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Regularization plays a pivotal role when facing the challenge of solving ill-posed inverse problems,
where the number of observations is smaller than the ambient dimension of the object to be estimated. A
line of recent work has studied regularization models with various types of low-dimensional structures.
In such settings, the general approach is to solve a regularized optimization problem, which combines
a data fidelity term and some regularization penalty that promotes the assumed low-dimensional/simple
structure. This paper provides a general framework to capture this low-dimensional structure using what
we call partly smooth functions relative to a linear manifold. These are convex, non-negative, closed
and finite-valued functions that will promote objects living on low-dimensional subspaces. This class of
regularizers encompasses many popular examples such as the �1-norm, �1 − �2-norm (group sparsity),
as well as several others including the �∞ norm. We also show that the set of partly smooth functions
relative to a linear manifold is closed under addition and pre-composition by a linear operator, which
allows us to cover mixed regularization, and the so-called analysis-type priors (e.g. total variation, fused
Lasso, finite-valued polyhedral gauges). Our main result presents a unified sharp analysis of exact and
robust recovery of the low-dimensional subspace model associated to the object to recover from partial
measurements. This analysis is illustrated on a number of special and previously studied cases, and on an
analysis of the performance of �∞ regularization in a compressed sensing scenario.

Keywords: convex regularization; inverse problems; model selection; partial smoothness; compressed
sensing; sparsity; total variation.

1. Introduction

1.1 Regularization of linear inverse problems

Linear inverse problems are encountered in various areas throughout science and engineering. The
goal is to provably recover the structure underlying an object x0 ∈R

N , either exactly or to a good
approximation, from the partial measurements

y =Φx0 + w, (1.1)

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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where y ∈R
Q is the vector of observations, w ∈R

Q stands for the noise and Φ ∈R
Q×N is a linear oper-

ator which maps the N-dimensional signal domain onto the Q-dimensional observation domain. The
operator Φ is in general ill-conditioned or singular, so that solving for an accurate approximation of x0

from (1.1) is ill-posed.
The situation, however, changes if one imposes some prior knowledge on the underlying object x0,

which makes the search for solutions to (1.1) feasible. This can be achieved via regularization, which
plays a fundamental role in bringing back ill-posed inverse problems to the land of well-posedness. We
consider here solutions to the regularized optimization problem

x� ∈ Argmin
x∈RN

1

2
||y − Φx||2 + λJ(x), (Pλ(y))

where the first term expresses the fidelity of the forward model to the observations, and J is the regu-
larization term intended to promote solutions conforming to some notion of simplicity/low-dimensional
structure, that is made precise later. The regularization parameter λ > 0 is adapted to balance between
the allowed fraction of noise level and regularity as dictated by the prior on x0. Before proceeding with
the rest, it is worth mentioning that, although we focus our analysis on the penalized form (Pλ(y)), our
results can be extended with minor adaptations to the constrained formulation, i.e. the one where the
data fidelity is put as a constraint. Note also that, though we focus our attention on quadratic data fidelity
for simplicity, our analysis carries over to more general fidelity terms of the form F ◦ Φ for F smooth
and strongly convex.

When there is no noise in the observations, i.e. w = 0 in (1.1), the equality-constrained minimization
problem should be solved

x� ∈ Argmin
x∈RN

J(x) subject to Φx = y. (P0(y))

In this paper, we consider the general case where the function J is convex, non-negative and finite-
valued,1 hence everywhere continuous. This class of regularizers J include many well-studied ones in
the literature. Among them, one can think of the �1-norm used to enforce sparse solutions [42], the
discrete total variation semi-norm [39], the �1 − �2-norm to induce block/group sparsity [49] or finite
polyhedral gauges [45].

Assuming furthermore that J enjoys a partial smoothness property (to be defined in Section 5)
relative to a model subspace associated to x0, our goal in this paper is to provide a unified analysis of
exact and robust recovery guarantees of that subspace by solving (Pλ(y)) from the partial measurements
in (1.1). As a by-product, this will also entail a control on the �2-recovery error.

1.2 Contributions

Our main contributions are as follows.

1.2.1 Subdifferential decomposability of convex functions. Building upon Definition 3, which intro-
duces the model subspace Tx at x, we provide an equivalent description of the subdifferential of a finite-
valued convex function at x in Theorem 1. Such a description isolates and highlights a key property of a

1 Finite-valued means that J(x) <+∞ for every x ∈R
N .
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regularizer, namely decomposability. In turn, this property allows us to rewrite the first-order minimal-
ity conditions of (Pλ(y)) and (P0(y)) in a convenient and compact way, and this lays the foundations of
our subsequent developments.

1.2.2 Uniqueness. In Theorem 2, we state a sharp sufficient condition, dubbed the Strong Null Space
Property, to ensure that the solution of (Pλ(y)) or (P0(y)) is unique. In Corollary 1, we provide a weaker
sufficient condition, stated in terms of a dual vector, the existence of which certifies uniqueness. Putting
together Theorem 1 and Corollary 1, Theorem 3 states the sufficient uniqueness condition in terms of a
specific dual certificate built from (Pλ(y)) and (P0(y)).

1.2.3 Partly smooth functions relative to a subspace. In the quest for establishing robust recovery
of the subspace model Tx0 , we first need to quantify the stability of the subdifferential of the regularizer
J to local perturbations of its argument. Thus, to handle such a change of geometry, we introduce the
notion of partly smooth function relative to a linear manifold.

We show in particular that two important operations preserve partial smoothness relative to a linear
manifold. In Propositions 9 and 11, we show that it is preserved under addition and pre-composition by
a linear operator. Consequently, more intricate regularizers can be built starting from simple functions,
e.g. �1-norm, which are known to be partly smooth relative to a linear manifold (see the review given
in Section 7).

1.2.4 Exact and robust subspace recovery. This is the core contribution of the paper. Assuming the
function is partly smooth relative to a linear manifold, we show in Theorem 6 that, under a generalization
of the irrepresentability condition [17], and with the proviso that the noise level is bounded and the
minimal signal-to-noise ratio is high enough, there exists a whole range of the parameter λ for which
problem (Pλ(y)) has a unique solution x�, which turns out to live in the same subspace as x0. Clearly,
solving (Pλ(y)) for this regime of noise and λ allows us to stably recover the subspace model underlying
x0. In turn, this yields a control on �2-recovery error within a factor of the noise level, i.e. ||x� − x0|| =
O(||w||). In the noiseless case, the irrepresentability condition implies that x0 is exactly identified by
solving (P0(y)).

1.2.5 Compressed sensing with �∞ norm regularization. To illustrate the usefulness of our findings,
we apply this model recovery result to the case of the �∞ norm in Section 8. This regularization is
known to promote anti-sparse (flat) vectors x0. While there exists previous works on �2-stable recovery
with �∞-regularization from random measurements, it is the first result to assess stable recovery of
the anti-sparse model associated to x0, which is an important additional information. Our result shows
that stable model recovery operates at a different regime compared with �2-stable recovery in terms of
bounds on the number of generic measurements as a function of the anti-sparsity level. This somehow
contrasts with classical results in sparse recovery where it is known that both types of stable recovery
hold at comparable bounds (up to logarithmic terms); see Section 1.4.4.
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1.3 Novelties and limitations

Before providing a detailed comparison with the state-of-the-art in the following section, we would like
to stress why our contributions are not just unifying with an unprecedented level of generality, but they
also allow us to go beyond classical sparsity-type penalties and to tackle many regularizers that are not
covered by the current literature.

First of all, it is important to note that our contributions on both subdifferential decomposability
(Section 1.2.1) and uniqueness characterization (Section 1.2.2) are generic, and do not put any constraint
on the regularizer J (besides being convex and finite-valued). These results thus generalize many well-
known ones that are scattered in the literature and derived for specific sparsity-enforcing priors (such as
�1- or �1 − �2-norms).

Our main contribution (Section 1.2.4), which proves that the low-dimensional model subspace
underlying x0 can be robustly recovered from noisy measurements, is only valid for convex functions
that are so-called partly smooth at x0 to a linear manifold. Loosely speaking, a partly smooth function
behaves smoothly along a manifold, and transverse to it, they behave sharply. Partial smoothness offers
a powerful framework in variational analysis to study sensitivity of optimization problems to perturba-
tions of their parameters, and in particular, stability of the partial smoothness manifold. This is exactly
our setting where the goal is to understand when the model manifold (hopefully low-dimensional) under-
lying the original object x0 can be stably recovered from partial and noisy measurements. Thus partial
smoothness of the regularizer appears a natural and wise assumption. In this paper, we focus on the
case where the partial smoothness manifold is actually a subspace. While this may appear restrictive,
it nevertheless allows us to provide a detailed analysis, where the constants in the stability bounds are
made explicit. These results hold similarly for the case of affine manifolds. However, considering arbi-
trary (possibly curved) manifolds is more involved and not covered by our analysis here. Removing
this assumption is possible (see, for instance, the recent work [46] and the discussion in the following
section), but the price to pay is that the stability bounds do not give access to explicit constants.

A typical novel application of our results is recovery of anti-sparse signals from partial random
measurements using �∞-regularization, i.e. �∞-compressed sensing (see Section 1.2.5), which cannot
be handled by existing previous works. This is, however, only the tip of the iceberg, and many more
applications could be found. Typical other illustrative examples include polyhedral regularizations, and
composition of the �1 − �2 norm with a linear operator, as is the case, for instance, for the isotropic total
variation which is very popular in image processing.

