Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

Newton methods for nonsmooth composite optimization

Gilles Bareilles

LJK, Univ. Grenoble Alpes

Journées MOA 2022 October 11-14, 2022

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
●00	000000	0000	000	00

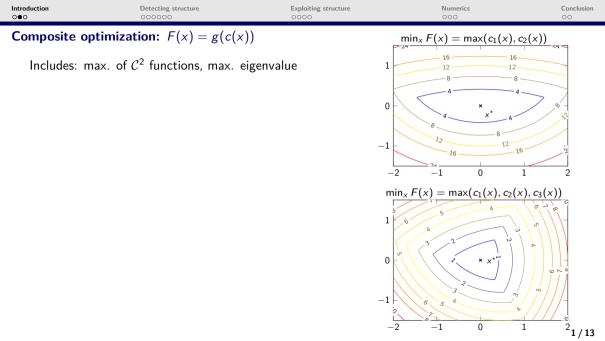
Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

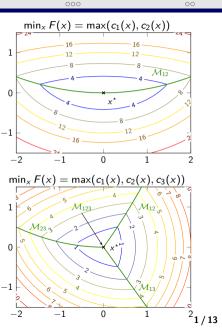


Composite optimization: F(x) = g(c(x))

Includes: max. of C^2 functions, max. eigenvalue

Observations

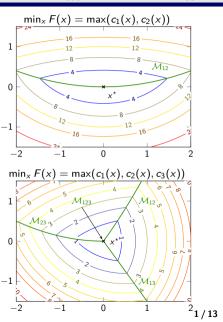
- nondifferentiability points organize in smooth manifolds
- ▶ *F* is smooth on them

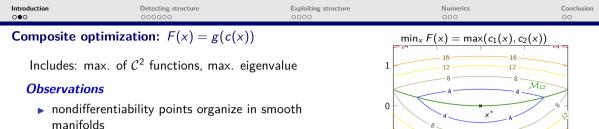


Includes: max. of C^2 functions, max. eigenvalue

Observations

- nondifferentiability points organize in smooth manifolds
- ▶ *F* is smooth on them





 $^{-1}$

0

► F is smooth on them

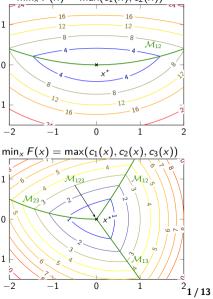
These are structure manifolds.

 Lewis '02

Many algorithms for nonsmooth (composite) optimization:

- prox-linear methods \diamond Lewis Wright, '16.
- **bundle methods** \diamond Mifflin Sagastizábal. '05.
- gradient sampling \diamond Burke Lewis Overton, '05,
- nonsmooth BFGS & Lewis Overton, '13

Most algorithms are oblivious to structure, we try to leverage it.



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

Composite problem

Find $x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^n} F(x) = g \circ c(x)$, with g nonsmooth and c a smooth mapping

Finding a minimizer of F nonsmooth can be seen as:

find the right structure

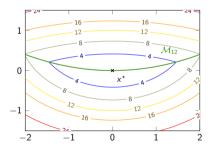
e.g. which c_i are maximum

leverage the right structure to minimize F e.g. solve smooth problem with smooth constraints

 \rightarrow We replace (nonsmooth) minimization by smooth constrained minimization.

Challenges:

- **1.** How to detect the optimal structure $\mathcal{M}^* \ni x^*$?
- **2.** How to exploit structure to better minimize F?



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	●00000	0000	000	00

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

$$\mathsf{prox}_{\gamma g}(y) riangleq rgmin_u \left\{ g(u) + rac{1}{2\gamma} \|u-y\|^2
ight\}$$

 y_1 y_2 y_3 y_4

For simple functions, the proximity operator can be computed exactly

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

$$\mathsf{prox}_{\gamma g}(y) riangleq rgmin_u \left\{ g(u) + rac{1}{2\gamma} \|u-y\|^2
ight\}$$

