Newton methods for nonsmooth composite optimization

Gilles Bareilles
LJK, Univ. Grenoble Alpes
Journées MOA 2022
October 11-14, 2022

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Composite optimization: $F(x)=g(c(x))$
Includes: max. of \mathcal{C}^{2} functions, max. eigenvalue

Composite optimization: $F(x)=g(c(x))$

Includes: max. of \mathcal{C}^{2} functions, max. eigenvalue

Observations

- nondifferentiability points organize in smooth manifolds
- F is smooth on them

Composite optimization: $F(x)=g(c(x))$

Includes: max. of \mathcal{C}^{2} functions, max. eigenvalue

Observations

- nondifferentiability points organize in smooth manifolds
- F is smooth on them

These are structure manifolds. \diamond Lewis ' 02

Composite optimization: $F(x)=g(c(x))$

Includes: max. of \mathcal{C}^{2} functions, max. eigenvalue

Observations

- nondifferentiability points organize in smooth manifolds
- F is smooth on them

These are structure manifolds. \otimes Lewis ' 02
Many algorithms for nonsmooth (composite) optimization:

- prox-linear methods \diamond Lewis Wright, '16,
- bundle methods \diamond Mifflin Sagastizábal, '05,
- gradient sampling \diamond Burke Lewis Overton, '05,
- nonsmooth BFGS \diamond Lewis Overton, '13

Most algorithms are oblivious to structure, we try to leverage it.

Composite problem

Find $x^{\star} \in \underset{x \in \mathbb{R}^{n}}{\arg \min } F(x)=g \circ c(x)$, with g nonsmooth and c a smooth mapping
Finding a minimizer of F nonsmooth can be seen as:

- find the right structure
e.g. which c_{i} are maximum
- leverage the right structure to minimize F
e.g. solve smooth problem with smooth constraints
\rightarrow We replace (nonsmooth) minimization by smooth constrained minimization.

Challenges:

1. How to detect the optimal structure $\mathcal{M}^{\star} \ni x^{\star}$?
2. How to exploit structure to better minimize F ?

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Prox. for finding structure

$$
\operatorname{prox}_{\gamma g}(y) \triangleq \underset{u}{\arg \min }\left\{g(u)+\frac{1}{2 \gamma}\|u-y\|^{2}\right\}
$$

For simple functions, the proximity operator can be computed exactly

Example (Prox of max)

$$
\left[\operatorname{prox}_{\gamma \text { max }}(y)\right]_{i}= \begin{cases}\tau & \text { if } y_{i} \geq \tau \\ y_{i} & \text { else }\end{cases}
$$

where τ solves $\sum_{\left\{i: y_{i}>\tau\right\}}\left(y_{i}-\tau\right)=\gamma$
Structure manifold:

$$
\mathcal{M}_{I}=\left\{y: y_{i}=\max (y) \text { for } i \in I\right\}
$$

Prox. for finding structure

$$
\operatorname{prox}_{\gamma g}(y) \triangleq \underset{u}{\arg \min }\left\{g(u)+\frac{1}{2 \gamma}\|u-y\|^{2}\right\}
$$

For simple functions, the proximity operator can be computed exactly

Example (Prox of max)

$$
\left[\operatorname{prox}_{\gamma \text { max }}(y)\right]_{i}= \begin{cases}\tau & \text { if } y_{i} \geq \tau \\ y_{i} & \text { else }\end{cases}
$$

where τ solves $\sum_{\left\{i: y_{i}>\tau\right\}}\left(y_{i}-\tau\right)=\gamma$
Structure manifold:

$$
\mathcal{M}_{I}=\left\{y: y_{i}=\max (y) \text { for } i \in I\right\}
$$

Prox. for finding structure

$$
\operatorname{prox}_{\gamma g}(y) \triangleq \underset{u}{\arg \min }\left\{g(u)+\frac{1}{2 \gamma}\|u-y\|^{2}\right\}
$$

For simple functions, the proximity operator can be computed exactly

Example (Prox of max)

$$
\left[\operatorname{prox}_{\gamma \text { max }}(y)\right]_{i}= \begin{cases}\tau & \text { if } y_{i} \geq \tau \\ y_{i} & \text { else }\end{cases}
$$

where τ solves $\sum_{\left\{i: y_{i}>\tau\right\}}\left(y_{i}-\tau\right)=\gamma$
Structure manifold:

$$
\mathcal{M}_{I}=\left\{y: y_{i}=\max (y) \text { for } i \in I\right\}
$$

Prox. for finding structure

$$
\operatorname{prox}_{\gamma g}(y) \triangleq \underset{u}{\arg \min }\left\{g(u)+\frac{1}{2 \gamma}\|u-y\|^{2}\right\}
$$

