,

∂n(F0−u0)
g

:={
w ∈ H1(Ω0) | w(s) ≤ 0 on ∂Ωu0,g

S− ,w(s) ≥ 0 on ∂Ωu0,g
S+ ,w(s) = 0 on ∂Ωu0,g

D

}
,

with

hm(θ) := (∇g · θ − g∇θn · n) ∂nu0
g

+ (∇θ +∇θ⊤)∇u0 · n ∈ L2(∂Ω0)
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Material derivative


−∆u′

0 + u′
0 = −∆(θ · ∇u0) + θ · ∇u0 in Ω0,

u′
0 = 0 on ∂Ωu0,g

D ,
∂nu

′
0 = hm(θ) on ∂Ωu0,g

N ,
u′
0 ≤ 0, ∂nu

′
0 ≤ hm(θ), u′

0 (∂nu
′
0 − hm(θ)) = 0 on ∂Ωu0,g

S− ,
u′
0 ≥ 0, ∂nu

′
0 ≥ hm(θ), u′

0 (∂nu
′
0 − hm(θ)) = 0 on ∂Ωu0,g

S+ ,

where:

- hm(θ) := (∇g · θg∇θn · n) ∂nu0
g

+ (∇θ +∇θ⊤)∇u0 · n ∈ L2(∂Ω0);

- ∂Ω0 = ∂Ωu0,g
D ∪ ∂Ωu0,g

N ∪ ∂Ωu0,g
S− ∪ ∂Ωu0,g

S+ with

∂Ωu0,g
D := {s ∈ ∂Ω0, u0(s) = 0 and ∂nu0(s) ∈ (−g(s), g(s))} ,

∂Ωu0,g
N := {s ∈ ∂Ω0, u0(s) ̸= 0} ,

∂Ωu0,g
S− := {s ∈ ∂Ω0, u0(s) = 0 and ∂nu0(s) = g(s)} ,

∂Ωu0,g
S+ := {s ∈ ∂Ω0, u0(s) = 0 and ∂nu0(s) = −g(s)} .
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Main result

Theorem (Shape gradient)

The energy functional J admits a shape gradient at Ω0 in the direction
θ ∈ C3,∞(Rd ,Rd) given by

J ′(Ω0)(θ) =

∫
∂Ω0

θ · n
(
∥∇u0∥2 + |u0|2

2
− fu0 + Hg |u0|

− ∂n (u0∂nu0) + gu0∇
(
∂nu0

g

)
· n

)
,

where H is the mean curvature of ∂Ω0.
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Proof

Let θ ∈ C3,∞(Rd ,Rd), t > 0 and Ωt := (id+ tθ)(Ω0) ∈ Uad . Then

J ((id+ tθ)(Ω0)) = −1

2

∫
Ω0

(∥∥∥(I+ t∇θ⊤
)
∇ut

∥∥∥2

+ |ut |2
)
Jt

= J (Ω0)−
1

2

∫
Ω0

(
∥∇u0∥2 + |u0|2

)
div(θ) +

∫
Ω0

∇u0 · ∇θ∇u0 +
〈
u′
0, u0

〉
H1(Ω0)︸ ︷︷ ︸

J ′(Ω0)(θ)

+o(t).
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Proof

〈
u′0, v − u′0

〉
H1(Ω0)

≥
∫
Ω0

−∆(θ · ∇u0)
(
v − u′0

)
+

∫
Ω0

θ · ∇u0
(
v − u′0

)
+

∫
∂Ω0

hm(θ)
(
v − u′0

)
,

∀v ∈ C
u0,

∂n(F0−u0)
g

:={
w ∈ H1(Ω0) | w(s) ≤ 0 on ∂Ωu0,g

S− ,w(s) ≥ 0 on ∂Ωu0,g
S+ ,w(s) = 0 on ∂Ωu0,g

D

}
.

∂Ωu0,g
D = {s ∈ ∂Ω0, u0(s) = 0 and ∂nu0(s) ∈ (−g(s), g(s))} ,

∂Ωu0,g
S− = {s ∈ ∂Ω0, u0(s) = 0 and ∂nu0(s) = g(s)} ,

∂Ωu0,g
S+ = {s ∈ ∂Ω0, u0(s) = 0 and ∂nu0(s) = −g(s)} .