1.4 Related work

1.4.1 Decomposability. In [9], the authors introduced a notion of decomposable norms. In fact, we
show that their regularizers are a subclass of ours that corresponds to strong decomposability in the
sense of Definition 6, besides symmetry since norms are symmetric gauges. Moreover, their definition
involves two conditions, the second of which turns out to be an intrinsic property implied by polarity
rather than an assumption; see the discussion after Proposition 7. Typical examples of (strongly) decom-
posable norms are the �1-, �1 − �2- and nuclear norms. However, strong decomposability excludes many
important cases. One can think of analysis-type semi-norms, since strong decomposability is not pre-
served under pre-composition by a linear operator, or the �∞-norm among many others. The analysis
provided in [9] deals only with identifiability in the noiseless case. Their work was extended in [32]
when J is the sum of decomposable norms.
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1.4.2 Convergence rates. In the inverse problems literature, convergence (stability) rates have been
derived in [7] with respect to the Bregman divergence for general convex regularizations J . The author
in [18] established a stability result for general sublinear functions J . The stability is, however, measured
in terms of J , and �2-stability can only be obtained if J is coercive, which, again, excludes a large class
of functions. In [16], an �2-stability result for decomposable norms (in the sense of [9]) pre-composed
by a linear operator is proved. However, none of these works deals with exact and robust recovery of
the subspace model underlying x0.

1.4.3 Model selection. There is a large body of previous works on the problem of the model selection
properties (sometimes referred to as model consistency) of low-complexity regularizers. These previous
works are targeting specific regularizers, most notably sparsity, group sparsity and low rank. We thus
refer to Section 7 for a discussion of these relevant previous works. A distinctive feature of our analysis
is that it is generic, so it covers all these special cases, and many more. Note, however, that it does not
cover the nuclear norm, because its associated manifolds are not linear (they are indeed composed of
algebraic manifolds of low-rank matrices). We have recently proposed an extension of our results to
this more general nonlinear case in [46]. Note, however, that this new analysis uses a different proof
technique, and is not able to provide explicit values for the constant involved in the robustness to noise.

1.4.4 Compressed sensing. Arguments based on the Gaussian width were used in [10] to provide
sharp estimates of the number of generic measurements required for exact and �2-stable recovery
of atomic set models from partial Gaussian measurements by solving a constrained form of (Pλ(y))
regularized by an atomic norm. The atomic norm framework was then exploited in [35] in the particular
case of the group Lasso and union of subspace models. This was further generalized in [1], who devel-
oped for the noiseless case reliable predictions about the quantitative aspects of the phase transition in
convex regularized linear inverse problems with Gaussian measurements. The location and width of the
transition are controlled by the statistical dimension of the descent cone of the regularizer at the original
vector x0. When the noise is also Gaussian with a small enough variance, [33] proposes a formula for
calculating the normalized squared error for the estimator provided by solving (Pλ(y)) with a general
convex regularizer. All these works are, however, restricted to a random (compressed sensing) scenario.

A notion of decomposability closely related to that of [9], but different, was first proposed in [30].
There, the authors study �2-stability for this class of decomposable norms with a general sufficiently
smooth data fidelity. This work, however, only handles norms, and their stability results require stronger
assumptions than ours (typically a restricted strong convexity which becomes a type of restricted eigen-
value property for linear regression with quadratic data fidelity).

1.5 Paper organization

The outline of the paper is the following. Section 2 provides a short recap on convex analysis. Section 3
fully characterizes the canonical decomposition of the subdifferential of a convex function with respect
to the subspace model at x. Sufficient conditions ensuring uniqueness of the minimizers to (Pλ(y))
and (P0(y)) are provided in Section 4. In Section 5, we introduce the notion of a partly smooth
function relative to a linear manifold, and show that this property is preserved under addition and
pre-composition by a linear operator. Section 6 is dedicated to our main result, namely theoretical
guarantees for exact subspace recovery in the presence of noise, and identifiability in the noiseless
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case. Section 7 exemplifies our results on several previously studied priors, and a detailed discussion
on the relation with respect to relevant previous work is provided. Section 8 delivers a bound for the
sampling complexity to guarantee exact recovery of the model subspace of anti-sparsity minimization
from noisy Gaussian measurements. Some conclusions and possible perspectives of this work are drawn
in Section 9. The proofs of our results are collected in the Appendix.

2. A short tour of convex analysis

This section aims to provide a short review of important tools from convex analysis that are used in this
paper. A comprehensive account can be found in [20,36].

In the following, if T is a vector space, PT denotes the orthogonal projector on T , and

xT = PT x and ΦT =ΦPT .

For a subset I of {1, . . . , N}, we denote by Ic its complement and |I| its cardinality. By x(I), we denote
the subvector whose entries are those of x restricted to the indices in I, and Φ(I) the submatrix whose
columns are those of Φ indexed by I. For any matrix A, A∗ denotes its adjoint matrix and A+ its Moore–
Penrose pseudo-inverse. We denote the right-completion of the real line by R̄=R ∪ {+∞}.

2.1 Sets

For a non-empty set C ⊂R
N , we denote by conv (C) the closure of its convex hull. For a non-empty

convex set C, its affine hull aff C is the smallest affine manifold containing it, i.e.

aff C =
{

k∑
i=1

ρixi : k > 0, ρi ∈R, xi ∈ C,
k∑

i=1

ρi = 1

}
.

For instance, the affine hull of a segment in R
2 is the straight line containing this segment. It is a translate

of its parallel subspace par C, i.e. par C = aff C − x = span(C − x) for any x ∈ C, where span C is the
linear hull of C.

The interior of C is denoted by int C. The relative interior ri C of a convex set C is the interior of C
for the topology relative to its affine full.

2.2 Functions

A real-valued function f : R
N → R̄ is coercive if lim||x||→+∞ f (x)=+∞. The effective domain of f is

defined by dom f = {x ∈R
N : f (x) <+∞} and f is proper if dom f |= ∅. We say that a real-valued

function f is lower semi-continuous (lsc) if lim infz→x f (z) � f (x). A function is said to be sublinear if
it is convex and positively homogeneous.

Let the kernel of a function be defined as ker(f )= {x ∈R
N : f (x)= 0

}
. We see that Ker f is a cone

when f is positively homogeneous.
Let C be a non-empty convex subset of R

N . The indicator function ιC of C is

ιC(x)=
{

0 if x ∈ C,

+∞ otherwise.
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The Legendre–Fenchel conjugate of a proper, lsc and convex function f is

f ∗(u)= sup
x∈dom f

〈u, x〉 − f (x),

where f ∗ is proper, lsc and convex, and f ∗∗ = f . For instance, the conjugate of the indicator function ιC
is the support function of C

σC(u)= sup
x∈C

〈u, x〉.

Here σC is lsc and sublinear. It is non-negative if 0 ∈ C. Moreover, we have the following.

Lemma 1 Let C be a non-empty set.

(i) σC is lsc and sublinear.

(ii) σC is finite-valued if, and only if, C is bounded.

(iii) If 0 ∈ C, then σC is non-negative.

(iv) If C is convex and 0 ∈ C, then σC is constant along all affine subspaces parallel to par C.

(v) If C is convex and compact with 0 ∈ ri C, then σC is finite-valued, Ker σC = (par C)⊥ and σC is
coercive on par C.

Let f and g be two proper closed convex functions from R
N to R̄. Their infimal convolution is the

function

(f
+∨ g)(x)= inf

x1+x2=x
f (x1) + g(x2)= inf

z∈RN
f (z) + g(x − z).

Let C ⊆R
N be a non-empty closed convex set containing the origin. The gauge of C is the function

γC defined on R
N by

γC(x)= inf {λ > 0 : x ∈ λC}.

As usual, γC(x)=+∞ in case of emptiness of the set over which the infimum is computed. We see that
γC is a non-negative, lsc and sublinear function. It is moreover finite everywhere, hence continuous, if,
and only if, C has the origin as an interior point; see Lemma 2 for details.

The subdifferential ∂f (x) of a convex function f at x is the set

∂f (x)= {u ∈R
N : f (x′) � f (x) + 〈u, x′ − x〉, ∀x′ ∈ dom f }.

An element of ∂f (x) is a subgradient. If the convex function f is differentiable at x, then its only sub-
gradient is its gradient, i.e. ∂f (x)= {∇f (x)}.

The directional derivative f ′(x, δ) of an lsc function f at the point x ∈ dom f in the direction δ ∈R
N

is

f ′(x, δ)= lim
t↓0

f (x + tδ) − f (x)

t
.

When f is convex, then the function δ �→ f ′(x, ·) exists and is sublinear. When f has also full domain,
then, for any x ∈R

N , ∂f (x) is a non-empty compact convex set of R
N whose support function is f ′(x, ·),
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i.e.
f ′(x, δ)= σ∂f (x)(δ)= sup

η∈∂f (x)
〈η, δ〉.

We also recall the fundamental first-order minimality condition of a convex function: x� is the global
minimizer of a convex function f if, and only if, 0 ∈ ∂f (x).

2.3 Gauges

We start by collecting some important properties of gauges and their polars. A comprehensive account
on them can be found in [36].

Lemma 2, in particular item (ii), is a fundamental result of convex analysis that states that there is a
one-to-one correspondence between gauge functions and closed convex sets containing the origin. This
allows us to identify sets from their gauges, and vice versa.

Lemma 2 (i) γC is a non-negative, lsc and sublinear function.

(ii) C is the unique closed convex set containing the origin such that

C = {x ∈R
N : γC(x) � 1}.

(iii) γC is finite everywhere if, and only if, 0 ∈ int C, in which case γC is continuous.

(iv) Ker γC = {0} if, and only if, C is compact.

(v) γC is finite and coercive on dom γC = par C if, and only if, C is compact and 0 ∈ ri C. In
particular, γC is finite everywhere and coercive if, and only if, C is compact and 0 ∈ int C.

Observe that γC is a norm, having C as its unit ball, if and only if, C is bounded with non-empty
interior and symmetric. When C is only symmetric with non-empty interior, then γC becomes a semi-
norm.

Let us now turn to the polar of a convex set and a gauge.

Definition 1 (Polar set) Let C be a non-empty convex set. The set C◦ given by

C◦ = {v ∈R
N : 〈v, x〉� 1 for all x ∈ C}

is called the polar of C.

Here C◦ is a closed convex set containing the origin. When the set C is also closed and contains the
origin, then it coincides with its bipolar, i.e. C◦◦ = C.

We are now in a position to define the polar gauge.

Definition 2 (Polar gauge) The polar of a gauge γC is the function γ ◦
C defined by

γ ◦
C(u)= inf{μ � 0 : 〈x, u〉� μγC(x),∀x}.

