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Introduction

Problem Statement
Goal: To Recover x̄ ∈ Rn from the measurements

yr = | 〈ar, x̄〉 |2 = |a∗rx̄|2, r ∈ [m], (PR)

where (ar)r∈[m] are the sensing vectors.

We cast it as solving the following least squares problem:

min
x∈Rn

f(x) = 1
4m

m∑
r=1

(
yr − |a∗rx̄|2

)2
. (P)

Keys Observations
One can only hope to recover x̄ up to global sign change.
f is C2, but ∇f is not Lipschitz.
f is non-convex.
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Application to Light scattering
Light Scattering with CONCEPT team (Fresnel Institute)

Perfomance in industry depend on the structure of the materials; small
defects can yields to big problems.
Light Scattering is a technique to determine non destructively the
roughness of a given polished surface.
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Prior work

How do we design a scalable and efficient numerical scheme to solve the
problem of phase retrieval?
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Wirtinger Flow (Gradient descent) (Candès et al.
2015)
Find an initial guess near the solution and apply Gradient descent.

Algorithm

Algorithm 1 Wirtinger Flow Procedure

Input:yr, r = 1, . . . ,m, λ2 = n

∑
r
yr∑

r
‖ar‖2 , γ > 0

x0 as top eigenvector of Y = 1
m

∑m
r=1 yrara

∗
r normalized to ‖x0‖ = λ.

Compute xk+1 = xk − γ∇f(xk)

Let us define:

∀x ∈ Rn, dist(x, x̄) = min {‖x− x̄‖ , ‖x+ x̄‖} (1)
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Wirtinger flow (Gradient descent)

Theorem (Candès et al. 2015)
When the number of measurements m ≥ cn log(n) for the Gaussian case
(resp. m ≥ cn log(n)3 for the CDP model). Then w.h.p the spectral
estimate x0 satisfies the following

dist(x0, x̄) ≤ 1
8 ‖x̄‖ , (2)

Besides, if the stepsize γ = c1
n for some fixed numerical constant c1, then

w.h.p the iterates of the gradient descent satisfies

dist(xk, x̄) ≤ ‖x̄‖8

(
1− c1

4n

)k/2
. (3)

The iterates of Gradient descent are really slow as n grows!!
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Main Challenges
1. f is C2 but∇f is not Lipschitz continuous

⇒ precludes simple gradient
descent.

2. f nonconvex ⇒ how to avoid special techniques to find a good initial
guess?

Key Idea: Change of geometry
Associate to f the ”nice” entropy ψ(x) = 1

4 ‖x‖
4 + 1

2 ‖x‖
2.

ψ is smooth and strongly convex on Rn.
f has the relative gradient Lipchitz continuity property with respect to
ψ. (To be explained shortly.)

GODEME Provable Phase retrieval via Mirror descent 6 / 25
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Bregman Toolbox

To any function g : Rn → (−∞,+∞] such that g ∈ C1(Rn), we define:

Definition
The Bregman proximity distance generated by a function g is given by:

Dg(x, y) = g(x)− g(y)− 〈∇g(y);x− y〉 (4)

Properties of the Bregman distance
This proximity measure is not symmetric in general.
g is convex if and only if Dg(x, y) ≥ 0,∀x, y ∈ Rn.

GODEME Provable Phase retrieval via Mirror descent 7 / 25
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Generalization of gradient Lipschitz continuity
Definition ( Relative smoothness)
A pair of function (φ, g) satisfy the L−smooth adaptable (L-smad) condition ( or
relative smoothness) if there exists L > 0 such that Lφ− g and Lφ+ g are convex
i.e.,

|Dg(x, y)| ≤ LDφ(x, y) ∀x, y ∈ Rn. (5)

When φ(x) = 1
2 ‖x‖

2, we recover the classical definition. Since (5) is true ∀x, y
we deduce,

〈x− y;∇g(x)−∇g(y)〉 ≤ L ‖x− y‖2 ,

this fact implies that,

‖∇g(x)−∇g(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn, (6)

GODEME Provable Phase retrieval via Mirror descent 8 / 25



Introduction Classic procedure Bregman Toolbox Phase retrieval via Mirror descent Numerical experiments References

Generalization of gradient Lipschitz continuity
Definition ( Relative smoothness)
A pair of function (φ, g) satisfy the L−smooth adaptable (L-smad) condition ( or
relative smoothness) if there exists L > 0 such that Lφ− g and Lφ+ g are convex
i.e.,

|Dg(x, y)| ≤ LDφ(x, y) ∀x, y ∈ Rn. (5)