For simple functions, the proximity operator can be computed exactly
Example (Prox of max)

$$
\left[\operatorname{prox}_{\gamma \text { max }}(y)\right]_{i}= \begin{cases}\tau & \text { if } y_{i} \geq \tau \\ y_{i} & \text { else }\end{cases}
$$

where τ solves $\sum_{\left\{i: y_{i}>\tau\right\}}\left(y_{i}-\tau\right)=\gamma$
Structure manifold:

$$
\mathcal{M}_{I}=\left\{y: y_{i}=\max (y) \text { for } i \in I\right\}
$$

\rightarrow Computing $\operatorname{prox}_{\gamma g}(y)$ also gives structure information $\mathcal{M} \ni \operatorname{prox}_{\gamma g}(y)$.

Identification with explicit prox

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y},

$$
\operatorname{prox}_{\gamma g}(y) \in \mathcal{M}^{g} \quad \text { for all } \gamma \in\left[\varphi^{g}\left(\operatorname{dist}_{\mathcal{M}^{g}}(y)\right), \Gamma^{g}\right]
$$

where $\Gamma^{g}>0$ and $\varphi^{g}(t)=\frac{1}{c_{r i}} t+\mathcal{O}\left(t^{2}\right)$.

Technical assumptions: normal ascent, control on projection curves on the manifold.

Identification with explicit prox

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y},

$$
\operatorname{prox}_{\gamma g}(y) \in \mathcal{M}^{g} \quad \text { for all } \gamma \in\left[\varphi^{g}\left(\operatorname{dist}_{\mathcal{M}^{g}}(y)\right), \Gamma^{g}\right]
$$

$$
\text { where } \Gamma^{g}>0 \text { and } \varphi^{g}(t)=\frac{1}{c_{r i}} t+\mathcal{O}\left(t^{2}\right)
$$

Technical assumptions: normal ascent, control on projection curves on the manifold.

Identification with explicit prox

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y},

$$
\operatorname{prox}_{\gamma g}(y) \in \mathcal{M}^{g} \quad \text { for all } \gamma \in\left[\varphi^{g}\left(\operatorname{dist}_{\mathcal{M}^{g}}(y)\right), \Gamma^{g}\right]
$$

$$
\text { where } \Gamma^{g}>0 \text { and } \varphi^{g}(t)=\frac{1}{c_{r i}} t+\mathcal{O}\left(t^{2}\right) \text {. }
$$

Technical assumptions: normal ascent, control on projection curves on the manifold.

Identification with explicit prox

Lemma (B., lutzeler, Malick, '22)

Consider a function g and point \bar{y} with structure \mathcal{M}^{g} that meet two technical assumptions. For all y near \bar{y},

$$
\operatorname{prox}_{\gamma g}(y) \in \mathcal{M}^{g} \quad \text { for all } \gamma \in\left[\varphi^{g}\left(\operatorname{dist}_{\mathcal{M}^{g}}(y)\right), \Gamma^{g}\right]
$$

where $\Gamma^{g}>0$ and $\varphi^{g}(t)=\frac{1}{c_{r i}} t+\mathcal{O}\left(t^{2}\right)$.

Technical assumptions: normal ascent, control on projection curves on the manifold.

No prox. of F

The prox of $F=g \circ c$ is not available (composition is complicated), but we do have prox ${ }_{\gamma g}$.

Observation: $\operatorname{prox}_{\gamma g}$ can map points to \mathcal{M}^{g}.
The structure naturally lies in the intermediate space.

Back to the optimization space

Theorem (B., lutzeler, Malick, '22)
Consider g, c and a point \bar{x} such that $c(\bar{x})$ has structure manifold \mathcal{M}^{g} and c and \mathcal{M}^{g} are transversal at $c(\bar{x})$. For all x near \bar{x},

$$
\operatorname{prox}_{\gamma g}(c(x)) \in \mathcal{M}^{g} \quad \text { for all } \gamma \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}(x)\right), \Gamma\right]
$$

where $\Gamma>0$ and $\varphi(t)=\frac{c_{\text {map }}}{c_{r_{i}}} t+\mathcal{O}\left(t^{2}\right)$. Furthermore, $\mathcal{M}=c^{-1}\left(\mathcal{M}^{g}\right)$.