For simple functions, the proximity operator can be computed exactly

 τ

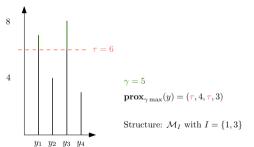
Example (Prox of max)

$$[\mathbf{prox}_{\gamma \max}(y)]_i = egin{cases} au & ext{if } y_i \geq \ y_i & ext{else} \end{cases}$$

where au solves $\sum_{\{i:y_i> au\}}(y_i- au)=\gamma$

Structure manifold:

$$\mathcal{M}_I = \{ y : y_i = \max(y) \text{ for } i \in I \}$$



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

$$\mathsf{prox}_{\gamma g}(y) riangleq rgmin_u \left\{ g(u) + rac{1}{2\gamma} \|u-y\|^2
ight\}$$

For simple functions, the proximity operator can be computed exactly

 τ

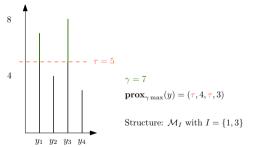
Example (Prox of max)

$$[\mathbf{prox}_{\gamma \max}(y)]_i = egin{cases} au & ext{if } y_i \geq \ y_i & ext{else} \end{cases}$$

where au solves $\sum_{\{i:y_i > \tau\}} (y_i - \tau) = \gamma$

Structure manifold:

$$\mathcal{M}_I = \{ y : y_i = \max(y) \text{ for } i \in I \}$$



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

$$\mathsf{prox}_{\gamma g}(y) riangleq rgmin_u \left\{ g(u) + rac{1}{2\gamma} \|u-y\|^2
ight\}$$

For simple functions, the proximity operator can be computed exactly

γ 4 $\gamma = 7$ $\mathbf{prox}_{\gamma \max}(y) = (\tau, 4, \tau, 3)$ Structure: \mathcal{M}_I with γ Example (Prox of max) $[\mathbf{prox}_{\gamma \max}(y)]_i = \begin{cases} \tau & \text{if } y_i \ge \tau \\ y_i & \text{else} \end{cases}$ where au solves $\sum_{\{i:y_i> au\}} (y_i - au) = \gamma$ Structure manifold: $\mathcal{M}_{I} = \{ \mathbf{y} : \mathbf{y}_{i} = \max(\mathbf{y}) \text{ for } i \in I \}$

 \rightarrow Computing **prox**_{γg}(y) also gives *structure information* $\mathcal{M} \ni \mathbf{prox}_{\gamma g}(y)$.

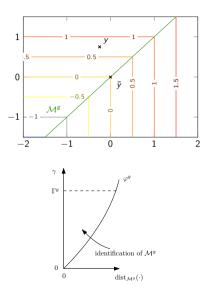
Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y} ,

$$\mathsf{prox}_{\gamma g}(y) \in \mathcal{M}^g$$
 for all $\gamma \in [\varphi^g(\mathsf{dist}_{\mathcal{M}^g}(y)), \Gamma^g]$

where $\Gamma^g > 0$ and $\varphi^g(t) = \frac{1}{c_{ri}}t + \mathcal{O}(t^2)$.



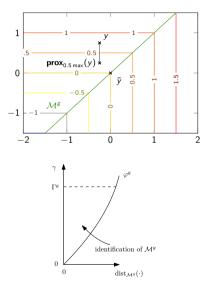
Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y} ,

$$\mathsf{prox}_{\gamma g}(y) \in \mathcal{M}^g$$
 for all $\gamma \in [\varphi^g(\mathsf{dist}_{\mathcal{M}^g}(y)), \Gamma^g]$

where $\Gamma^g > 0$ and $\varphi^g(t) = \frac{1}{c_{ri}}t + \mathcal{O}(t^2)$.



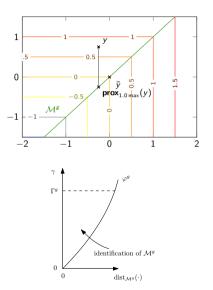
Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y} ,

$$\mathsf{prox}_{\gamma g}(y) \in \mathcal{M}^g$$
 for all $\gamma \in [\varphi^g(\mathsf{dist}_{\mathcal{M}^g}(y)), \Gamma^g]$

where $\Gamma^g > 0$ and $\varphi^g(t) = \frac{1}{c_{ri}}t + \mathcal{O}(t^2)$.



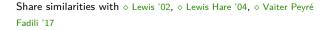
Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

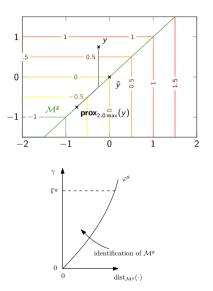
Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y} ,

$$\mathsf{prox}_{\gamma g}(y) \in \mathcal{M}^g$$
 for all $\gamma \in [\varphi^g(\mathsf{dist}_{\mathcal{M}^g}(y)), \Gamma^g]$

where $\Gamma^g > 0$ and $\varphi^g(t) = \frac{1}{c_{ri}}t + \mathcal{O}(t^2)$.