When φ(x) = 1
2 ‖x‖

2, we recover the classical definition. Since (5) is true ∀x, y
we deduce,

〈x− y;∇g(x)−∇g(y)〉 ≤ L ‖x− y‖2 ,

this fact implies that,

‖∇g(x)−∇g(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn, (6)

GODEME Provable Phase retrieval via Mirror descent 8 / 25



Introduction Classic procedure Bregman Toolbox Phase retrieval via Mirror descent Numerical experiments References

Generalization of strong convexity

Definition (Relative Strong Convexity)
A function g is said to be relatively strongly convex with respect to another
function φ if there exists σ > 0 such that g − σφ is convex i.e.,

σDφ(x, y) ≤ Dg(x, y) ∀x, y ∈ Rn. (7)

When φ(x) = 1
2 ‖x‖

2, we recover the classical definition A function g is
σ−strongly convex if the function g − σ

2 ‖.‖
2 is convex.
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Phase retrieval via Mirror descent

To,

min
x∈Rn

f(x) = 1
4m

m∑
r=1

(
yr − |a∗

rx|2
)2
. (P)

We associate
ψ(x) = 1

4 ‖x‖
4 + 1

2 ‖x‖
2 , (8)

Lemma (Bolte et al. 2018)
The function f is relatively smooth with respect to the entropy ψ with
L = 3

m

m∑
r=1
‖ar‖4.

GODEME Provable Phase retrieval via Mirror descent 10 / 25
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Phase retrieval via Mirror descent

Algorithm

Algorithm 3 Mirror Descent with backtracking for Phase retrieval

Parameters: L0 > 0, κ > 0 (small), ξ ≥ 1,
Initialization: x0 ∈ Rn,
for: k = 0, 1, . . . do

Repeat until: Df (xk+1, xk) > LkDψ(xk+1, xk)

Lk ← Lk/ξ, γk = 1− κ
Lk

, xk+1 = ∇ψ∗ (∇ψ(xk)− γk∇f(xk))

end
Lk = Lk.ξ, γk = 1− κ

Lk
, xk+1 = ∇ψ∗ (∇ψ(xk)− γk∇f(xk))

end.

Where we have: ∇ψ∗ = ∇ψ−1.

GODEME Provable Phase retrieval via Mirror descent 11 / 25
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Deterministic Main Result
Theorem
Let x? ∈ Argmin(f) 6= ∅, r > 0 and (xk)k be a bounded sequence generated by
the Algorithm 3, then

1. (f(xk))k is nonincreasing, (xk)k has a finite length and converges to a point
in crit(f).

2. Assume that x0 is the f−attentive neighborhood of x? i.e.,∃δ ∈]0, r[ and
µ > 0 such that x0 ∈ B(x?, δ) and f(x0) ∈]0, µ[ then,

For all k ∈ N, xk ∈ B(x?, r) and dist(xk, x?)→ 0.
Besides, if ∃ρ > 0 such that f is locally σ− strong convex relatively to
ψ in B(x?, ρ) with r ≤ ρ

max(
√

Θ(ρ),1)
then ∀k = 1, 2, · · ·

‖xk − x?‖2 ≤
k−1∏
i=1

(1− σγi) ρ2 → 0. (9)

3. If Lk ≡ L then for Lebesgue almost all initializers x0, xk → x̃ ∈ crit(f)
where f(x̃) has no direction of strictly negative curvature.

If crit(f)\strisad(f) = Argmin f then xk → x̃ ∈ Argmin f.

GODEME Provable Phase retrieval via Mirror descent 12 / 25
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Random Phase retrieval

Framework: Types of sensing vectors
The sensing vectors are drawn i.i.d following a (real) standard Gaussian dis-
tribution. We can rewrite the observation data as

y[r] = |ar>x̄|2, r ∈ [m], (10)

where (ar)r∈[m] are i.i.d N (0, 1).
The Coded Diffraction Patterns (CDP) model. The observation model is

y =
(
|F(Dpx̄)[j]|2

)
j,p

=

∣∣∣∣∣
n−1∑
`=0

x̄`dp[`]e−i
2πj`
n

∣∣∣∣∣
2

j,p

. (11)

where j ∈ {1, . . . , n}, p ∈ {0, . . . , P − 1} and (dp)p are the mask random
variables drawn i.i.d from an appropriate distribution.

GODEME Provable Phase retrieval via Mirror descent 13 / 25
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Random Phase retrieval

Assumption
(Boundness) |d| ≤M for some positive constant M i.e. Subgaussian,
(Moment control) E(d) = 0,E(d4) = 2E2(|d|2).

Example: d = {−1, 0, 1} with probability {1
4 ,

1
2 ,

1
4}.