Since u′0 ± u0 ∈ C
u0,

∂n(F0−u0)
g

, then

〈
u′0, u0

〉
H1(Ω0)

=

∫
Ω0

−∆(θ · ∇u0) u0 +

∫
Ω0

u0θ · ∇u0 +

∫
∂Ω0

u0h
m(θ).
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min
Ω∈Uad
|Ω|=λ

J(Ω),

where

Uad :=
{
Ω ⊂ Rd | Ω nonempty connected bounded open subset of Rd

with C3-boundary } ,

with the volume constraint |Ω| = λ > 0.

Starting from an initial shape Ω0, then we solve numerically
−∆θ0 + θ0 = 0 in Ω0,

∇θ0n = −
(

∥∇u0∥2+|u0|2
2

− fu0 + Hg |u0| − ∂n (u0∂nu0) + gu0∇
(

∂nu0
g

)
· n + p0

)
n on ∂Ω0,

then Ω1 := (id+ τθ0)(Ω0).
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Example

Let us consider the dimension d = 2.

The volume constraint λ = π.

The initial shape Ω0 is an ellipse with semi-major axis a = 1.3 and
semi-minor axis b = 1/a.

The source term f ∈ H1(R2) is defined by

f : R2 −→ R

(x , y) 7−→ f (x , y) :=
5− x2 − y 2 + xy

4
η,

The friction threshold gγ ∈ H2(R2) is defined by

gγ : R2 −→ R

(x , y) 7−→ gγ(x , y) := γ

(
1 +

(sin x)2

0.8

)
η,

with γ > 0 andt η a cut-off function.
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Optimale shape (1)

Figure: γ = 0.49. Left: Optimal shape of the Tresca friction problem.
Right: Optimal shape of the homogeneous Dirichlet problem.

|∂nu| ≤ gγ ,
if |∂nu| < gγ , then u = 0;
if |∂nu| = gγ , then it exists λ ≥ 0 such as u = −λ∂nu.
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Optimal shape (2)

Figure: Optimal shape of the Tresca friction problem for
γ = 0.43, 0.37, 0.31. The red boundary is for u = 0 and the black
boundary for |∂nu| = gγ .
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Optimal shape (3)

Figure: γ = 0.01. left: Optimal shape of the Tresca friction problem.
right: Optimal shape of the homogeneous Neumann problem.
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Second order epi-derivative of Φ

D2
eΦ(u0|F0 − u0)(w) = ιK

u0,
∂n(F0−u0)

g

(w)

+

∫
Γ0

(∇g(s) · θ(s) + g(s) (div(θ(s))−∇θ(s)n(s) · n(s))))∂n(F0 − u0)(s)

g(s)
w(s)ds,

for all w ∈ H1(Ω0), where C
u0,

∂n(F0−u0)
g

is the nonempty closed convex subset of

H1(Ω0) defined by

C
u0,

∂n(F0−u0)
g

:=

{
w ∈ H1(Ω0) | w(s) ∈ K

u0(s),
∂n(E0−u0)(s)

g(s)

for almost all s ∈ ∂Ω0

}
,

which is also

C
u0,

∂n(F0−u0)
g

={
w ∈ H1(Ω0) | w(s) ≤ 0 on ∂Ωu0,g

S− ,w(s) ≥ 0 on ∂Ωu0,g
S+ ,w(s) = 0 on ∂Ωu0,g

D

}



Definition (Signorini’s law)

Let Ω defined as above and ∂ΩS ⊂ ∂Ω.The Signorini’s law on ∂ΩS is

un ≤ 0, σn ≤ 0 and unσn = 0 on ∂ΩS,

where σn is the normal stress.

In a scalar case :

u ≤ 0, ∂nu ≤ 0 and u∂nu = 0 on ∂ΩS.



The Signorini’s problem:
−∆u + u = f in Ω,

u = 0 on ∂ΩD,
∂nu = h on ∂ΩN,

u ≤ 0, ∂nu ≤ h and u (∂nu − h) = 0 on ∂ΩS−,
u ≥ 0, ∂nu ≥ h and u (∂nu − h) = 0 on ∂ΩS+,

where ∂ΩD, ∂ΩN, ∂ΩS−, ∂ΩS+ are four measurable pairwise
disjoint subsets of ∂Ω such that ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩS− ∪ ∂ΩS+,
and with f ∈ H1(Rd) and h ∈ L2(∂Ω).