Back to the optimization space

Theorem (B., lutzeler, Malick, '22)
Consider g, c and a point \bar{x} such that $c(\bar{x})$ has structure manifold \mathcal{M}^{g} and c and \mathcal{M}^{g} are transversal at $c(\bar{x})$. For all x near \bar{x},

$$
\operatorname{prox}_{\gamma g}(c(x)) \in \mathcal{M}^{g} \quad \text { for all } \gamma \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}(x)\right), \Gamma\right]
$$

where $\Gamma>0$ and $\varphi(t)=\frac{c_{\text {map }}}{c_{r_{i}}} t+\mathcal{O}\left(t^{2}\right)$. Furthermore, $\mathcal{M}=c^{-1}\left(\mathcal{M}^{g}\right)$.

Back to the optimization space

Theorem (B., lutzeler, Malick, '22)
Consider g, c and a point \bar{x} such that $c(\bar{x})$ has structure manifold \mathcal{M}^{g} and c and \mathcal{M}^{g} are transversal at $c(\bar{x})$. For all x near \bar{x},

$$
\operatorname{prox}_{\gamma g}(c(x)) \in \mathcal{M}^{g} \quad \text { for all } \gamma \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}(x)\right), \Gamma\right]
$$

where $\Gamma>0$ and $\varphi(t)=\frac{c_{\text {map }}}{c_{r_{i}}} t+\mathcal{O}\left(t^{2}\right)$. Furthermore, $\mathcal{M}=c^{-1}\left(\mathcal{M}^{g}\right)$.

Detection with multiple manifolds

Generally, there are more than one manifolds near x^{\star}.

Importance of γ : too small, detection of \mathcal{M}^{\star} only near x^{\star}; too large, no detection near x^{\star}.

Detection with multiple manifolds

Generally, there are more than one manifolds near x^{\star}.

Importance of γ : too small, detection of \mathcal{M}^{\star} only near x^{\star}; too large, no detection near x^{\star}.

Detection with multiple manifolds

Generally, there are more than one manifolds near x^{\star}.

Importance of γ : too small, detection of \mathcal{M}^{\star} only near x^{\star}; too large, no detection near x^{\star}.

Detection with multiple manifolds

Generally, there are more than one manifolds near x^{\star}.

Importance of γ : too small, detection of \mathcal{M}^{\star} only near x^{\star}; too large, no detection near x^{\star}.
Take-away: We detect $\mathcal{M}^{\star} \ni x^{\star}$ with prox $\gamma_{g} \circ C(\cdot)$ with the right range of steps.
\rightarrow How to choose the step in practice?

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Nonsmooth to smooth

- Structure manifolds provide second order models of the nonsmooth F :

$$
\begin{array}{cll}
\mathcal{M} \text { is smooth } & \exists h \text { smooth s.t. } & x \in \mathcal{M} \Leftrightarrow h(x)=0 \\
F \text { smooth on } \mathcal{M} & \exists \widetilde{F} \text { smooth s.t. } & \left.F\right|_{\mathcal{M}} \equiv \widetilde{F} \text { on } \mathcal{M}
\end{array}
$$

$$
\min _{x} F(x) \text { and } \mathcal{M} \text { turns into } \min _{x} \widetilde{F}(x) \text { s.t. } h(x)=0 \text {. }
$$

Example $\left(F=\max \left(c_{1}, c_{2}\right)\right.$)
For structure \mathcal{M}_{12},

- $h=c_{1}-c_{2}$
- $\tilde{F}(x)=\left(c_{1}+c_{2}\right) / 2$
- Many tools for smooth constrained optimization: Interior Point Methods, Sequential Quadratic Programming, Augmented Lagrangian Methods, ...