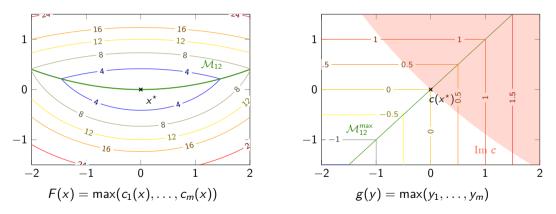




Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

No prox. of F

The prox of $F = g \circ c$ is **not available** (composition is complicated), but we do have $\operatorname{prox}_{\gamma g}$.



Observation: $\operatorname{prox}_{\gamma g}$ can map points to \mathcal{M}^g . The structure naturally lies in the intermediate space.

Introduction Detec	cting structure	Exploiting structure	Numerics	Conclusion
000 000	000	0000	000	00

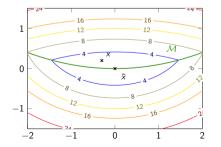
Back to the optimization space

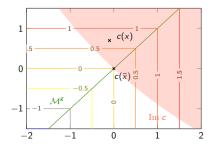
Theorem (B., lutzeler, Malick, '22)

Consider g, c and a point \bar{x} such that $c(\bar{x})$ has structure manifold \mathcal{M}^g and c and \mathcal{M}^g are transversal at $c(\bar{x})$. For all x near \bar{x} ,

$$\operatorname{prox}_{\gamma g}(c(x)) \in \mathcal{M}^g$$
 for all $\gamma \in [\varphi(\operatorname{dist}_{\mathcal{M}}(x)), \Gamma]$

where $\Gamma > 0$ and $\varphi(t) = \frac{c_{map}}{c_{ri}}t + \mathcal{O}(t^2)$. Furthermore, $\mathcal{M} = c^{-1}(\mathcal{M}^g)$.





Introduction Detec	cting structure	Exploiting structure	Numerics	Conclusion
000 000	000	0000	000	00

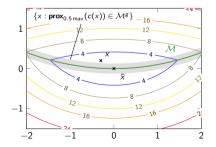
Back to the optimization space

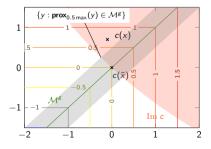
Theorem (B., lutzeler, Malick, '22)

Consider g, c and a point \bar{x} such that $c(\bar{x})$ has structure manifold \mathcal{M}^g and c and \mathcal{M}^g are transversal at $c(\bar{x})$. For all x near \bar{x} ,

$$\operatorname{prox}_{\gamma g}(c(x)) \in \mathcal{M}^g$$
 for all $\gamma \in [\varphi(\operatorname{dist}_{\mathcal{M}}(x)), \Gamma]$

where $\Gamma > 0$ and $\varphi(t) = \frac{c_{map}}{c_{ri}}t + \mathcal{O}(t^2)$. Furthermore, $\mathcal{M} = c^{-1}(\mathcal{M}^g)$.





Introduction Detec	cting structure	Exploiting structure	Numerics	Conclusion
000 000	000	0000	000	00

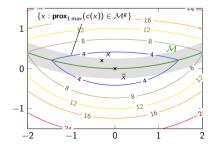
Back to the optimization space

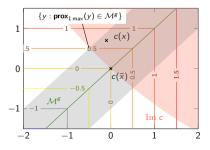
Theorem (B., lutzeler, Malick, '22)

Consider g, c and a point \bar{x} such that $c(\bar{x})$ has structure manifold \mathcal{M}^g and c and \mathcal{M}^g are transversal at $c(\bar{x})$. For all x near \bar{x} ,

$$\operatorname{prox}_{\gamma g}(c(x)) \in \mathcal{M}^g$$
 for all $\gamma \in [\varphi(\operatorname{dist}_{\mathcal{M}}(x)), \Gamma]$

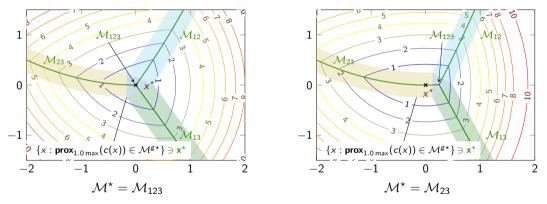
where $\Gamma > 0$ and $\varphi(t) = \frac{c_{map}}{c_{ri}}t + \mathcal{O}(t^2)$. Furthermore, $\mathcal{M} = c^{-1}(\mathcal{M}^g)$.





Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

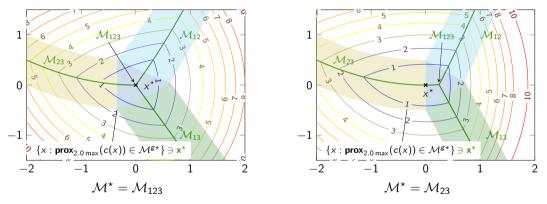
Generally, there are more than one manifolds near x^* .



Importance of γ : too small, detection of \mathcal{M}^* only near x^* ; too large, no detection near x^* .

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

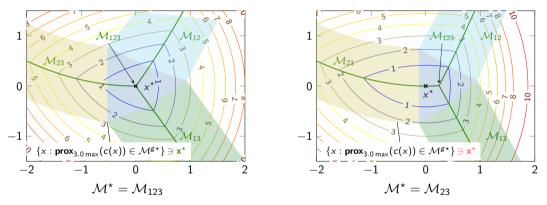
Generally, there are more than one manifolds near x^* .



Importance of γ : too small, detection of \mathcal{M}^* only near x^* ; too large, no detection near x^* .

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

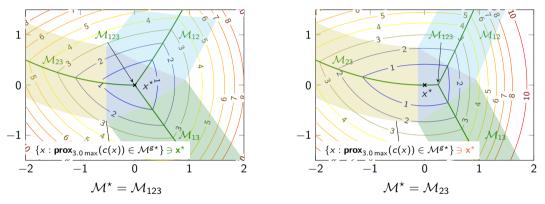
Generally, there are more than one manifolds near x^* .



Importance of γ : too small, detection of \mathcal{M}^* only near x^* ; too large, no detection near x^* .

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	00000	0000	000	00

Generally, there are more than one manifolds near x^* .



Importance of γ : too small, detection of \mathcal{M}^* only near x^* ; too large, no detection near x^* .

Take-away: We detect $\mathcal{M}^* \ni x^*$ with $\operatorname{prox}_{\gamma g} \circ c(\cdot)$ with the right range of steps.

 \rightarrow How to choose the step in practice?

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	●000	000	00

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

Nonsmooth to smooth

► Structure manifolds provide second order models of the nonsmooth *F*:

$$\begin{array}{ll} \mathcal{M} \text{ is smooth } & \exists h \text{ smooth s.t. } x \in \mathcal{M} \Leftrightarrow h(x) = 0 \\ F \text{ smooth on } \mathcal{M} & \exists \widetilde{F} \text{ smooth s.t. } F|_{\mathcal{M}} \equiv \widetilde{F} \text{ on } \mathcal{M} \end{array}$$

$$\min_x F(x)$$
 and \mathcal{M} **turns into** $\min_x \widetilde{F}(x)$ s.t. $h(x) = 0$.

Example ($F = \max(c_1, c_2)$ **)**

For structure \mathcal{M}_{12} ,

h = c₁ − c₂
 F̃(x) = (c₁ + c₂)/2

► Many tools for smooth constrained optimization: Interior Point Methods, *Sequential Quadratic Programming*, Augmented Lagrangian Methods, ...

ntroduction	Detecting structure	Exploiting structure	Numerics 000	Conclusion

Newton step and algorithm

Iteration k:

- Compute $\mathbf{prox}_{\gamma_k g}(c(x_k))$ and obtain \mathcal{M}_k .
- ▶ With structure candidate M_k : SQP step on min_x $\tilde{F}_k(x)$ s.t. $h_k(x) = 0$.