Definition (Strong solution to the scalar Signorini problem)

A (strong) solution to the scalar Signorini problem is a function
u ∈ H1(Ω) such that −∆u + u = f in C∞

0 (Ω)′, u = w a.e. on ∂ΩD, and
also ∂nu ∈ L2(∂Ω) with ∂nu = ℓ a.e. on ∂ΩN, u ≤ w, ∂nu ≤ ℓ and
(u − w)(∂nu − ℓ) = 0 a.e. on ∂ΩS−, u ≥ w, ∂nu ≥ ℓ
and (u − w)(∂nu − ℓ) = 0 a.e. on ∂ΩS+.



Definition (Weak solution to the Signorini’s problem)

A weak solution to the Signorini problem is a function u ∈ K1
w (Ω) such that∫

Ω

∇u · ∇(v − u) +

∫
Ω

u(v − u) ≥
∫
Ω

f (v − u) +

∫
∂Ω

h(v − u),

where K1(Ω) is the nonempty closed convex subset of H1(Ω) defined by

K1(Ω) :=
{
v ∈ H1(Ω), v ≤ 0 on ∂ΩS−, v = 0 on ∂ΩD et v ≥ 0 on ∂ΩS+

}
.



Proposition (Existence and uniqueness)

The scalar Signorini problem admits a unique weak solution u ∈ H1(Ω)
characterized by

u = projK1(Ω)(F ),

where F is the unique solution to the Neumann problem{
−∆F + F = f in Ω,

∂nF = h on ∂Ω,

with projK1(Ω) is the classical projection operator onto K1(Ω) of H1(Ω)
for the usual scalar product ⟨·, ·⟩H1(Ω).



Definition (Consistent decomposition)

The decomposition ∂Ω = ∂ΩN∪∂ΩD∪∂ΩS−∪∂ΩS+ is said to be consistent if

1 For almost all s ∈ ∂ΩS− (resp. ∂ΩS+), s ∈ int∂Ω(∂ΩS−) (resp.
s ∈ int∂Ω(∂ΩS+)), where the notation int∂Ω stands for the interior
relative to ∂Ω;

2 The nonempty closed convex subset K1/2
w (∂Ω) of H1/2(∂Ω) defined by

K1/2
w (∂Ω) := { v ∈ H1/2(∂Ω) | v ≤ w a.e. on ∂ΩS−,

v = w a.e. on ∂ΩD and v ≥ w a.e.on ∂ΩS+ } ,

is dense in the nonempty closed convex subset K0
w (∂Ω) of L

2(∂Ω) defined
by

K0
w (∂Ω) := { v ∈ L2(∂Ω) | v ≤ w a.e. on ∂ΩS−,

v = w a.e. on ∂ΩD and v ≥ w a.e. on ∂ΩS+ } .



Definition (Strong solution to the Tresca friction problem)

A strong solution to the Tresca friction problem is a function u ∈ H1(Ω),
such that −∆u + u = f in D′(Ω), ∂nu ∈ L2(∂Ω), |∂nu(s)| ≤ g(s) and
u(s)∂nu(s) = −g(s)|u(s)| for almost all s ∈ ∂Ω.



Definition (Mosco convergence)

The outer, weak-outer, inner and weak-inner limits of a parameterized
family (St)t>0 of subsets of H are respectively defined by

lim sup St :=
{
x ∈ H | ∃(tn)n∈N → 0+, ∃ (xn)n∈N → x, ∀n ∈ N, xn ∈ Stn

}
,

w-lim sup St :=
{
x ∈ H | ∃(tn)n∈N → 0+, ∃ (xn)n∈N ⇀ x, ∀n ∈ N, xn ∈ Stn

}
,

lim inf St :=
{
x ∈ H | ∀(tn)n∈N → 0+, ∃ (xn)n∈N → x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn

}
,

w-lim inf St :=
{
x ∈ H | ∀(tn)n∈N → 0+, ∃ (xn)n∈N ⇀ x, ∃N ∈ N, ∀n ≥ N, xn ∈ Stn

}
.

The family (St)t>0 is said to be Mosco convergent if

w-lim supSt ⊂ lim inf St .

In that case all the previous limits are equal and we write

M-lim St := lim inf St = lim supSt = w-lim inf St = w-lim supSt .