Observe that gauges polar to each other have the property

〈x, u〉� γC(x)γ ◦
C(u) ∀ (x, u) ∈ dom γC × dom γ ◦

C ,

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond to the best
inequalities of this type.



238 S. VAITER ET AL.

Lemma 3 Let C ⊆R
N be a closed convex set containing 0. Then, the following conditions are

satisfied.

(i) γ ◦
C is a gauge function and γ ◦◦

C = γC .

(ii) γ ◦
C = γC◦ , or equivalently

C◦ = {x ∈R
N : γ ◦

C(x) � 1} = {x ∈R
N : γC◦(x) � 1}.

(iii) The gauge of C and the support function of C are mutually polar, i.e.

γC = σC◦ and γC◦ = σC .

Here we derive the expression of the gauge function of the Minkowski sum of two sets, as well as
that of the image of a set by a linear operator. These results play an important role in Section 5.

Lemma 4 Let C1 and C2 be non-empty closed convex sets containing the origin. Then

γC1+C2(x)= sup
ρ∈[0,1]

ργC1

+∨ (1 − ρ)γC2(x).

If x is such that γC1(x1) + γC2(x2) is continuous and finite on {(x1, x2) : x1 + x2 = x}, then

γC1+C2(x)= inf
z∈RN

max(γC1(z), γC2(x − z)).

Lemma 5 Let C be a compact convex set containing 0, and D be a linear operator. Then, for every
x ∈ �(D),

γD(C)(x)= inf
z∈Ker(D)

γC(D+x + z).

When it is also assumed that 0 ∈ ri C, using Lemma 2(v), one can observe that the infimum is finite
if (D+x + Ker(D)) ∩ par C |= ∅.

2.4 Set-valued mappings

We need in this paper some basic facts on set-valued mappings. A comprehensive account can be found
in [2]. A set-valued mapping F : R

n ⇒ R
m is characterized by its graph, i.e. by the subset of X × Y

defined by
graph(F)= {(x, y) ∈ X × Y : y ∈ F(x)}.

The domain of F, dom F, is the set of points x ∈R
n such that F(x) |= ∅.

A set-valued mapping F is Lipschitz relative to a non-empty set U in R
n if U ⊂ dom F, F is closed-

valued on U and there exists β � 0 such that

F(x)⊆ F(x′) + β||z − z′||B(0) for all x, x′ ∈ U ,

where B(0) is the unit ball of R
m.

We end by showing that Lipschitz continuity of F transfers to that of the associated gauge.

Lemma 6 Let F : R
N ⇒ R

N be β-Lipschitz on a compact set U , and assume that, for every point x ∈ U ,
F(x) is a compact convex set containing the origin as a relative interior point. Then, for any x, x′ in U ,
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and u ∈ par(F(x)) ∩ par(F(x′)), there exists a constant C <+∞ such that the mapping x ∈ U �→ γF(x)(u)

is Cβ||u||-Lipschitz continuous.

2.5 Operator norm

Let J1 and J2 be two finite-valued gauges defined on two vector spaces V1 and V2, and A : V1 → V2 be a
linear map. The operator bound |||A|||J1→J2 of A between J1 and J2 is given by

|||A|||J1→J2 = sup
J1(x)�1

J2(Ax).

Note that |||A|||J1→J2 <+∞ if, and only if, AKer(J1)⊆ Ker(J2). In particular, if J1 is coercive (i.e.
Ker J1 = {0} from Lemma 2(v)), then |||A|||J1→J2 is finite. As a convention, |||A|||J1→||·||p is denoted as
|||A|||J1→�p . An easy consequence of this definition is the fact that, for every x ∈ V1,

J2(Ax) � |||A|||J1→J2 J1(x).

3. Model subspace and decomposability

The purpose of this section is to introduce one of the main concepts used throughout this paper, namely
the model subspace associated to a convex function. The main result, Theorem 1, proves that the
subdifferential of any convex function exhibits a decomposability property with respect to this subspace.

In the case of �1-norm, the following result is well-known.

Fact 1 (Decomposability of �1) Let x ∈R
N . Then the subdifferential of ||·||1 at x reads

∂||·||1(x)= {η ∈R
N : η(I) = sign(x(I)) and ||η(Ic)||∞ � 1},

where I = supp(x).

In plain words, this result decomposes the subdifferential of the �1-norm at a point x into a single-
valued part characterized by the sign vector of the active components of x, i.e. those indexed by its
support I, and a set-valued part corresponding to the non-active components indexed by Ic. In the
following section, we show how to generalize this splitting to any finite-valued convex function.

3.1 Model subspace associated to a convex function

Let J be our regularizer, i.e. a finite-valued convex function.

Definition 3 (Model subspace) For any vector x ∈R
N , denote by S̄x the affine hull of the subdifferen-

tial of J at x
S̄x = aff ∂J(x),

and ex the orthogonal projection of 0 onto S̄x

ex = argmin
e∈S̄x

||e||.

Let
Sx = S̄x − ex = par(∂J(x) − ex) and Tx = S⊥

x .

Tx is termed the model subspace of x associated to J .
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Fig. 1. Illustration of the geometrical elements (Sx, Tx, ex), in the particular case where x ∈ Tx, for instance when J is a gauge.

When J is differentiable at x, i.e. ∂J(x)= {∇J(x)}, ex =∇J(x) and Tx =R
N . Note that the decom-

position of R
N as a sum of the two orthogonal subspaces Tx and Sx is also the core idea underlying the

U − V-decomposition/theory developed in [23].
We start by summarizing some key properties of the objects ex and Tx.

Proposition 1 For any x ∈R
N , one has

(i) ex ∈ Tx ∩ S̄x;

(ii) S̄x =
{
η ∈R

N : ηTx = ex
}

.

In general ex �∈ ∂J(x), which is the situation displayed in Fig. 1.
To illustrate these definitions, we now give the examples of the �1 − �2- and the �∞-norms. A more

comprehensive treatment is provided in Section 7, which is completely devoted to examples.

Example 1 (�1-�2-norm) We consider a uniform disjoint partition B of {1, . . . , N},

{1, . . . , N} =
⋃
b∈B

b, b ∩ b′ = ∅ ∀b |= b′.

The �1 − �2-norm of x is
J(x)= ||x||B =

∑
b∈B

||xb||.

The subdifferential of J at x ∈R
N is

∂J(x)=
{

η ∈R
N : ∀b ∈ I(x), ηb = xb

||xb|| and ∀b �∈ I(x), ||ηb||� 1

}
,

where I(x)= {b ∈B : xb |= 0}. Thus, the affine hull of ∂J(x) reads

S̄x =
{

η ∈R
N : ∀b ∈ I(x), ηb = xb

||xb||
}

.

Hence, the projection of 0 onto S̄x is
ex = (N (xb))b∈B,
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Fig. 2. Illustration of the geometrical elements (Sx, Tx, ex) for the �1 − �2-regularization in dimension 3, for

J(x)=
√

x2
1 + x2

2 + |x3| for x = (x1, x2, x3) ∈R
3.

where N (a)= a/||a|| if a |= 0, and N (0)= 0 and

Sx = S̄x − ex = {η ∈R
N : ∀b ∈ I(x), ηb = 0},

and
Tx = S⊥

x = {η ∈R
N : ∀b �∈ I(x), ηb = 0}.

Figure 2 shows graphically these definitions for a particular case of �1 − �2-norm in R
3.

Example 2 (�∞-norm) The �∞-norm is J(x)= ||x||∞ = max1�i�N |xi|. For x = 0, ∂J(x) is the unit
�1-ball, hence S̄x = Sx =R

N , Tx = {0} and ex = 0. For x |= 0, we have

∂J(x)= {η : ∀ i ∈ I(x)c, ηi = 0, 〈η, s〉 = 1, ηisi � 0 ∀ i ∈ I(x)},
where I(x)= {i ∈ {1, . . . , N} : |xi| = ||x||∞}, si = sign(xi) if i ∈ I(x), and si = 0 if i ∈ I(x)c. It is clear that
S̄x is the affine hull of an |I(x)|-dimensional face of the unit �1-ball exposed by the sign subvector s(I(x)).
Thus ex is the barycenter of that face, i.e.

ex = s/|I(x)| and Sx = {η : η(I(x)c) = 0 and 〈η(I(x)), s(I(x))〉 = 0}.
In turn

Tx = S⊥
x = {α : α(I(x)) = ρs(I(x)) for ρ ∈R}.

Figure 3 displays in R
3 these definitions.
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Fig. 3. Illustration of the geometrical elements (Sx, Tx, ex) for the �∞-regularization in dimension 3.

3.2 Decomposability property

3.2.1 The subdifferential gauge and its polar. Before providing an equivalent description of the sub-
differential of J at x in terms of the geometrical objects ex, Tx and Sx, we introduce a gauge that plays a
prominent role in this description.

Definition 4 (Subdifferential gauge) Let J be a finite-valued convex function. Let x ∈R
N and let

fx ∈ ri ∂J(x). The subdifferential gauge associated to fx is the gauge Jx,◦
fx = γ∂J(x)−fx .

Note that for the examples considered so far (�1-, �1 − �2- and �∞-norms), one has ex ∈ ri ∂J(x), so
that one can choose fx = ex in Definition 4. This is, however, not the case in general, which makes the
introduction of the extra-variable fx mandatory. In the sequel, it is thus important to remind us that Jx,◦

fx
actually depends on the particular choice of fx.

The following proposition states the main properties of the gauge Jx,◦
fx .

Proposition 2 The subdifferential gauge Jx,◦
fx is such that dom Jx,◦

fx = Sx, and is coercive on Sx.

We now turn to the gauge polar to the subdifferential gauge Jx
fx = (Jx,◦

fx )
◦. The following proposition

summarizes its most important properties.
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Proposition 3 The gauge Jx
fx is such that

(i) it is finite everywhere;

(ii) Jx
fx(d)= Jx

fx(dSx)= supJx,◦
fx

(ηSx )�1〈ηSx , d〉;
(iii) Ker Jx

fx = Tx and Jx
fx is coercive on Sx.