$$egin{aligned} d_k^{ ext{SQP}} &= rgmin_{d\in\mathbb{R}^n} & \langle
abla \widetilde{F}_k(x_k), d
angle + rac{1}{2} \langle
abla_{xx}^2 L_k(x_k, \lambda_k(x_k)) d, d
angle \ ext{ s.t. } & h_k(x_k) + ext{D} \ h_k(x_k) d = 0 \end{aligned}$$

where $L_k(x,\lambda) = \widetilde{F}_k(x) + \langle \lambda, h_k(x) \rangle$, and $\lambda_k(x_k) = \arg \min_{\lambda \in \mathbb{R}^r} \left\| \nabla \widetilde{F}_k(x_k) + \sum_{i=1}^m \lambda_i \nabla h_{k,i}(x_k) \right\|^2$

Set
$$x_{k+1} = x_k + d_k^{SQP}$$
 if $F(x_k + d_k^{SQP}) < F(x_k)$.
 $\blacktriangleright \gamma_{k+1} = \frac{\gamma_k}{2}$

Similar works with *heuristic* structure detection: \diamond Womersley Fletcher '86 for max, \diamond NoII Apkarian, '05 for λ_{max} .

Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

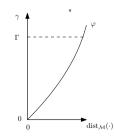
Theorem (B., lutzeler, Malick, '22)

Consider a function $F = g \circ c$ and x^* a strong minimizer with structure manifold \mathcal{M}^* that meets the technical assumptions.

If x_0 and $F(x_0)$ are close enough to x^* and $F(x^*)$, γ_0 is large enough and no Maratos effect happens, then there exists C > 0 such that:

$$\mathcal{M}_k = \mathcal{M}^\star$$
 and $\|x_{k+1} - x^\star\| \leq C \|x_k - x^\star\|^2$ for all k large enough.

- ▶ if $\mathcal{M}_k = \mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- ▶ since γ_k decreases, at some point $\gamma_k \in [\varphi(dist_{\mathcal{M}}(x_k)), \Gamma]$
- \blacktriangleright to stay in that region, decrease γ not too fast



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

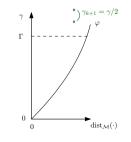
Theorem (B., lutzeler, Malick, '22)

Consider a function $F = g \circ c$ and x^* a strong minimizer with structure manifold \mathcal{M}^* that meets the technical assumptions.

If x_0 and $F(x_0)$ are close enough to x^* and $F(x^*)$, γ_0 is large enough and no Maratos effect happens, then there exists C > 0 such that:

$$\mathcal{M}_k = \mathcal{M}^\star$$
 and $\|x_{k+1} - x^\star\| \leq C \|x_k - x^\star\|^2$ for all k large enough.

- ▶ if $\mathcal{M}_k = \mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- ▶ since γ_k decreases, at some point $\gamma_k \in [\varphi(\operatorname{dist}_{\mathcal{M}}(x_k)), \Gamma]$
- \blacktriangleright to stay in that region, decrease γ not too fast



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

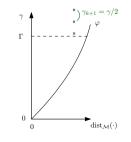
Theorem (B., lutzeler, Malick, '22)

Consider a function $F = g \circ c$ and x^* a strong minimizer with structure manifold \mathcal{M}^* that meets the technical assumptions.

If x_0 and $F(x_0)$ are close enough to x^* and $F(x^*)$, γ_0 is large enough and no Maratos effect happens, then there exists C > 0 such that:

$$\mathcal{M}_k = \mathcal{M}^\star$$
 and $\|x_{k+1} - x^\star\| \leq C \|x_k - x^\star\|^2$ for all k large enough.

- ▶ if $\mathcal{M}_k = \mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- ▶ since γ_k decreases, at some point $\gamma_k \in [\varphi(\operatorname{dist}_{\mathcal{M}}(x_k)), \Gamma]$
- \blacktriangleright to stay in that region, decrease γ not too fast



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	00

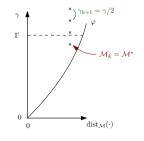
Theorem (B., lutzeler, Malick, '22)

Consider a function $F = g \circ c$ and x^* a strong minimizer with structure manifold \mathcal{M}^* that meets the technical assumptions.

If x_0 and $F(x_0)$ are close enough to x^* and $F(x^*)$, γ_0 is large enough and no Maratos effect happens, then there exists C > 0 such that:

$$\mathcal{M}_k = \mathcal{M}^\star$$
 and $\|x_{k+1} - x^\star\| \leq C \|x_k - x^\star\|^2$ for all k large enough.