Definition (Mosco epi-convergence)

Let (ft)t>0 be a parameterized family of functions
ft : H → R ∪ {±∞} for all t > 0. We say that (ft)t>0 is Mosco
epi-convergent if (epi(ft))t>0 is Mosco convergent in H×R. Then
we denote by ME-lim ft : H → R ∪ {±∞} the function
characterized by its epigraph epi (ME-lim ft) := M-lim epi (ft)
and we say that (ft)t>0 Mosco epi-converges to ME-lim ft .



For all u ∈ H1(Ω), let us consider the problem{
−∆v + v = 0 in Ω,

∂nv(s) ∈ ∂g(s)|·|(u(s)) on ∂Ω,
(2)

A solution is a function function v ∈ H1(Ω) such that
−∆v + v = 0 in D′(Ω), ∂nv ∈ L2(∂Ω) and
∂nv(s) ∈ ∂g(s)|·|(u(s)) for almost all s ∈ ∂Ω.

Lemma

Let u ∈ H1(Ω). Then,

∂Φ(0, ·)(u) = the set of solutions to Problem (2),

where Φ(0, ·) is the parameterized Tresca friction funtional at
t = 0.



Proposition

Let us consider θ ∈ C1(Rd ,Rd) and v ∈ W2,1(Ω). Then∫
∂Ω

(θ · ∇v + vdiv(θ)− v(∇θn · n)) =
∫
∂Ω

θ · n(∂nv + Hv).

Proposition

Let v ∈ H1(Ω) be such that ∆v ∈ L2(Ω), and consider
V ∈ C1(Rd ,Rd) ∩W1,∞(Rd ,Rd). Then

∆(V · ∇v) = div
(
(∆v)V − div(V )∇v + (∇V +∇V⊤)∇v

)
in C∞

0 (Ω)′.



Theorem (Shape derivative)

The shape derivative defined by u′
0 := u′

0 −∇u0 · θ ∈ H1(Ω0), is the unique
weak solution to the Signorini’s problem



−∆u′0 + u′0 = 0 in Ω0,

u′0 = −θ · ∇u0 on ∂Ω
u0,g
D ,

∂nu
′
0 = hs (θ) on ∂Ω

u0,g
N ,

u′0 ≤ −θ · ∇u0, ∂nu
′
0 ≤ hs (θ) and

(
u′0 + θ · ∇u0

) (
∂nu

′
0 − hs (θ)

)
= 0 on ∂Ω

u0,g
S− ,

u′0 ≥ −θ · ∇u0, ∂nu
′
0 ≥ hs (θ) and

(
u′0 + θ · ∇u0

) (
∂nu

′
0 − hs (θ)

)
= 0 on ∂Ω

u0,g
S+ ,

où hs(θ) := ∇Γu0 · ∇Γ(θ · n)− g∇( ∂nu0
g

) · θ ∈ L2(Γ0)



least-square functional

Let us consider the least-square functional

J(Ω) =

∫
Ω
|u(Ω)− w |2 ,

with w ∈ H1(Rd) a target displacement. Thus one gets

J ′(Ω0)(θ) =

∫
∂Ω0

|u0 − w |2 θ·n−
∫
Ω0

2(u0−w)∇u0·θ+
∫
Ω0

2(u0−w)u′0.

with u′0 the material derivative.



least-square functional


−∆p + p = −2(u0 − w) in Ω0,

p = 0 on ∂Ωu0,g
D ,

∂np = 0 on ∂Ωu0,g
N ,

p ≤ 0, ∂np ≥ 0 and p∂np = 0 on ∂Ωu0,g
S− ,

p ≥ 0, ∂np ≤ 0 and p∂np = 0 on ∂Ωu0,g
S+ ,

Weak formulation:

⟨p, φ− p⟩H1(Ω0)
≤

∫
Ω0

−2(u0 −w)(p−φ), ∀φ ∈ C
u0,

∂n(E0−u0)
g

.



least-square functional

J ′(Ω0)(θ) ≤∫
∂Ω0

θ·n
(
|u0 − w |2+p(u0−f )+∇p·∇u0−Hp∂nu0−∂n(p∂nu0)+pg∇

(
∂u0
g

)
·n
)
.



Particular case of the second-order epi-derivative

Let us denote

∂Ωu0,g
N := {s ∈ ∂Ω0, u0(s) ̸= 0} .

∂Ωu0,g
N has a null measure;

If |u0| ≥ C a.e. on ∂Ωu0,g
N , with C > 0;

If the dimension d = 2, ∂Ω is diffeomorphic to the unit disk,
u0 and ∂nu0 are continuous on ∂Ω.
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