3.2.2 Subdifferential of a gauge. The subdifferential of a gauge γC at a point x is completely charac-
terized by the face of its polar set C◦ exposed by x. Put formally, we have [20]

∂γC(x)= FC◦(x)= {η ∈R
N : η ∈ C◦ and 〈η, x〉 = γC(x)},

where FC◦(x) is the face of C◦ exposed by x. The latter is the intersection of C◦ and the supporting
hyperplane

{
η ∈R

N : 〈η, x〉 = γC(x)
}

. The special case of x = 0 has a much simpler structure; it is the
polar set C◦ from Lemma 3(ii)–(iii), i.e.

∂γC(x)= {η ∈R
N : γC◦(η) � 1} = C◦.

The following proposition gives an equivalent convenient description of the subdifferential of the regu-
larizer J = γC at x in terms of a particular supporting hyperplane to C◦: the affine hull S̄x.

Proposition 4 Let J = γC be a finite-valued gauge. Then, for x ∈R
N , one has

∂J(x)= S̄x ∩ C◦.

Proposition 5 Let J = γC be a finite-valued gauge. For any x ∈R
N , one has the following properties.

(i) for every u ∈ S̄x, J(x)= 〈u, x〉;
(ii) x ∈ Tx;

(iii) the subdifferential gauge Jx,◦
fx reads

Jx,◦
fx (η)= inf

τ�0
max(J◦(τ fx + η), τ) + ιSx(η);

(iv) the polar of the subdifferential gauge Jx
fx reads

Jx
fx(d)= J(dSx) − 〈fSx , dSx〉.

We draw the attention of the reader to the fact that J◦, Jx,◦
fx and Jx

fx are not the same function. The
first one is the polar of J , the second one is the subdifferential gauge and the third one is the polar of the
subdifferential gauge.

3.2.3 Decomposability of the subdifferential. Piecing together the above ingredients yields a funda-
mental pointwise decomposition of the subdifferential of the regularizer J .
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Theorem 1 (Decomposability) Let J be a convex function. Let x ∈R
N and fx ∈ ri ∂J(x). Then the

subdifferential of J at x reads

∂J(x)= {η ∈R
N : ηTx = ex and Jx,◦

fx (PSx(η − fx)) � 1}.

The chosen terminology of ‘decomposability’ appears quite natural in view of the splitting of the
subdifferential entailed by the two orthogonal subspaces Tx and Sx. The terminology (U − V) decom-
position is also used in the seminal work of Lemaréchal et al. [23]. The same wording is also employed
by Candés and Recht in their paper [9], in which the subdifferential exhibits a similar property, but
specialized to norms. The decomposability condition used by Negahban et al. [30] is related to that
of [9], but is different (see our discussion in the introduction). In fact, it turns out that decomposability
is a fundamental property of the subdifferential of any convex function, and that it should not be a prior
hypothesis for our analysis.

This decomposability property is at the heart of our results, because it enables us to check whether
some vector η satisfies η ∈ ri(∂J(x)) (see Theorem 3), and also to quantify how far is η from the relative
boundary of ∂J(x) (see Theorem 6).

Let us derive the subdifferential gauge for a smooth function and for the illustrative example of the
�∞-norm. The case of the �1 − �2-norm is detailed in Section 3.3.

Example 3 (Differentiable convex function) Let J be a convex function which is everywhere differ-
entiable. Then ∂J(x)= {∇J(x)}. It is clear that Sx = {0}∇J(x), and thus Tx =R

N and ex = fx =∇J(x).
Moreover, Jx,◦

fx (η)= γ{0}(η)= σRN (η)= ι0(η).

Example 4 (�∞ norm) Recall from Section 3.1 that, for J = ||·||∞, fx = ex = s/|I|, with s(I) = sign(x(I)),
and s(Ic) = 0. Let Kx = ∂J(x) − ex. It can be straightforwardly shown that, in this case,

Kx =
{

v : ∀s(i, j) ∈ I × Ic, vj = 0, 〈v(I), s(I)〉 = 0, −|I|visi � 1
}

.

This is rewritten as
Kx = Sx ∩ {i ∈ {1, . . . , N} : |xi| = ||x||∞}︸ ︷︷ ︸

=K′
x

.

Thus the subdifferential gauge reads

Jx,◦
fx (η)= γKx(η)= max(γSx(η), γK′

x
(η)).

We have γSx(η)= ιSx(η) and γK′
x
(η)= maxi∈I(−|I|siηi)+, where (·)+ is the positive part, hence we

obtain

Jx,◦
fx (η)=

{
max

i∈I
(−|I|siηi)+ if η ∈ Sx,

+∞ otherwise.

Therefore the subdifferential of ||·||∞ at x takes the form

∂J(x)=
{

η ∈R
N : ηTx = ex = s

|I| and max
i∈I

(−|I|siηi)+ � 1

}
.

Capitalizing on Theorem 1, we are now able to deduce a convenient necessary and sufficient
first-order (global) minimality condition of (Pλ(y)) and (P0(y)).



MODEL SELECTION WITH LOW COMPLEXITY PRIORS 245

Proposition 6 Let x ∈R
N , and define for short T = Tx and S = Sx. The two following propositions

hold.

(i) The vector x is a global minimizer of (Pλ(y)) if, and only if,

Φ∗
T (y − Φx)= λex and Jx,◦

fx (λ−1Φ∗
S (y − Φx) − PS(fx)) � 1.

(ii) The vector x is a global minimizer of (P0(y)) if, and only if, there exists a dual vector α ∈R
Q

such that
Φ∗

Tα = ex and Jx,◦
fx (Φ∗

S α − PS(fx)) � 1.

3.3 Strong gauge

In this section, we study a particular subclass of regularizers J that we dub strong gauges. We start with
some definitions.

Definition 5 A finite-valued regularizing gauge J is separable with respect to T = S⊥ if

∀ (x, x′) ∈ T × S, J(x + x′)= J(x) + J(x′).

Separability of J is equivalent to the following property on the polar J◦.

Lemma 7 Let J be a finite-valued gauge. Then, J is separable w.r.t. to T = S⊥ if, and only if, its polar
J◦ satisfies

J◦(x + x′)= max(J◦(x), J◦(x′)) ∀ (x, x′) ∈ T × S.

The decomposability of ∂J(x) as described in Theorem 1 depends on the particular choice of the
map x �→ fx ∈ ri ∂J(x). An interesting situation is encountered when ex ∈ ri ∂J(x), in which case, one
can just choose fx = ex, hence implying that fSx = 0. Strong gauges are precisely a class of gauges for
which this situation occurs.

In the sequel, for a given subspace T , we denote T̃ the set of vectors sharing the same T ,

T̃ = {x ∈R
N : Tx = T}.

Using positive homogeneity, it is easy to show that Tρx = Tx and eρx = ex ∀ρ > 0; see Proposition 5(i).
Thus T̃ is a non-empty cone which is contained in T by Proposition 5(ii).

Definition 6 (Strong gauge) A strong gauge on T is a finite-valued gauge J such that

1. for every x ∈ T̃ , ex ∈ ri ∂J(x);

2. J is separable with respect to T .

Moreover, if J is a norm, we say that J is a strong norm if it is a norm and a strong gauge.

The following result shows that the decomposability property of Theorem 1 has a simpler form
when J is a strong gauge.

Proposition 7 Let J be a strong gauge on Tx. Then, for any x ∈ T̃ , the subdifferential of J at x reads

∂J(x)= {η ∈R
N : ηTx = ex and J◦(ηSx) � 1}.
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When J is in addition a norm, this coincides exactly with the decomposability definition of [9].
Note, however, that the last part of assertion (ii) in Proposition 3 is an intrinsic property of the polar of
the subdifferential gauge, while it is stated as an assumption in [9].

Example 5 (�1-�2-norm) Recall the notations of this example in Section 3.1. Since
ex = (N (xb))b∈B ∈ ri ∂J(x), and the �1-�2-norm is separable, it is a strong norm according to
Definition 6. Thus, its subdifferential at x reads

∂J(x)=
{

η ∈R
N : ηTx = ex = (N (xb))b∈B and max

b�∈I
||ηb||� 1

}
.

Note, however, that except for N = 2, �∞ is not a strong gauge.

4. Uniqueness

This section derives sufficient conditions under which the solution of problem (Pλ(y)) (respec-
tively, (P0(y))) is unique.

In the case of �1-norm, [13] has proved the following result.

Fact 2 Let x be a solution of (Pλ(y)) (respectively, a feasible point of (P0(y))). Define I = supp(x) and
s = sign(x). If the Strong Null Space Property holds

∀δ ∈ Ker(Φ) \ {0}, 〈s(I), δ(I)〉< ||δ(Ic)||1, (NSPS)

then the vector x is the unique minimizer of (Pλ(y)) (respectively, (P0(y))).

In the following, we derive a similar statement for any convex function, which will allow us to
obtain the uniqueness condition.

We start with the key observation that, although (Pλ(y)) does not necessarily have a unique mini-
mizer in general, all solutions share the same image under Φ.

Lemma 8 Let x, x′ be two solutions of (Pλ(y)). Then,

Φx =Φx′.

Consequently, the set of the minimizers of (Pλ(y)) is a closed convex subset of the affine space
x + Ker(Φ), where x is any minimizer of (Pλ(y)). This is also obviously the case for (P0(y)) since all
feasible solutions belong to the affine space x0 + Ker Φ.

4.1 The strong null space property

The following theorem gives a sufficient condition to ensure uniqueness of the solution to (Pλ(y))
and (P0(y)), which we coin Strong Null Space Property. This condition is a generalization of the Null
Space Property introduced in [13] and popular in �1-regularization.

Theorem 2 Let J be a finite-valued convex function. Let x be a solution of (Pλ(y)) (respectively, a
feasible point of (P0(y))) and let fx ∈ ri(∂J(x)). Define T = S⊥ = Tx as the associated model subspace.
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If the Strong Null Space Property holds,

∀δ ∈ Ker(Φ) \ {0}, 〈ex, δT 〉 + 〈PS(fx), δS〉< Jx
fx(−δS), (NSPS)

then the vector x is the unique minimizer of (Pλ(y)) (respectively, (P0(y))).

