Relaxed-inertial proximal point algorithms for problems involving strongly quasiconvex functions

Sorin-Mihai Grad

ENSTA Paris / Polytechnic Institute of Paris based on joint work with Felipe Lara & Raúl Marcavillaca

GdR MOA Annual Days 2022 November 11–14, 2022 • $h : \mathbb{R}^n \to \overline{\mathbb{R}}$ proper lsc convex

$$\Rightarrow \operatorname{Prox}_h : \mathbb{R}^n \to \mathbb{R}^n$$

h proper lsc but not convex

$$\Rightarrow \begin{cases} \operatorname{Prox}_h : \mathbb{R}^n \rightrightarrows \mathbb{R}^n \\ \text{no formulae for } \operatorname{Prox}_h \\ \text{PPA usually fails to converge (to a minimum of } h) \end{cases}$$

- PPA for quasiconvex problems (by means of Bregman distances): [Kaplan & Tichatschke, JoGO, 1998], [Langenberg & Tichatschke, JoGO, 2012], [Papa Quiroz, Mallma Ramirez & Oliveira, EJOR, 2015] etc
- convergence of the iterates towards stationary points
- PPA for minimizing strongly quasiconvex functions: [Lara, JOTA, 2022]

Sorin-Mihai Grad

- $h: \mathbb{R}^n \to \overline{\mathbb{R}}$ with a convex domain is
 - strongly convex: $\exists \gamma \in]0, +\infty[$ s.t. $\forall x, y \in \text{dom } h \ \forall \lambda \in [0, 1]$

$$h(\lambda y + (1-\lambda)x) \le \lambda h(y) + (1-\lambda)h(x) - \lambda(1-\lambda)\frac{\gamma}{2} \|x-y\|^2$$

• strongly quasiconvex: $\exists \gamma \in]0, +\infty[$ s.t. $\forall x, y \in \text{dom } h \quad \forall \lambda \in [0, 1]$

$$h(\lambda y + (1 - \lambda)x) \le \max\{h(y), h(x)\} - \lambda(1 - \lambda)\frac{\gamma}{2} \|x - y\|^2$$

- ▶ both properties can be considered on a set $U \subseteq \mathbb{R}^n$, too
- strongly convex \Rightarrow strongly quasiconvex
- ▶ $\|\cdot\|$ is strongly quasiconvex on any bounded convex $U \subseteq \mathbb{R}^n$, but *not* strongly convex
- $\sqrt{\|\cdot\|}$ is strongly quasiconvex on any bounded convex $U \subseteq \mathbb{R}^n$, but *not* convex
- any constant function is convex but not strongly quasiconvex

- [Bauschke & Combettes] a strongly quasiconvex function has at most one minimizer on a convex set that touches its domain
- [Lara, JOTA, 2022] a proper lsc strongly quasiconvex function has one minimizer on a closed convex subset of its domain
- ► the maximum of finitely many strongly quasiconvex functions with moduli t_i > 0 is strongly quasiconvex with modulus min{t_i} > 0
- ▶ [Lara, JOTA, 2022] $t \mapsto \sqrt[4]{t^2 + k^2}$ $(k \in \mathbb{R})$ is strongly quasiconvex on any interval $[-c, c] \subseteq \mathbb{R}$

$$\min_{x \in K} h(x)$$

- $K \subseteq \mathbb{R}^n$ linear subspace
- $h : \mathbb{R}^n \to \overline{\mathbb{R}}$ proper lsc, $K \subseteq \operatorname{dom} h$ and
 - (A) h strongly quasiconvex on K
 - (B1) h quasiconvex on K
 - (B2) h is 2-weakly coercive on K:

$$\liminf_{x \in K, \, \|x\| \to +\infty} \frac{h(x)}{\|x\|^2} \ge 0$$

• $(A) \Rightarrow (B1)\&(B2)$, however a constant function satisfies (B1)&(B2), but not (A)

Step 0. let
$$x^0 = x^{-1} \in K$$
, $\alpha \in [0, 1[, 0 < \rho' \le \rho'' < 2, \{c_k\}_{k \in \mathbb{N}} \subseteq \mathbb{R}_{++}, k = 0$
Step 1. shapes $a \in [0, a]$ set