GODEME Provable Phase retrieval via Mirror descent 14 / 25
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Gaussian Phase Retrieval
Theorem (Godeme et al. 2022)
Fix λ ∈]0, 1[ and % ∈]0,Υ(λ, ‖x̄‖)[. Let (xk)k∈N be the sequence generated by
Algorithm 3.

1. If the number of measurements m satisfies m ≥ C(%)n log(n)3, then w.h.p,
for almost all initializers x0 of Algorithm 3 used with constant step-size
γk ≡ γ = 1−κ

3+%max(‖x̄‖2/3,1) , for any κ ∈]0, 1[, we have dist(xk, x̄) → 0, and
∃K ≥ 0, large enough such that ∀k ≥ K,

dist2(xk, x̄) ≤ (1− ν(κ, %, ‖x̄‖))k−K ρ2. (12)
2. If m ≥ C(%)n log(n) and Algorithm 3 is initialized with the spectral method,

then w.h.p, (13) holds for all k ≥ K = 0.

Υ(λ, ‖x̄‖) = λmin(‖x̄‖2,1)
(2 max(‖x̄‖2/3,1)) and

ν(κ, %, ‖x̄‖) = (1−κ)(λmin(‖x̄‖2,1)−%max(‖x̄‖2/3,1))
3+%max(‖x̄‖2/3,1) .

GODEME Provable Phase retrieval via Mirror descent 15 / 25
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Gaussian Phase retrieval

Remark
Clearly when m ≥ C(%)n log(n)3 for almost all initializers, MD recover
±x̄ and any initialization becomes superfluous.
When ‖x̄‖ = 1, the convergence rate takes the simple form(

1− (1− κ)(λ− %)
3 + %

)
≈ 2

3 .

Besides, our convergence rate is dimension-independent which is in
clear contrast with the Wirtinger flow.

GODEME Provable Phase retrieval via Mirror descent 16 / 25
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Coded Diffraction Patterns

Theorem (Godeme et al. 2022)
Let % ∈]0, 1[, δ ∈]0,min(‖x̄‖2 , 1)/2[ and (xk)k∈N be the sequence generated by
Algorithm 3.

1. If the number of patterns P satisfies P ≥ C(%)n log(n), then w.h.p, for
almost all initializers x0 of Algorithm 3 used with constant step-size γk ≡
γ = 1−κ

L , for any κ ∈]0, 1[, the sequence (xk)k∈N converges to an element in
crit(f)\strisad(f).

2. There exists ρδ > 0 such that if % is small enough and P ≥ C(%)n log3(n)
and if Algorithm 3 is initialized with the spectral method, then w.h.p, we
have,

dist2(xk, x̄) ≤
k−1∏
i=0

(1− νi(κ, %, ‖x̄‖)) ρ2
δ . (13)

νi(κ, %, ‖x̄‖) = (1−κ)(min(‖x̄‖2,1)−2δ)
2(1+δ)3 .
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Coded Diffraction Patterns

Remark
Local linear convergence to the true vector x̄ up to a sign change with
spectral initialization,

When ‖x̄‖ = 1, the dimension independent convergence rate is(
1− (1− κ)(1− 2δ)

2(1 + δ)2

)
≈ 1

2 . (14)

Difficult to show global convergence to the true vectors ±x̄; due to the
less randomness of the model.
Numerical experiments (forthcoming session) show that we recover the
true vectors even with random initialization.
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Simulations: Gaussian model
We reconstruct a signal x̄ ∈ Rn from the Gaussian model with n = 128.
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Figure: Reconstruction with random initialization from m = 2 × 128 × log(128)3.
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Figure: Reconstruction with spectral initialization from m = 2 × 128 × log(128) .
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Simulations: Gaussian model
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Figure: Phase transition for the Gaussian model.
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Simulations: CDP model
We recover a random signal x̄ ∈ Rn from the Coded Diffraction Pattern Model
with n = 128.
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Figure: Reconstruction with random initialization from P = 7 × log(128)3 patterns.
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Simulations: CDP model
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Figure: Phase transition of the CDP model.
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Conclusion

Take away messages

Solve the Phase retrieval using the Mirror descent algorithm with backtrack-
ing.

For almost all initializers, under a sufficient number of measurements Mirror
descent converges to the true vector up to a signchange.

Show local linear non-dependent dimension convergence rate.

Mirror descent with our well-chosen entropy ψ is the key to achieve this
dimension-independent rate.
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Conclusion

Perspectives
Extend our global convergence result to the case of Coded Diffraction Pattern.

Extend our results to the noisy measurements.
Extend to the case of prior knowledge/regularization on the true signal .
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