- ▶ if $\mathcal{M}_k = \mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- ▶ since γ_k decreases, at some point $\gamma_k \in [\varphi(dist_{\mathcal{M}}(x_k)), \Gamma]$
- \blacktriangleright to stay in that region, decrease γ not too fast



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	000	000	00

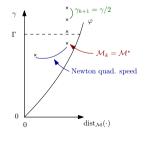
Theorem (B., lutzeler, Malick, '22)

Consider a function $F = g \circ c$ and x^* a strong minimizer with structure manifold \mathcal{M}^* that meets the technical assumptions.

If x_0 and $F(x_0)$ are close enough to x^* and $F(x^*)$, γ_0 is large enough and no Maratos effect happens, then there exists C > 0 such that:

$$\mathcal{M}_k = \mathcal{M}^\star$$
 and $\|x_{k+1} - x^\star\| \leq C \|x_k - x^\star\|^2$ for all k large enough.

- ▶ if $\mathcal{M}_k = \mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- ▶ since γ_k decreases, at some point $\gamma_k \in [\varphi(dist_{\mathcal{M}}(x_k)), \Gamma]$
- \blacktriangleright to stay in that region, decrease γ not too fast



Introduction De	etecting structure	Exploiting structure	Numerics	Conclusion
000 00	00000	0000	000	00

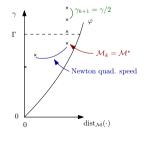
Theorem (B., lutzeler, Malick, '22)

Consider a function $F = g \circ c$ and x^* a strong minimizer with structure manifold \mathcal{M}^* that meets the technical assumptions.

If x_0 and $F(x_0)$ are close enough to x^* and $F(x^*)$, γ_0 is large enough and no Maratos effect happens, then there exists C > 0 such that:

$$\mathcal{M}_k = \mathcal{M}^\star$$
 and $\|x_{k+1} - x^\star\| \leq C \|x_k - x^\star\|^2$ for all k large enough.

- ▶ if $\mathcal{M}_k = \mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- ▶ since γ_k decreases, at some point $\gamma_k \in [\varphi(dist_{\mathcal{M}}(x_k)), \Gamma]$
- \blacktriangleright to stay in that region, decrease γ not too fast



Introduction De	etecting structure	Exploiting structure	Numerics	Conclusion
000 00	00000	0000	000	00

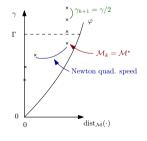
Theorem (B., lutzeler, Malick, '22)

Consider a function $F = g \circ c$ and x^* a strong minimizer with structure manifold \mathcal{M}^* that meets the technical assumptions.

If x_0 and $F(x_0)$ are close enough to x^* and $F(x^*)$, γ_0 is large enough and no Maratos effect happens, then there exists C > 0 such that:

$$\mathcal{M}_k = \mathcal{M}^\star$$
 and $\|x_{k+1} - x^\star\| \leq C \|x_k - x^\star\|^2$ for all k large enough.

- ▶ if $\mathcal{M}_k = \mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- ▶ since γ_k decreases, at some point $\gamma_k \in [\varphi(dist_{\mathcal{M}}(x_k)), \Gamma]$
- \blacktriangleright to stay in that region, decrease γ not too fast



Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	●OO	00

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

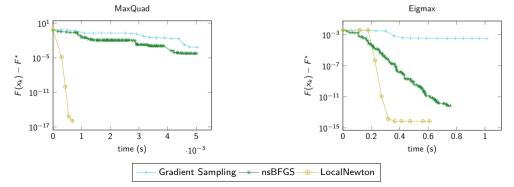
Introduction	Detecting structure	Exploiting structure	Numerics ○●○	Conclusion
Quadratic converge	nce			

$$\min_{x \in \mathbb{R}^{10}} \max_{i=1,\cdots,5} (c_i(x))$$
$$\mathcal{M}^* = \{x : c_2(x) = \cdots = c_5(x)\}$$

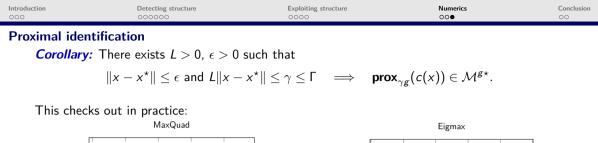
$$\min_{x\in\mathbb{R}^{25}}\lambda_{\max}\left(A_0+\sum_{i=1}^n x_iA_i\right)$$