Step 1. choose $\alpha_k \in [0, \alpha]$, set

$$y^k = x^k + \alpha_k (x^k - x^{k-1})$$

and compute

$$z^k \in \operatorname{Prox}_{c_k(h+\delta_K)}(y^k)$$

Step 2. if $z^k = y^k$: STOP $\Rightarrow y^k \in \arg \min_K h$ Step 3. choose $\rho_k \in [\rho', \rho'']$ and update

$$x^{k+1} = (1 - \rho_k)y^k + \rho_k z^k$$

Step 4. k = k + 1 and go to Step 1

- the algorithm was proposed in the convex framework: [Attouch & Cabot, Optimization, 2020]
- if $\alpha = 0$ & $\rho_k = 1$, $k \ge 0$ the algorithm collapses to PPA ([Lara, JOTA, 2022] for the (strongly) quasiconvex framework)
- ▶ it is necessary to take K linear subspace to guarantee that y^k is feasible (inertial step) and (if ρ" > 1) that x^{k+1} is feasible (relaxation step)
- if $\alpha = 0$ & $\rho'' \leq 1$: K can be taken closed convex
- the proximity operator restricted to a set has already been considered: [Boţ & Csetnek, Opt, 2017], [Gribonval & Nikolova, JMIV, 2020], [Yen & Muu, arXiv, 2021] etc

- h strongly quasiconvex on K
- $0 < \rho' \le \rho'' < 2, \ \{\rho_k\}_k \subseteq [\rho', \rho''], \ \alpha \in [0, 1[, \ \{\alpha_k\}_k \subseteq [0, \alpha]$
- $\sum_{k=0}^{\infty} \alpha_k \|x^k x^{k-1}\|^2 < +\infty$
- $\Omega := \{ x \in K : h(x) \le h(z^k) \ \forall k \in \mathbb{N} \}$

$$\Rightarrow$$

- $\forall x^* \in \Omega \exists \lim_{k \to \infty} \|x^k x^*\|$ and $\lim_{k \to +\infty} \|x^{k+1} - y^k\| = \lim_{k \to +\infty} \|z^k - y^k\| = 0$
- if in addition $c_k \ge c' > 0 \ \forall k \ge 0$

$$\Rightarrow \begin{cases} x^k \to \overline{x} = \arg\min_K h \\ \lim_{k \to +\infty} h(x^k) = \min_K h \end{cases}$$

•
$$\sum_{k=0}^{\infty} \alpha_k \|x^k - x^{k-1}\|^2 < +\infty$$
 is fulfilled when

• $\{\alpha_k\}_k$ is nondecreasing satisfying (for a $\beta < 1$)

$$0 \le \alpha_k \le \alpha_{k+1} \le \alpha < \beta \ \forall \ k \ge 0$$

and

$$\rho'' = \rho''(\beta, \rho') := \frac{2\rho'(\beta^2 - \beta + 1)}{2\rho'\beta^2 + (2 - \rho')\beta + \rho'}$$

• $\{\alpha_k\}_k$ is nondecreasing satisfying

$$0 \le \alpha_k \le \alpha_{k+1} \le \alpha < \frac{1}{3} \ \forall \ k \ge 0$$

• h quasiconvex and 2-weakly coercive on K

$$\blacktriangleright \ \Omega \neq \emptyset$$

+ previous hypotheses on sequences

\Rightarrow

•
$$\forall x^* \in \Omega \exists \lim_{k \to \infty} \|x^k - x^*\|$$
 and
$$\lim_{k \to +\infty} \|x^{k+1} - y^k\| = \lim_{k \to +\infty} \|z^k - y^k\|$$

• if in addition h is bounded from below and $c_k \geq c' > 0 \ \forall k \geq 0$

$$\Rightarrow \{h(x^k)\}_k$$
 is convergent

= 0

- ▶ $q \in \mathbb{N}$
- $\blacktriangleright \ K = \mathbb{R}^n$
- ▶ $h_1, h_2 : \mathbb{R}^n \to \mathbb{R}$, $h_1(x) = \sqrt{\|x\|}$ and $h_2(x) = \|x\|^2 q$
- ▶ $h : \mathbb{R}^n \to \mathbb{R}$, $h(x) := \max\{h_1(x), h_2(x)\}$ is continuous and strongly quasiconvex (but not convex)

•
$$\arg\min_{\mathbb{R}^n} h = \{0\}$$

►
$$n = 5$$
: $\varepsilon = 10^{-6}$, $q = 133$, $x^0 = [7, -8, 5, 2, 55]^{\top}$, $\rho' = 0.9$,
 $\rho'' = 1.5$, $\alpha = 0.125$, $c_1 = 1$, $c_{k+1} = 100/k^2 + c_k$,
 $\alpha_{k+1} = \alpha_k + 1/(900(k+1)^2)$, $\rho_k = (1 - 1/k)\rho' + (1/k)\rho''$,
 $k \ge 0$