This result reduces to the one proved in [16] when J is a strong norm, i.e. decomposable in the sense
of [9], pre-composed by a linear operator. Note that when specializing (NSPS) to a strong gauge J , it
reads

∀δ ∈ Ker(Φ) \ {0}, 〈ex, δTx〉< J(−δSx).

4.2 Dual certificates

In this section, we derive from (NSPS) a weaker sufficient condition, stated in terms of a dual vector,
the existence of which certifies uniqueness.

For some model subspace T , the restricted injectivity of Φ on T plays a central role in the sequel.
This is achieved by imposing that

Ker(Φ) ∩ T = {0}. (CT )

We can derive from Theorem 2 the following corollary.

Corollary 1 Let x be a solution of (Pλ(y)) (respectively, a feasible point of (P0(y))). Assume that
there exists a dual vector α such that η =Φ∗α ∈ ri(∂J(x)), and (CT ) holds where T = Tx. Then x is the
unique solution of (Pλ(y)) (respectively, (P0(y))).

Piecing together Proposition 6 and Corollary 1, one can build a particular dual certificate for (Pλ(y)),
and then state a sufficient uniqueness explicitly in terms of the decomposable structure of the subdiffer-
ential of the regularizer J .

Theorem 3 Let x ∈R
N , and suppose that fx ∈ ri ∂J(x). Assume furthermore that (CT ) holds for T = Tx

and let S = T⊥.

(i) If

Φ∗
T (y − Φx)= λex, (4.1)

Jx,◦
fx (λ−1Φ∗

S (y − Φx) − PS(fx)) < 1, (4.2)

then x is the unique solution of (Pλ(y)).

(ii) If there exists a dual certificate α such that

Φ∗
Tα = ex and Jx,◦

fx (Φ∗
S α − PS(fx)) < 1,

then x is the unique solution of (P0(y)).

5. Partly smooth functions relative to a Subspace

Until now, except of being convex and finite-valued (i.e. full domain), no other assumption was imposed
on the regularizer J . But, toward the goal of studying robust recovery by solving (Pλ(y)), more will
be needed. This is the main reason underlying the introduction of a subclass of finite-valued convex
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functions J for which the mappings x �→ ex, x �→ PSx(fx) and x �→ J◦
fx exhibit local regularity, in some

sense to be precized shortly (see Definition 8).

5.1 Partly smooth functions

The notion of ‘partly smooth’ functions [24] unifies many non-smooth functions known in the literature.
Partial smoothness (as well as identifiable surfaces [48]) captures essential features of the geometry of
non-smoothness which are along the so-called ‘active/identifiable manifold’. Loosely speaking, a partly
smooth function behaves smoothly as we move on the partial smoothness manifold, and sharply if we
move normal to the manifold. In fact, the behavior of the function and of its minimizers (or critical
points) depend essentially on its restriction to this manifold, hence offering a powerful framework for
sensitivity analysis theory. In particular, critical points of partly smooth functions move stably on the
manifold as the function undergoes small perturbations [24,25].

Specialized to finite-valued convex functions, the definition of partly smooth functions reads as
follows.

Definition 7 A finite-valued convex function J is said to be partly smooth at x relative to a set
M⊆R

N if the following conditions are satisfied:

1. Smoothness. M is a C2-manifold around x and J restricted to M is C2 around x.

2. Sharpness. The tangent space of M at x is the model space Tx,

TM(x)= Tx.

3. Continuity. The set-valued mapping ∂J is continuous at x relative to M.

The manifold M is coined a model manifold of x ∈R
N . Here J is said to be partly smooth relative to

a set M if M is a manifold and J is partly smooth at each point x ∈M relative to M. If J is partly
smooth and J is a strong gauge, we say that J is strongly partly smooth.

Since J is proper convex and finite-valued, the subdifferential ∂J(x) is everywhere non-empty,
compact and convex. Therefore, by [37, Corollary 8.11 and Proposition 8.12], the Clarke regularity
property [24, Definition 2.7(ii)] is automatically verified. In view of [24, Proposition 2.4(i)–(iii)], our
sharpness property is equivalent to that of [24, Definition 2.7(iii)]. Obviously, any smooth function
J : R

N →R is partly smooth relative to R
N . Moreover, if M is a manifold around x, the indicator func-

tion ιM is partly smooth at x relative to M. Remark that in the previous definition, M needs only to be
defined locally around x, and it can be shown to be locally unique; see [19, Corollary 4.2]. Hence, the
notation M is unambiguous and we can say that M is the model manifold.

5.2 Partial smoothness relative to a subspace

Many of the partly smooth functions considered in the literature are associated to linear subspaces, i.e.
in which case the model subspace is the model manifold M= Tx (see the sharpness property). This
class of functions, coined partly smooth functions relative to a linear manifold, encompasses most of
the popular regularizers in signal/image processing, machine learning and statistics. As we will see, �1-,
�1 − �2-, �∞-norms, their composition by a linear operator, and/or positive combinations of them, to
name a few, are partly smooth relative to a linear manifold. However, this family of regularizers does
not include the nuclear norm, whose model manifold is obviously not linear (set of fixed-rank matrices).
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In the reminder of the paper, we focus our attention on the class of regularizers J which are finite-valued
convex and partly smooth at x relative to Tx.

In order to derive quantitative stability bounds in Section 6, it is important to quantify precisely the
local regularity of the mappings x �→ ex, x �→ PSx(fx) and x �→ Jx,◦

fx . This is formalized in the following
definition.

Definition 8 Let Γ be any gauge which is finite and coercive on Tx for x ∈R
N . Let f be any mapping

f :

{
Tx →R

N ,

x̃ �→ fx̃ ∈ ri ∂J(x̃).
(5.1)

For (νx, μx, τx, ξx) ∈R
4
+, we define

J ∈ PSFLx(Γ , fx, νx, μx, τx, ξx)

if J is a finite-valued convex and partly smooth functions at x relative to Tx such that

∀x′ ∈ Tx and Γ (x − x′) � νx �⇒ Tx = Tx′ (5.2)

and, for every x′ ∈ Tx with Γ (x − x′) < νx, one has

Γ (ex − ex′) � μxΓ (x − x′), (5.3)

Jx,◦
fx (PS(fx − fx′)) � τxΓ (x − x′), (5.4)

sup
u∈S
u |= 0

Jx′,◦
fx′ (u) − Jx,◦

fx (u)

Jx,◦
fx (u)

� ξxΓ (x − x′). (5.5)

The following theorem shows that these regularity conditions should really be interpreted as quan-
titative Lipschitz bounds on the variation of the subdifferential ∂J .

Theorem 4 Let J be a partly smooth function at x relative to Tx, and assume that ∂J : R
N ⇒ R

N

is Lipschitz continuous around x relative to Tx. Then, for any gauge Γ which is finite and coer-
cive on Tx, and for any Lipschitz map f of the form (5.1), there exists (νx, μx, τx, ξx) ∈R

4
+ such that

J ∈ PSFLx(Γ , fx, νx, μx, τx, ξx). Moreover, there always exists such a Lipschitz mapping f .

5.3 Operations preserving partial smoothness relative to a subspace

The set PSFLx is closed under addition and pre-composition by a linear operator.

5.3.1 Addition. The following proposition determines the model subspace and the subdifferential
gauge of the sum of two functions

H = J + G

in terms of those associated to J and G.
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Proposition 8 Let J and G be two finite-valued convex functions. Denote TJ and eJ (respectively,
TG and eG) the model subspace and vector at a point x corresponding to J (respectively, G). Then the
subdifferential of H has the decomposability property with the following conditions:

(i) TH = TJ ∩ TG, or equivalently SH = (TH)⊥ = span(SJ ∪ SG).

(ii) eH = PTH (eJ + eG).

(iii) Moreover, let Jx,◦
fx

and Gx,◦
fx

denote the subdifferential gauges for the pairs (J , f J
x ∈ ri ∂J(x)) and

(G, f G
x ∈ ri ∂G(x)), correspondingly. Then, for the particular choice of

f H
x = f J

x + f G
x ,

we have f H
x ∈ ri ∂H(x), and for a given η ∈ SH , the subdifferential gauge of H reads

Hx,◦
f H
x

(η)= inf
η1+η2=η

max(Jx,◦
f J
x

(η1), Gx,◦
f G
x

(η2)).

Armed with this result, we show the following.

Proposition 9 Let x ∈R
N . Suppose that

J ∈ PSFLx(Γ
J , f J

x , νJ
x , μJ

x , τ J
x , ξ J

x ) and G ∈ PSFLx(Γ
G, f G

x , νG
x , μG

x , τG
x , ξG

x ).

Then, for the choice f H
x = f J

x + f G
x and Γ H = max(Γ J , Γ G), we have

H = J + G ∈ PSFLx(Γ
H , f H

x , νH
x , μH

x , τH
x , ξH

x )

with

νH
x = min(νJ

x , νG
x ),

μH
x =μJ

x |||PTH |||Γ J→Γ H + μG
x |||PTH |||Γ G→Γ H ,

τH
x = τ J

x + τG
x + μJ

x |||PSH∩TJ |||Γ J→Hx,◦
f H
x

+ μG
x |||PSH∩TG |||Γ G→Hx,◦

f H
x

,

ξH
x = max(ξ J

x , ξG
x ).

5.3.2 Smooth perturbation. It is common in the literature to find regularizers of the form
Jε(x)= J(x) + (ε/2)||x||22, such as the Elastic net [50]. More generally, we consider any smooth per-
turbation of J . The following is a straightforward consequence of Proposition 8.

Corollary 2 Let J be a finite-valued convex function, x ∈R
N and G be a convex function which is

differentiable at x. Then,

TJ+G
x = TJ and eJ+G

x = eJ
x + PTJ

x
∇G(x).

Moreover, for the particular choice of

f J+G
x = f J

x +∇G(x),
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we have f J+G
x ∈ ri(J + G)(x) and, for a given η ∈ SJ

x , the subdifferential gauge of J + G reads

(J + G)
x,◦
f J+G
x ,x

(η)= Jx,◦
f J
x ,x(η).