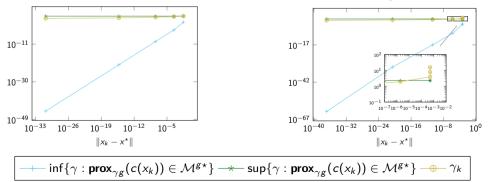
$$\mathcal{M}^{\star} = \{x : \lambda_{\max}(c(x)) \text{ has multiplicity 3}\}$$

Matrices are symmetric, 50×50



11 / 13





Introduction	Detecting structure	Exploiting structure	Numerics	Conclusion
000	000000	0000	000	•0

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Introduction	Detecting structure	Exploiting structure	Numerics 000	Conclusion ○●
Conclusion				
Take-away	messages			
	all shall a latit she stift is a start	(h		

- Proximal methods identify smooth structure in nonsmooth composite problems
- ▶ We show local *exact* identification and quadratic rate for g ∘ c, where g is prox-simple, no convexity required
 - B. & lutzeler & Malick: Harnessing structure in composite nonsmooth minimization https://arxiv.org/abs/2206.15053

Work in progress and perspectives

▶ Drop the locality: i) need more information to identify, ii) globalize constrained Newton

Thank you!

Gilles BAREILLES - gbareilles.fr

Technical assumptions

Normal ascent: g increases at \overline{y} on normal directions:

 $0 \in \mathrm{ri} \operatorname{proj}_{N_{\bar{y}}\mathcal{M}^{g}} \partial g(\bar{y})$

Manifold curves: A function g with structure \mathcal{M}^g at \bar{y} satisfies the curve property if there exists a neighborhood $\mathcal{N}_{\bar{y}}$ of \bar{y} and T > 0 such that, for any smooth application $e : \mathcal{N}_{\bar{y}} \times [0, T] \to \mathcal{M}^g$ verifying $e(y, 0) = \operatorname{proj}_{\mathcal{M}^g}(y)$ and $\frac{d}{dt}e(y, 0) = -\operatorname{grad} g(\operatorname{proj}_{\mathcal{M}^g}(y))$, there holds

$$\|\operatorname{\mathsf{proj}}_{\mathsf{N}_{e(y,t)}\mathcal{M}^g}(e(y,t)-y)\| \leq \operatorname{dist}_{\mathcal{M}^g}(y) + \tilde{\mathsf{L}} \ t^2 \quad \text{ for all } y \in \mathcal{N}_{\bar{y}}, t \in [0,T],$$

where grad $g(p) \in T_p \mathcal{M}^g$ denotes the Riemannian gradient of g, obtained as $\operatorname{proj}_{T_p \mathcal{M}^g}(\partial g(p))$.

No Maratos: near a minimizer x^* , a step d that makes x + d quadratically closer to x^* than x implies descent $F(x + d) \le F(x)$.

Transversality: the mapping $c : \mathbb{R}^n \to \mathbb{R}^m$ is transversal to manifold $\mathcal{M} \subset \mathbb{R}^m$ at c(x) if:

$$\ker \left(\mathsf{Jac}_c(x)^\top \right) \cap N_{c(x)} \mathcal{M}^g = \{0\}$$

 \Rightarrow if Jac_h(c(x)) is full rank, then Jac_{hoc}(x) is also full-rank.

In the generated instance, the multiplicity of the maximum eigenvalue at optimum is r = 3. The maximum structure of a point, useful in setting γ_0 , is \mathcal{M}_r , with r = 6, and not the matrix size m = 50. Indeed, the codimension of \mathcal{M}_r , that is the dimension of its normal spaces, should be lower than that of \mathbb{R}^n : $r(r+1)/2 - 1 \leq 25$, that is $r \leq 6$ (see the discussion in [?, pp. 555-556, Eq. 2.5]).

Quadratic convergence, BigFloat precision

$$\min_{x \in \mathbb{R}^{10}} \max_{i=1,\cdots,5} (c_i(x))$$
$$\mathcal{M}^* = \{x : c_2(x) = \cdots = c_5(x)\}$$

Historical maxquad problem

$$\min_{x \in \mathbb{R}^{25}} \lambda_{\max} \left(A_0 + \sum_{i=1}^n x_i A_i \right)$$

 $\mathcal{M}^{\star} = \{x : \lambda_{\max}(c(x)) \text{ has multiplicity 3}\}$

Matrices are symmetric, 50×50 .