Newton step and algorithm

Iteration k :

- Compute $\operatorname{prox}_{\gamma_{k} g}\left(c\left(x_{k}\right)\right)$ and obtain \mathcal{M}_{k}.
- With structure candidate \mathcal{M}_{k} : SQP step on $\min _{x} \widetilde{F}_{k}(x)$ s.t. $h_{k}(x)=0$.

$$
\begin{aligned}
d_{k}^{\mathrm{SQP}}=\underset{d \in \mathbb{R}^{n}}{\arg \min } & \left\langle\nabla \widetilde{F}_{k}\left(x_{k}\right), d\right\rangle+\frac{1}{2}\left\langle\nabla_{x x}^{2} L_{k}\left(x_{k}, \lambda_{k}\left(x_{k}\right)\right) d, d\right\rangle \\
\text { s.t. } & h_{k}\left(x_{k}\right)+\mathrm{D} h_{k}\left(x_{k}\right) d=0
\end{aligned}
$$

where $L_{k}(x, \lambda)=\widetilde{F}_{k}(x)+\left\langle\lambda, h_{k}(x)\right\rangle$, and $\lambda_{k}\left(x_{k}\right)=\arg \min _{\lambda \in \mathbb{R}^{r}}\left\|\nabla \widetilde{F}_{k}\left(x_{k}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla h_{k, i}\left(x_{k}\right)\right\|^{2}$
Set $x_{k+1}=x_{k}+d_{k}^{S Q P}$ if $F\left(x_{k}+d_{k}^{S Q P}\right)<F\left(x_{k}\right)$.

- $\gamma_{k+1}=\frac{\gamma_{k}}{2}$

Similar works with heuristic structure detection: \diamond Womersley Fletcher ' 86 for max, \diamond Noll Apkarian, '05 for $\lambda_{\max }$.

Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)
Consider a function $F=g \circ c$ and x^{\star} a strong minimizer with structure manifold \mathcal{M}^{\star} that meets the technical assumptions.
If x_{0} and $F\left(x_{0}\right)$ are close enough to x^{\star} and $F\left(x^{\star}\right), \gamma_{0}$ is large enough and no Maratos effect happens, then there exists $C>0$ such that:

$$
\mathcal{M}_{k}=\mathcal{M}^{\star} \quad \text { and } \quad\left\|x_{k+1}-x^{\star}\right\| \leq C\left\|x_{k}-x^{\star}\right\|^{2} \quad \text { for all } k \text { large enough. }
$$

Proof idea

- if $\mathcal{M}_{k}=\mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- since γ_{k} decreases, at some point $\gamma_{k} \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}\left(x_{k}\right)\right), \Gamma\right]$
- to stay in that region, decrease γ not too fast

Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)
Consider a function $F=g \circ c$ and x^{\star} a strong minimizer with structure manifold \mathcal{M}^{\star} that meets the technical assumptions.
If x_{0} and $F\left(x_{0}\right)$ are close enough to x^{\star} and $F\left(x^{\star}\right), \gamma_{0}$ is large enough and no Maratos effect happens, then there exists $C>0$ such that:

$$
\mathcal{M}_{k}=\mathcal{M}^{\star} \quad \text { and } \quad\left\|x_{k+1}-x^{\star}\right\| \leq C\left\|x_{k}-x^{\star}\right\|^{2} \quad \text { for all } k \text { large enough. }
$$

Proof idea

- if $\mathcal{M}_{k}=\mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- since γ_{k} decreases, at some point $\gamma_{k} \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}\left(x_{k}\right)\right), \Gamma\right]$
- to stay in that region, decrease γ not too fast

Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)
Consider a function $F=g \circ c$ and x^{\star} a strong minimizer with structure manifold \mathcal{M}^{\star} that meets the technical assumptions.
If x_{0} and $F\left(x_{0}\right)$ are close enough to x^{\star} and $F\left(x^{\star}\right), \gamma_{0}$ is large enough and no Maratos effect happens, then there exists $C>0$ such that:

$$
\mathcal{M}_{k}=\mathcal{M}^{\star} \quad \text { and } \quad\left\|x_{k+1}-x^{\star}\right\| \leq C\left\|x_{k}-x^{\star}\right\|^{2} \quad \text { for all } k \text { large enough. }
$$

Proof idea

- if $\mathcal{M}_{k}=\mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- since γ_{k} decreases, at some point $\gamma_{k} \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}\left(x_{k}\right)\right), \Gamma\right]$
- to stay in that region, decrease γ not too fast

Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)
Consider a function $F=g \circ c$ and x^{\star} a strong minimizer with structure manifold \mathcal{M}^{\star} that meets the technical assumptions.
If x_{0} and $F\left(x_{0}\right)$ are close enough to x^{\star} and $F\left(x^{\star}\right), \gamma_{0}$ is large enough and no Maratos effect happens, then there exists $C>0$ such that:

$$
\mathcal{M}_{k}=\mathcal{M}^{\star} \quad \text { and } \quad\left\|x_{k+1}-x^{\star}\right\| \leq C\left\|x_{k}-x^{\star}\right\|^{2} \quad \text { for all } k \text { large enough. }
$$