Hence, the model subspace Tx and the subdifferential gauge are insensitive to smooth perturbations.
Combining Proposition 9 and Corollary 2 yields the partial smoothness Lipschitz constants of smooth
perturbation.

Corollary 3 Let x ∈R
N . Suppose that J ∈ PSFLx(Γ

J , f J
x , νJ

x , μJ
x , τ J

x , ξ J
x ), and that G is C2 on R

N with
a β-Lipschitz gradient. Then, for the choice f H

x = f J
x +∇G(x) and Γ H = max(Γ J , ||·||), H = J + G ∈

PSFLx(Γ
H , f H

x , νH
x , μH

x , τH
x , ξH

x ) with

νH
x = νJ

x , μH
x =μJ

x |||PTJ |||Γ J→Γ H + β|||PTJ |||�2→Γ H ,

τH
x = τ J

x , ξH
x = ξ J

x .

5.3.3 Pre-composition by a linear operator. Convex functions of the form J0 ◦ D∗, where J0 is a
finite-valued convex function, correspond to the so-called analysis-type regularizers. The most popular
example in this class is the total variation where J0 is the �1- or the �1 − �2-norm, and D∗ = ∇ is a finite
difference discretization of the gradient.

In the following, we denote T = Tx = S⊥ and e = ex the subspace and vector in the decomposition
of the subdifferential of J at a given x ∈R

N . Analogously, T0 = S⊥
0 and e0 are those of J0 at D∗x. The

following proposition details the decomposability structure of analysis-type regularizers.

Proposition 10 Let J0 be a convex finite-valued function. Then the subdifferential of J = J0 ◦ D∗ has
the decomposability property with the following conditions:

(i) T = Ker(D∗
S0

), or equivalently S =�(DS0).

(ii) e = DT e0.

(iii) Moreover, let JD∗x,◦
0,f0,D∗x

denote the subdifferential gauge for the pair (J0, f0,D∗x ∈ ri ∂J0(x)). Then,
for the particular choice of

fx = Df0,D∗x,

we have fx ∈ ri ∂J(x), dom Jx,◦
fx = S and for every η ∈ S

Jx,◦
fx (η)= inf

z∈Ker(DS0 )
JD∗x,◦

0,f0,D∗x
(D+

S0
η + z).

The infimum can be equivalently taken over Ker(D) ∩ S0.

Capitalizing on these properties, we now establish the following.
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Proposition 11 Let x ∈R
N and u = D∗x. Suppose that J0 ∈ PSFLu(Γ0, f0,u, ν0,u, μ0,u, τ0,u, ξ0,u). Then,

with the choice fx = Df0,u and Γ any finite-valued coercive gauge on T , J = J0 ◦ D∗ ∈ PSFLx

(Γ , fx, νx, μx, τx, ξx), with

νx = 1

|||D∗|||Γ→Γ0

ν0,u,

μx =μ0,u|||DT |||Γ→Γ0 |||D∗|||Γ→Γ0 ,

τx = (τ0,u|||D+
S0

DS|||Ju,◦
0,f0,u

→Ju,◦
0,f0,u

+ μ0,u|||D+
S0

DS|||Γ0→Ju,◦
0,f0,u

)|||D∗|||Γ→Γ0 ,

ξx = ξ0,u|||D∗|||Γ→Γ0 .

6. Exact model selection and identifiability

In this section, we state our main recovery guarantee. This result asserts that under appropriate condi-
tions, and for small enough noise, (Pλ(y)) with a partly smooth function J at x0 relative to the linear
manifold Tx0 has a unique solution x�, and moreover, its model subspace equals that of x0, i.e. Tx� = Tx0 .
Put differently, provided that the noise is sufficiently small, regularization by J is able to stably recover
the correct model subspace underlying x0.

6.1 Linearized pre-certificate

Let us first introduce the definition of the linearized pre-certificate.

Definition 9 The linearized pre-certificate αF for x ∈R
N is defined by

αF = argmin
Φ∗

Tx
α=ex

||α||.

The subscript F is used as a salute to Fuchs [17], who first considered this vector as a dual certificate
for �1-minimization. The intuition behind it is well understood if one realizes that the existence of
a dual certificate α is equivalent to η =Φ∗α for some α such that ηT = ex and Jx,◦

fx (ηS − PSfx) � 1.
Dropping the last constraint, and choosing the minimal �2-norm solution to the first constraint recovers
the definition of αF .

A convenient property of this vector is that, under the restricted injectivity condition, it has a closed
form expression.

Lemma 9 Let x ∈R
N and suppose that (CT ) is verified with T = Tx. Then αF is well-defined and

αF =Φ
+,∗
Tx

ex.

Besides condition (CTx) stated above, the following Irrepresentability Criterion will play a pivotal
role.

Definition 10 For x ∈R
N such that (CTx) with T = Tx holds, we define the Irrepresentability Criterion

at x as
IC(x)= Jx,◦

fx (Φ∗
Sx

Φ
+,∗
Tx

ex − PSx fx).

A fundamental remark is that IC(x) < 1 is the analytical equivalent to the topological non-
degeneracy condition Φ∗αF ∈ ri ∂J(x). Note that if J is a strong gauge on T , then it reads
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IC(x)= J◦(Φ∗
Sx

Φ
+,∗
Tx

ex); see Proposition 7. The Irrepresentability Criterion clearly brings into play the
promoted subspace Tx and the interaction between the restriction of Φ to Tx and Sx. It is a generalization
of the irrepresentability condition that has been studied in the literature for some popular regulariz-
ers, including the �1-norm [17], analysis-�1 [44] and �1 − �2 [3]. See Section 7 for a comprehensive
discussion.

6.2 Exact model selection

We begin with the noiseless case, i.e. w = 0 in (1.1). In fact, in this setting, IC(x0) < 1 is a sufficient
condition for identifiability without any other particular assumption on the finite-valued convex func-
tion J , such as partial smoothness. By identifiability, we mean the fact that x0 is the unique solution
of (P0(y)).

Theorem 5 Let x0 ∈R
N and T = Tx0 . We assume that (CT ) holds and IC(x0) < 1. Then x0 is the unique

solution of (P0(y)).

It turns out that even in presence of noise in the measurements y according to (1.1), condition
IC(x0) < 1 is also sufficient for (Pλ(y)) with the PSFLx0 regularizer to stably recover the model subspace
underlying x0. This is stated in the following theorem.

Theorem 6 Let x0 ∈R
N and T = Tx0 . Suppose that J ∈ PSFLx(Γ , νx0 , μx0 , τx0 , ξx0). Assume that (CT )

holds and IC(x0) < 1. Then there exist positive constants (AT , BT ) that solely depend on T and a constant
C(x0) such that if w and λ obey

AT

1 − IC(x0)
||w||� λ � νx0 min(BT , C(x0)), (6.1)

the solution x� of (Pλ(y)) with noisy measurements y is unique, and satisfies Tx� = T . Furthermore,
one has

||x0 − x�|| = O(max(||w||, λ)).

Clearly, this result asserts that exact recovery of Tx0 from noisy partial measurements is possible
with the proviso that the regularization parameter λ lies in the interval (6.1). The value λ should be
large enough to reject noise, but small enough to recover the entire subspace Tx0 . In order for the con-
straint (6.1) to be non-empty, the noise-to-signal level ||w||/νx0 should be small enough, i.e.

||w||
νx0

� 1 − IC(x0)

AT
min(BT , C(x0)).

See the illustrative examples detailed in Section 7 for concrete expressions of the parameter νx0 and how
it relates to a minimal signal level.

The constant C(x0) involved in this bound depends on x0 and has the form

C(x0)= 1 − IC(x0)

ξx0νx0

H

(
DTμx0 + τx0

ξx0

)
,

where H(β)= β + 1/2

ETβ
φ

(
2β

(β + 1)2

)
and φ(u)=√

1 + u − 1.

The constants (DT , ET ) only depend on T . We see that C(x0) captures the influence of the parameters
πx0 = (μx0 , τx0 , ξx0), where the latter reflect the local geometry of the partly smooth regularizer J at x0.
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More precisely, the larger C(x0), the more tolerant the recovery is to noise. Thus favorable regularizers
are those where C(x0) is large.

It is worth noting that this analysis is in some sense sharp following the argument in [46, Proposition
1]. The only case not covered by our analysis is when IC(x)= 1.

7. Examples of partly smooth functions relative to a subspace

7.1 Synthesis �1-sparsity

The regularized problem (Pλ(y)) with J(x)= ||x||1 =
∑N

i=1 |xi| promotes sparse solutions. It goes by the
name of Lasso [42] in the statistical literature, and Basis Pursuit DeNoising (or Basis Pursuit in the
noiseless case) [11] in signal processing.

7.1.1 Structure of the �1-norm. The norm J(x)= ||x||1 is a symmetric (finite-valued) strong gauge.
More precisely, we have the following result.

Proposition 12 J = ||·||1 is a symmetric strong gauge with

Tx = {η ∈R
N : ∀j �∈ I, ηj = 0}, Sx = {η ∈R

N : ∀i ∈ I, ηi = 0},
ex = sign(x), fx = ex, Jx,◦

fx = ||·||∞ + ιSx ,

where I = I(x)= {i : xi |= 0}. Moreover, it is partly smooth relative to a linear manifold with

Γ = ||·||∞, νx = (1 − δ)min
i∈I

|xi|, δ ∈]0, 1] and μx = τx = ξx = 0.

7.1.2 Relation to previous works. The theoretical recovery guarantees of �1-regularization have been
extensively studied in recent years. There is of course a huge literature on the subject, and covering it
comprehensively is beyond the scope of this paper. In this section, we restrict our overview to those
works pertaining to ours, i.e. sparsity pattern recovery in presence of noise.

For instance, an irrepresentability criterion was introduced in [17]. Let s ∈ {−1, 0,+1}N and I be
its support. Suppose that Φ(I) has full column rank, which is precisely (CT ) in this case. The synthesis
irrepresentability criterion IC�1 of s is defined as

IC�1(s)= ||Φ∗
(Ic)Φ

+,∗
(I) s(I)||∞ = max

j∈Ic
|〈Φj, Φ

+,∗
(I) s(I)〉|.