- ▶ to reach \bar{x} with error ε : 11 iterations / 0.9306 seconds
- PPA: 43 iterations / 0.9885 seconds
- n = 50: x^0 random, similar constellation
- to reach \bar{x} with error ε : 13 iterations / 1.1360 seconds
- PPA: 46 iterations / 1.5866 seconds

	$n = 5, \ \varepsilon = 10^{-6}$		n = 50,	$n=50,\ \varepsilon=10^{-6}$		$n = 500, \ \varepsilon = 10^{-3}$		
	Alg	PPA	Alg	PPA	Alg	PPA		
s it	0.9306 11	0.9885 43	1.1360 13	1.5866 46	4.9289 23	9.4276 43		

[running time (in seconds) and number of iterations performed by our algorithm and PPA to reach $\|z^k-y^k\|<\varepsilon]$

	$\varepsilon = 10^{-4}$		$\varepsilon =$	$\varepsilon = 10^{-5}$		$\varepsilon = 10^{-4} (q = 25)$		
	Alg	PPA	Alg	PPA		Alg	PPA	
s it	15.5450 63	24.7519 93	16.3472 68	294.0988 1105		7.8103 14	14.6288 59	

[performance evaluation of our algorithm and PPA to reach $\|z^k-y^k\|<\varepsilon$ for n=500]

find $\overline{x} \in K$: $f(\overline{x}, y) \ge 0, \ \forall \ y \in K$

- solution set: S(K, f)
- $K \subseteq \mathbb{R}^n$ linear subspace
- $\blacktriangleright f: K \times K \to \mathbb{R}$
- $f(x, \cdot)$ strongly quasiconvex $\forall x \in K$
- $\blacktriangleright \ f(\cdot,y) \text{ usc } \forall y \in K$
- f (jointly) lsc and pseudomonotone on K, i.e.

$$f(x,y) \ge 0 \implies f(y,x) \le 0 \ \forall x,y \in K$$

► f satisfies the Lipschitz type condition $\exists \eta > 0$ s.t.

 $f(x,z) - f(x,y) - f(y,z) \le \eta \left(\|x - y\|^2 + \|y - z\|^2 \right) \, \forall \, x, y, z \in K$

$$\blacktriangleright (f(x,x) = 0 \ \forall x \in K)$$

▶ existence & uniqueness results for $f(x, \cdot)$ lsc (strongly) quasiconvex $\forall x \in K$ [lusem & Lara, JOTA, 2019 / 2022]

Step 0. let $x^0, x^{-1} \in K$, $\alpha, \rho \in [0, 1[$ and $\{\beta_k\}$, k = 0Step 1. choose $\alpha_k \in [0, \alpha]$, set

$$y^k = x^k + \alpha_k (x^k - x^{k-1})$$

and compute

$$z^k \in \operatorname*{arg\,min}_{x \in K} \left\{ f(y^k, x) + \frac{1}{2\beta_k} \|y^k - x\|^2 \right\}$$

Step 2. if $z^k = y^k$: STOP $\Rightarrow S(K, f) = \{y^k\}$ Step 3. choose $\rho_k \in [1 - \rho, 1 + \rho]$ and update

$$x^{k+1} = (1 - \rho_k)y^k + \rho_k z^k$$

Step 4. k = k + 1 and go to Step 1

- the algorithm was proposed in the convex framework: [Hieu, Duong & Thai, JANO, 2021], [Van Vinh, Tran & Vuong, NA, 2022]
- if $\alpha = 0$ & $\rho_k = 1$, $k \ge 0$ the algorithm collapses to PPA ([lusem & Lara, JOTA, 2022] for the (strongly) quasiconvex framework)
- ▶ it is necessary to take K linear subspace to guarantee that y^k is feasible (in the inertial step) and (if $\rho_k > 1$) that x^{k+1} is feasible (relaxation step)
- \blacktriangleright the hypotheses guarantee that the solution set S(K,f) is a singleton
- if $\alpha = 0$ & $\rho_k \leq 1$: K can be taken closed convex

$$\begin{array}{l} \bullet \ \alpha \in [0,1[, \ \{\alpha_k\}_k \subseteq [0,\alpha] \\ \bullet \ \sum_{k=0}^{\infty} \ \alpha_k \|x^k - x^{k-1}\|^2 < +\infty \\ \bullet \ \frac{1}{\gamma - 8\eta} < \beta_k < \epsilon \leq \frac{1}{4\eta} \ \forall k \geq 0 \\ \bullet \ 0 < 1 - \rho \leq \rho_k \leq 1 + \rho \text{ with } 0 \leq \rho \leq 1 - 4\eta\epsilon \ \forall k \geq 0 \end{array}$$