Proof idea

- if $\mathcal{M}_{k}=\mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- since γ_{k} decreases, at some point $\gamma_{k} \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}\left(x_{k}\right)\right), \Gamma\right]$
- to stay in that region, decrease γ not too fast

Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)
Consider a function $F=g \circ c$ and x^{\star} a strong minimizer with structure manifold \mathcal{M}^{\star} that meets the technical assumptions.
If x_{0} and $F\left(x_{0}\right)$ are close enough to x^{\star} and $F\left(x^{\star}\right), \gamma_{0}$ is large enough and no Maratos effect happens, then there exists $C>0$ such that:

$$
\mathcal{M}_{k}=\mathcal{M}^{\star} \quad \text { and } \quad\left\|x_{k+1}-x^{\star}\right\| \leq C\left\|x_{k}-x^{\star}\right\|^{2} \quad \text { for all } k \text { large enough. }
$$

Proof idea

- if $\mathcal{M}_{k}=\mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- since γ_{k} decreases, at some point $\gamma_{k} \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}\left(x_{k}\right)\right), \Gamma\right]$
- to stay in that region, decrease γ not too fast

Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)
Consider a function $F=g \circ c$ and x^{\star} a strong minimizer with structure manifold \mathcal{M}^{\star} that meets the technical assumptions.
If x_{0} and $F\left(x_{0}\right)$ are close enough to x^{\star} and $F\left(x^{\star}\right), \gamma_{0}$ is large enough and no Maratos effect happens, then there exists $C>0$ such that:

$$
\mathcal{M}_{k}=\mathcal{M}^{\star} \quad \text { and } \quad\left\|x_{k+1}-x^{\star}\right\| \leq C\left\|x_{k}-x^{\star}\right\|^{2} \quad \text { for all } k \text { large enough. }
$$

Proof idea

- if $\mathcal{M}_{k}=\mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- since γ_{k} decreases, at some point $\gamma_{k} \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}\left(x_{k}\right)\right), \Gamma\right]$
- to stay in that region, decrease γ not too fast

Local exact structure identification and quadratic convergence

Theorem (B., lutzeler, Malick, '22)
Consider a function $F=g \circ c$ and x^{\star} a strong minimizer with structure manifold \mathcal{M}^{\star} that meets the technical assumptions.
If x_{0} and $F\left(x_{0}\right)$ are close enough to x^{\star} and $F\left(x^{\star}\right), \gamma_{0}$ is large enough and no Maratos effect happens, then there exists $C>0$ such that:

$$
\mathcal{M}_{k}=\mathcal{M}^{\star} \quad \text { and } \quad\left\|x_{k+1}-x^{\star}\right\| \leq C\left\|x_{k}-x^{\star}\right\|^{2} \quad \text { for all } k \text { large enough. }
$$

Proof idea

- if $\mathcal{M}_{k}=\mathcal{M}^{\star}$, the SQP step brings quadratic improvement
- since γ_{k} decreases, at some point $\gamma_{k} \in\left[\varphi\left(\operatorname{dist}_{\mathcal{M}}\left(x_{k}\right)\right), \Gamma\right]$
- to stay in that region, decrease γ not too fast

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Quadratic convergence

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{10}} \max _{i=1, \cdots, 5}\left(c_{i}(x)\right) \\
\mathcal{M}^{\star}=\left\{x: c_{2}(x)=\cdots=c_{5}(x)\right\}
\end{gathered}
$$

Historical maxquad problem \diamond HULL '93
MaxQuad

$$
\min _{x \in \mathbb{R}^{25}} \lambda_{\max }\left(A_{0}+\sum_{i=1}^{n} x_{i} A_{i}\right)
$$

$\mathcal{M}^{\star}=\left\{x: \lambda_{\max }(c(x))\right.$ has multiplicity 3$\}$

Matrices are symmetric, 50×50

$$
\mp \text { Gradient Sampling } \varlimsup_{\star} \text { nsBFGS }-\oplus \text { LocalNewton }
$$

Proximal identification

Corollary: There exists $L>0, \epsilon>0$ such that

$$
\left\|x-x^{\star}\right\| \leq \epsilon \text { and } L\left\|x-x^{\star}\right\| \leq \gamma \leq \Gamma \quad \Longrightarrow \quad \operatorname{prox}_{\gamma g}(c(x)) \in \mathcal{M}^{g \star}
$$

This checks out in practice:

MaxQuad

Eigmax

$$
\cdots \inf \left\{\gamma: \operatorname{prox}_{\gamma g}\left(c\left(x_{k}\right)\right) \in \mathcal{M}^{g \star}\right\} \ldots \sup \left\{\gamma: \operatorname{prox}_{\gamma g}\left(c\left(x_{k}\right)\right) \in \mathcal{M}^{g \star}\right\} \cdots \gamma_{k}
$$

Introduction

Detecting structure

Exploiting structure

Numerics

Conclusion

Conclusion

Take-away messages

- Proximal methods identify smooth structure in nonsmooth composite problems
- We show local exact identification and quadratic rate for $g \circ c$, where g is prox-simple, no convexity required
B. \& lutzeler \& Malick: Harnessing structure in composite nonsmooth minimization https://arxiv.org/abs/2206. 15053

Work in progress and perspectives

- Drop the locality: i) need more information to identify, ii) globalize constrained Newton

> Thank you!

Gilles BAREILLES - gbareilles.fr

Technical assumptions

Normal ascent: g increases at \bar{y} on normal directions:

$$
0 \in \text { ri } \operatorname{proj}_{N_{\bar{y}} \mathcal{M}^{\varepsilon}} \partial g(\bar{y})
$$

Manifold curves: A function g with structure \mathcal{M}^{g} at \bar{y} satisfies the curve property if there exists a neighborhood $\mathcal{N}_{\bar{y}}$ of \bar{y} and $T>0$ such that, for any smooth application $e: \mathcal{N}_{\bar{y}} \times[0, T] \rightarrow \mathcal{M}^{g}$ verifying $e(y, 0)=\operatorname{proj}_{\mathcal{M}^{g}}(y)$ and $\frac{d}{d t} e(y, 0)=-\operatorname{grad} g\left(\mathbf{p r o j}_{\mathcal{M}^{g}}(y)\right)$, there holds

$$
\left\|\operatorname{proj}_{N_{e(y, t)} \mathcal{M}^{g}}(e(y, t)-y)\right\| \leq \operatorname{dist}_{\mathcal{M}^{g}}(y)+\tilde{L} t^{2} \quad \text { for all } y \in \mathcal{N}_{\bar{y}}, t \in[0, T]
$$

where $\operatorname{grad} g(p) \in T_{p} \mathcal{M}^{g}$ denotes the Riemannian gradient of g, obtained as $\operatorname{proj}_{T_{p} \mathcal{M}}{ }^{\mathbb{E}}(\partial g(p))$.
No Maratos: near a minimizer x^{\star}, a step d that makes $x+d$ quadratically closer to x^{\star} than x implies descent $F(x+d) \leq F(x)$.

Transversality: the mapping $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is transversal to manifold $\mathcal{M} \subset \mathbb{R}^{m}$ at $c(x)$ if:

$$
\operatorname{ker}\left(\operatorname{Jac}_{c}(x)^{\top}\right) \cap N_{c(x)} \mathcal{M}^{g}=\{0\}
$$

\Rightarrow if $\operatorname{Jac}_{h}(c(x))$ is full rank, then $\operatorname{Jac}_{h o c}(x)$ is also full-rank.

Maximum structure and initial stepsize

In the generated instance, the multiplicity of the maximum eigenvalue at optimum is $r=3$. The maximum structure of a point, useful in setting γ_{0}, is \mathcal{M}_{r}, with $r=6$, and not the matrix size $m=50$. Indeed, the codimension of \mathcal{M}_{r}, that is the dimension of its normal spaces, should be lower than that of $\mathbb{R}^{n}: r(r+1) / 2-1 \leq 25$, that is $r \leq 6$ (see the discussion in [?, pp. 555-556, Eq. 2.5]).

Quadratic convergence, BigFloat precision

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{10}} \max _{i=1, \cdots, 5}\left(c_{i}(x)\right) \\
\mathcal{M}^{\star}=\left\{x: c_{2}(x)=\cdots=c_{5}(x)\right\}
\end{gathered}
$$

Historical maxquad problem

MaxQuad

$$
\min _{x \in \mathbb{R}^{25}} \lambda_{\max }\left(A_{0}+\sum_{i=1}^{n} x_{i} A_{i}\right)
$$

$\mathcal{M}^{\star}=\left\{x: \lambda_{\max }(c(x))\right.$ has multiplicity 3$\}$

Matrices are symmetric, 50×50.

Eigmax