From Definition 10 and Proposition 12, one immediately recognizes that IC�1(sign(x))= IC(x). The
condition IC�1(sign(x)) < 1, also known as the irrepresentability condition in the statistical literature,
was proposed [17] for exact support (and sign) pattern recovery with �1-regularization from partial noisy
measurements. In this respect, this work can then be viewed as a special instance of ours, as Theorem 6
in this case ensures recovery of the support pattern.

7.2 Analysis �1-sparsity

Let D = (di)
P
i=1 be a collection of P atoms di ∈R

N . The analysis semi-norm associated to D
is J(x)= ||D∗x||1 =

∑P
i=1 |〈di, x〉|. Obviously, the synthesis �1-regularization corresponds to D = Id.
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Popular examples of analysis-type �1-semi-norms include, for instance, the discrete (anisotropic) total
variation [39], the Fused Lasso [43] and shift invariant wavelets [40].

7.2.1 Structure of the analysis �1-semi-norm. The semi-norm J(x)= ||D∗x||1 is a symmetric partly
smooth function relative to a linear manifold. This is formalized in the following proposition whose
proof is a straightforward application of Propositions 10, 11 and 12.

Proposition 13 J = ||D∗·||1 is a symmetric (finite-valued) gauge with

Tx = Ker(D∗
(Ic)))=

{
η ∈R

N : ∀j �∈ I, 〈dj, ηj〉 = 0
}

, Sx =�(DIc),

ex = PKer(D∗
Ic )D sign(D∗x), fx = D sign(D∗x),

Jx,◦
fx (η)= inf

z∈Ker(D(Ic))
||D+

(Ic)η + z||∞, for η ∈ Sx,

where I = I(x)= {i : 〈di, xi〉 |= 0}. Moreover, it is partly smooth relative to a linear manifold with
parameters

νx = (1 − δ)min
i∈I

|〈di, xi〉|, δ ∈]0, 1] and μx = τx = ξx = 0.

7.2.2 Relation to previous works. Some insights on the relation and distinction between synthesis-
and analysis-based sparsity regularizations were first given in [15]. When D is orthogonal, and more
generally when D is square and invertible, the two forms of regularization are equivalent in the sense
that the set of minimizers of one problem can be retrieved from that of an equivalent form of the other
through a bijective change of variable. It is only recently that theoretical guarantees of �1-analysis
sparse regularization have been investigated; see [44] for a comprehensive review. Among such works,
the authors in [29] propose a null space property for identifiability in the noiseless case and in [22]
one can find results in the Gaussian setting. The most relevant work to ours here is that of [44], where
the authors prove exact robust recovery of the support and sign patterns under conditions that are a
specialization of those in Theorem 6.

More precisely, let I be the support of D∗x0, and s its sign vector. Define T = Tx0 = S⊥ = Ker(D∗
Ic),

ex0 = sign(D∗x0)= s, e = ex0 = PT Ds, f = fx0 = Ds. From Definition 10 and Proposition 13, the criterion
IC(x0) in this case takes the form

IC(x0)= Jx,◦
fx (Φ∗

S Φ
+,∗
T PT Ds − PSDs)

= inf
z∈Ker(D(Ic))

||D+
(Ic)(Φ

∗
S Φ

+,∗
T PT − PS)Ds + z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)((Id − PT )Φ∗ΦPT (Φ∗

TΦT )−1PT − PS)Ds + z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)(Φ

∗ΦPT (Φ∗
TΦT )−1PT − (PT + PS))Ds + z||∞

= inf
z∈Ker(D(Ic))

||D+
(Ic)(Φ

∗ΦPT (Φ∗
TΦT )−1PT − Id)D(I)s(I) + z||∞.
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Introducing U as a matrix whose columns form a basis of T , IC(x0) can be equivalently rewritten

IC(x0)= inf
z∈Ker(D(Ic))

||D+
(Ic)(Φ

∗ΦA[Ic] − Id)D(I)s(I) + z||∞,

where A[Ic] = U(U∗Φ∗ΦU)−1U∗. We recover exactly the expression of the IC�1−D introduced in [44].

7.3 �∞ anti-sparsity regularization

Regularization by the �∞-norm corresponds to taking J(x)= ||x||∞ = max1�i�N |xi|. This regularizer
promotes flat solutions. It plays a prominent role in a variety of applications including approximate
nearest neighbor search [21] or vector quantization [27]; see also [41] and references therein.

7.3.1 Structure of the �∞-norm. The norm J(x)= ||x||∞ is a symmetric partly smooth function rela-
tive to a linear manifold, but unlike the �1-norm, it is not strongly so (except for N = 2). Therefore, in
the following proposition, we rule out the trivial case x = 0.

Proposition 14 J = ||·||∞ is a symmetric (finite-valued) gauge with

Sx =
{
η : η(Ic) = 0 and 〈η(I), s(I)〉 = 0

}
, Tx =

{
α : α(I) = ρs(I) for ρ ∈R

}
,

ex = s

|I| , fx = ex, Jx,◦
fx (η)= max

i∈I
(−|I|siηi)+ for η ∈ Sx,

where s = sign(x) and I = I(x)= {i : |xi| = ||x||∞}. Moreover, it is partly smooth relative to a linear
manifold with

Γ = ||·||1, νx = (1 − δ)

(
||x||∞ − max

j/∈I
|xj|
)

, δ ∈]0, 1] and μx = τx = ξx = 0.

7.3.2 Relation to previous work. In the noiseless case, i.e. (P0(y)) with J = ||·||∞, theoretical analysis
of �∞-regularization goes back to the 1970s through the work of [8]. Lyubarskii & Vershynin [27] pro-
vided results that characterize signal representations with small (but not necessarily minimal) �∞-norm
subject to linear constraints. A necessary and sufficient condition for a vector to be the unique minimizer
of (P0(y)) is derived in [28]. The work of [14] analyzes recovery guarantees by �∞-regularization in a
noiseless random sensing setting.

The authors in [41] analyzed the properties of solutions obtained from a constrained form of (Pλ(y))
with J = ||·||∞. In particular, they improved and generalized the bound of [27] on the �∞ of the solution.

The work of [5,31] studies robust recovery with regularization using a subclass of polyhedral norms
obtained by convex relaxation of combinatorial penalties. Although this covers the case of the �∞-norm,
their notion of support is, however, completely different from ours. We will come back to this work with
a more detailed discussion in Section 7.5.
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7.4 Group sparsity regularization

Let us recall from Section 3.1 that B is a uniform disjoint partition of {1, . . . , N},

{1, . . . , N} =
⋃
b∈B

b, b ∩ b′ = ∅ ∀b |= b′.

The �1 − �2-norm of x is

J(x)= ||x||B =
∑
b∈B

||xb||.

This prior has been advocated when the signal exhibits a structured sparsity pattern where the entries are
assumed to be clustered in few non-zero groups; see, for instance, [6,49]. The corresponding regularized
problem (Pλ(y)) is known as the group Lasso.

7.4.1 Structure of the �1-�2-norm. The �1 − �2-norm is a symmetric partly smooth function relative
to a linear manifold.

Proposition 15 The �1 − �2-norm associated to the partition B is a symmetric (finite-valued) strong
gauge with

Tx =
{
η : ∀j /∈ I, ηj = 0

}
, Sx = {η : ∀i ∈ I, ηi = 0},

ex = (N (xb))b∈B, fx = ex, Jx,◦
fx = ||·||∞,2 + ιSx ,

where I = I(x)= {b : xb |= 0} , and N (a)= a/||a|| if a |= 0, and N (0)= 0. Moreover, it is partly smooth
relative to a linear manifold with

Γ = ||·||∞,2, νx = (1 − δ)min
b∈I

||xb||, δ ∈]0, 1], μx =
√

2

νx
and τx = ξx = 0.

7.4.2 Relation to previous work. Theoretical guarantees of the group Lasso have been investigated
by several authors under different performance criteria; see e.g. [3,12,26,38,47,49] to cite only a few.
In particular, the author in [3] studies the asymptotic group selection consistency of the group Lasso
in the overdetermined case, under a group irrepresentability condition. This condition also appears in
noiseless identifiability in the work of [9]. The group irrepresentability condition is nothing, but the
specialization to the group Lasso of our condition based on IC(x0). Indeed, using Definition 10 and
Proposition 15, and assuming that Φ(I) is full column rank (i.e. (CT ) is fulfilled), IC(x0) reads

IC(x0)=
∥∥∥∥Φ∗

(Ic)Φ
+,∗
(I)

(
xb

||xb||
)

b∈I

∥∥∥∥
∞,2

. (7.1)

It is worth mentioning that the discrete isotropic total variation in d-dimension, d � 2, can be viewed
as an analysis-type �1 − �2-semi-norm. Partial smoothness and theoretical recovery guarantees with
such a regularization, can be retrieved from those of this paper using the results on the pre-composition
rule given in Section 5.3.3.
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7.5 Polyhedral regularization

The �1- and �∞-norms are special cases of polyhedral priors. There are two alternative ways to define
a polyhedral gauge. The H-representation encodes the gauge through the hyperplanes that support the
polygonal facets of its unit level set. The V -representation encodes the gauge through the vertices that
are the extreme points of this unit level set. We focus here on the H-representation.

7.5.1 Structure of polyhedral gauges. A polyhedral gauge in the H-representation is defined as

J(x)= max
1�i�NH

(〈x, hi〉)+ = J0(H
∗x), where J0(u)= max

1�i�NH

(ui)+,

and we have defined H = (hi)
NH
i=1 ∈R

N×NH .
Such a polyhedral gauge can also be thought of as an analysis gauge as considered in Section 5.3.3

by identifying D = H . One can then characterize decomposability and partial smoothness relative to a
linear manifold of J0 and then invoke Proposition 10 and 11 to derive those of J . This is what we are
about to do. In the following, we denote by (ai)1�i�NH the standard basis of R

NH .