• if
$$\{\overline{x}\} = S(K, f) \exists \lim_{k \to \infty} \|x^k - \overline{x}\|$$
 and

$$\lim_{k \to +\infty} \|x^{k+1} - y^k\|^2 = \lim_{k \to +\infty} \|z^k - y^k\|^2 = 0$$
• $\{x^k\}_k, \{y^k\}_k, \{z^k\}_k$ converge all to $\overline{x} \in S(K, f)$

 \Rightarrow

- ▶ $q \in \mathbb{N}$
- $\blacktriangleright f: \mathbb{R} \times \mathbb{R} \to \mathbb{R},$

$$f(x,y) := \max\{\sqrt{|y|}, y^2 - q\} - \max\{\sqrt{|x|}, x^2 - q\} + x(y - x)$$

•
$$K = \mathbb{R}$$
 or $K = [0, +\infty[$

- $\blacktriangleright~f$ monotone fulfilling the hypotheses
- $f(x, \cdot)$ lsc strongly quasiconvex $\forall x \in K$

•
$$S([0, +\infty[, f) = \{0\})$$

• $S(\mathbb{R}, f)$ not easy to determine "by hand"

•
$$K = \mathbb{R}, q = 99, \epsilon = 1/4, \eta = 1/2, \rho = 2/5, \varepsilon = 10^{-7}, x^0 = 17, x^{-1} = 10, \alpha = 1/29 - \varepsilon, \alpha_k = \alpha - 1/(29 + k), \beta_k = 1/(k+4), \rho_k = (1/k)(1-\rho) + (1-1/k)(1+\rho), k \ge 0$$

- ▶ to reach $\bar{x} = -10.1084$ with error ε : 139 iterations / 2.5369 seconds
- PPA: 373 iterations / 5.5698 seconds
- $\varepsilon = 10^{-9}$: 179 iterations / 4.1559 seconds
- PPA: 549 iterations / 14.1292 seconds
- $K = [0, +\infty[, \varepsilon = 10^{-7}: 40 \text{ iterations } / 0.8841 \text{ seconds}]$
- ▶ PPA: 41 iterations / 0.9481 seconds

•
$$K = \mathbb{R}, q = 50, \epsilon = 1/3, \eta = 2/3, \alpha = 1/200, \rho = 1/10, \epsilon = 10^{-7}, \alpha_k = \alpha - 1/(200 + k), \beta_k = 1/(k+3), \rho_k = (1/k)(1-\rho) + (1-1/k)(1+\rho), k \ge 0$$

- ▶ to reach $\bar{x} = -7.2591$ with error ε : 84 iterations / 1.7391 seconds
- PPA: 101 iterations / 2.7640 seconds
- ▶ $\rho_k = (1 1/k)(1 \rho) + (1/k)(1 + \rho)$, $k \ge 0$: 136 iterations / 2.2756 seconds
- $\varepsilon = 10^{-9}$: 91 iterations / 1.8548 seconds
- PPA: 126 iterations / 2.7514 seconds
- $K = [0, +\infty[, \varepsilon = 10^{-7}: 24 \text{ iterations } / 0.4643 \text{ seconds}]$
- ▶ PPA: 20 iterations / 0.5523 seconds
- ▶ $\rho_k = (1 1/k)(1 \rho) + (1/k)(1 + \rho)$, $k \ge 0$: 28 iterations / 0.4798 seconds

- S.-M. Grad, F. Lara, R. T. Marcavillaca: Relaxed-inertial proximal point type algorithms for nonconvex pseudomonotone equilibrium problems, in revision
- S.-M. Grad, F. Lara, R. T. Marcavillaca: *Relaxed-inertial* proximal point type algorithms for quasiconvex minimization, JoGO, DOI: 10.1007/s10898-022-01226-z
- A.N. Iusem, F. Lara: Proximal point algorithms for quasiconvex pseudomonotone equilibrium problems, JOTA 193:443–461, 2022
- ► F. Lara: On strongly quasiconvex functions: existence results and proximal point algorithms, JOTA 192:891–911, 2022