Proposition 16 J0(u)= max1�i�NH (ui)+ is a (finite-valued) gauge and the following conditions are
satisfied:

• If ui � 0, ∀i ∈ {−1, 0,+1}, then

Su = span(ai)i∈I0 , Tu = span(ai)i/∈I0 ,

eu = 0, fu =μ
∑
i∈I0

ai for any 0 < μ < 1,

J◦,u
fu (η)= inf

τ�maxi∈I0 (−ηi)+/μ
max

(
τμ|I0| +

∑
i∈I0

ηi, τ

)
for η ∈ Su,

where
I0 = {i ∈ {1, . . . , NH } : ui = J0(u)= 0}.

• If ∃i ∈ {1, . . . , NH } such that ui > 0, then

Su = {η : η(Ic+) = 0 and 〈η(I+), s(I+)〉 = 0},
Tu = {α : α(I+) =μs(I+) for μ ∈R},
eu = s

|I+| , fu = eu, J◦,u
fu (η)= max

i∈I+
(−|I+|ηi)+ for η ∈ Su,

where
s =
∑
i∈I+

ai and I+ = {i ∈ {1, . . . , NH } : ui = J0(u) and ui > 0}.

Moreover, it is partly smooth relative to a linear manifold with parameters (assuming I+ |=∅)

νu = (1 − δ)

(
max
i∈I+

ui − max
j/∈I+,uj>0

uj

)
, δ ∈]0, 1] and μu = τu = ξu = 0.
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7.5.2 Relation to previous works. As stated in the case of �∞-norm, the work of [5] considers robust
recovery with a subclass of polyhedral norms, but his notion of support is different from ours. The
work [34] studies numerically some polyhedral regularizations. Again in a compressed sensing scenario,
the work of [10] studies a subset of polyhedral regularizations to get sharp estimates of the number of
measurements for exact and �2-stable recovery. The closest work to ours is that reported in [45], where
theoretical recovery guarantees by polyhedral regularization were provided under similar conditions to
ours and with the same notion of support as considered above. However, only finite-valued coercive
polyhedral gauges were considered there.

7.6 A counter-example: the nuclear norm

The nuclear norm is the natural extension of �1 sparsity to matrix-valued data x ∈R
N0×N0 (where

N = N2
0 ). We denote x = Vxdiag(Λx)U∗

x an SVD decomposition of x, where Λx ∈R
N0+ . Note that this

can be extended easily to rectangular matrices. The nuclear norm imposes such a sparsity and is defined
as

J(x)= ||x||∗ = ||Λx||1;

see [46] and the reference therein. This norm can be shown to be partly smooth (in the sense of
Definition 7) at some x with respect to the set M= {x′ : rank(x)= rank(x′)

}
that is locally a mani-

fold around x. This manifold is, however, not a linear space, hence one does not have M= Tx. This
shows that the nuclear norm is not in the set PSFLx of functions that are partly smooth with respect
to a linear manifold (in the sense of Definition 8). In particular, Theorem 6 cannot be applied to this
functional.

It is, however, possible to show that the manifold M associated to x is stable to small noise pertur-
bation in the observation under the same hypotheses as Theorem 6. This result is proved in [46], which
extends the previous result of Bach [4]. Note, however, that these proofs do not give explicit stability
constants, in contrast to Theorem 6.

8. Case study: compressed sensing with �∞-regularization

In this section, based on the generalized irrepresentability condition, we provide a bound for the sam-
pling complexity to guarantee exact and stable recovery of the model subspace Tx0 of anti-sparsity
minimization from noisy Gaussian measurements.

Theorem 7 Let x be an arbitrary vector with its saturation support I, its model tangent subspace Tx = S⊥
x

and model vector ex as defined in Proposition 14. Let β > 1. For Φ drawn from the standard Gaussian
ensemble with

Q � N − |I| + 2β|I| log(|I|/2),

IC(x) < 1 with probability at least 1 − 2(|I|/2)−f (β,|I|), where

f (β, |I|)=
(√

β

2|I| + β − 1 −
√

β

2|I|

)2

.
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The above bound and probability bears some similarities to what we get with �1 minimization,
except that now the probability of success scales in a power of |I| and not N directly. The reason
underlying such a similarity is the proof technique usual in compressed sensing-type bounds and the
use of the minimal �2-norm dual certificate.

The map f (β, |I|) is an increasing function of |I|, so that lim|I|→∞ f (β, |I|)= β − 1 and the proba-
bility of success increases with increasing size of the saturation support. But this comes at the price of
a stronger requirement on the number of measurements.

For the noiseless problem (P0(y)), it can be shown using arguments based on the statistical dimen-
sion [1] of the descent cone of the �∞-norm that there is a phase transition exactly at N − |I|/2; see
also [10, Proposition 3.12]. The reason is that each face of the descent cone of the hypercube at a
point living on its k-dimensional face is the direct sum of a subspace (the subspace parallel to the
face), and of an orthant of dimension N − k (up to an isometry). The statistical dimension is then
(N − k)/2 + k = (N + k)/2 = N − |I|/2, observing that k = N − |I|.

9. Conclusion

In this paper, we introduced the notion of partly smooth function relative to a linear manifold as a generic
convex regularization framework, and presented a unified view to derive exact and robust recovery
guarantees for a large class of convex regularizations. In particular, we provided sufficient conditions
ensuring uniqueness of the minimizer to both (Pλ(y)) and (P0(y)), whose by-product is to guarantee
exact recovery of the original object x0 in the noiseless case by solving (P0(y)). In presence of noise,
sufficient sharp conditions were given to certify exact recovery of the model subspace underlying x0. As
shown in the considered examples, these results encompass a variety of cases extensively studied in the
literature (e.g. �1, analysis �1, �1 − �2), as well as less popular ones (�∞, polyhedral). We exemplified
the usefulness of this analysis by providing a sampling complexity bound for exact support recovery in
�∞-regularization from Gaussian measurements.
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Appendix A. Proofs of Section 2

Proof of Lemma 2. (i)–(iii) Are obtained from [20, Theorem V.1.2.5]. (iv) Is obtained by combin-
ing [20, Corollary V.1.2.6 and Proposition IV.3.2.5]. (v) The second statement follows by combining
(iii)–(iv), while the first part is the second one written in dom γC = aff C = par C since 0 ∈ ri C. �

Proof of Lemma 3. (i) Follows from [36, Theorem 15.1]. (ii) [36, Corollary 15.1.1] or [20, Proposi-
tion V.3.2.4]. (iii) [36, Corollary 15.1.2] or [20, Proposition V.3.2.5]. �

Proof of Lemma 4. We have from Lemma 3 and calculus rules on support functions,

γ(C1+C2)◦ = σC1+C2 = σC1 + σC2 .

Thus

(C1 + C2)
◦ = {u : σC1(u) + σC2(u) � 1}.
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This yields that

γC1+C2(x)= σ(C1+C2)◦(x)

= σσC1 (u)+σC2 (u)�1(x)

= sup
σC1 (u)+σC2 (u)�1

〈u, x〉

= sup
ρ∈[0,1]

sup
σC1 (u)�ρ,σC2 (u)�1−ρ

〈u, x〉

= sup
ρ∈[0,1]

σσC1 (u)�ρ

+∨ σσC2 (u)�1−ρ(x) [20, Proposition 1.3.2]

= sup
ρ∈[0,1]

ρσσC1 (u)�1
+∨ (1 − ρ)σσC2 (u)�1(x) Positive homogeneity

= sup
ρ∈[0,1]

ρσC◦
1

+∨ (1 − ρ)σC◦
2
(x) Polarity

= sup
ρ∈[0,1]

ργC1

+∨ (1 − ρ)γC2(x), Lemma 3

which is the first assertion.
The last identity can be rewritten as

γC1+C2(x)= sup
ρ∈[0,1]

inf
x1+x2=x

ργC1(x1) + (1 − ρ)γC2(x2).

Under the assumptions of the lemma, the objective in the sup inf is a continuous finite concave–convex
function2 on [0, 1] × {(x1, x2) : x1 + x2 = x}. Since the latter sets are non-empty, closed and convex, and
[0, 1] is obviously bounded, we have, from using [36, Corollary 37.3.2],

γC1+C2(x)= inf
z∈RN

sup
ρ∈[0,1]

ργC1(z) + (1 − ρ)γC2(x − z)

= inf
z∈RN

max(γC1(z), γC2(x − z)). �

Proof of Lemma 5. It is immediate to see that D(C) is a compact convex set containing the origin.
Moreover, σC is finite-valued by compactness of C, and thus σC ◦ D∗ is finite-valued. Thus, we have

γ(D(C))◦ = σD(C) Lemma 3

= (ιD(C))
∗ Legendre–Fenchel conjugacy

= σC ◦ D∗ [20, Theorem X.2.1.1]. (A.1)

Now, recall that, by Lemma 3, γC◦ = σC which is then finite-valued owing to the compactness of C. In
view of Lemma 2(iii), this is equivalent to 0 ∈ int(C◦). Therefore, we have the qualification condition

2 A concave–convex function f on C × D is a function such that, for each c ∈ C, the function d �→ f (c, d) is concave, and for
each d ∈ D, the function c �→ f (c, d) is convex.
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�(D∗) ∩ int(C◦) |= ∅. We then obtain

γD(C)(x)= σ(D(C))◦(x) By definition

= σσC◦D∗(u)�1(x) From (A.1)

= (ισC(w)�1 ◦ D∗)∗(x) Legendre–Fenchel conjugacy

= inf
v

σσC(w)�1(v) s.t. Dv = x [20, Theorem X.2.2.3]

= inf
z∈Ker(D)

σσC(w)�1(D
+x + z) Change of variable

= inf
z∈Ker(D)

γC(D+x + z) Lemma 3. �

Proof of Proposition 4. Let x ∈R
N . We have

∂J(x)= FC◦(x)= H ∩ C◦,

where H = {η ∈R
N : 〈η, x〉 = J(x)} is the supporting hyperplane of C◦ at x. By Proposition 5(i), we

have

S̄x = aff ∂J(x)⊆ H ,

which implies that

S̄x ∩ C◦ ⊆ H ∩ C◦.

The converse inclusion is true since ∂J(x)= H ∩ C◦ ⊆ S̄x. �

Proof of Proposition 5. (i) Each element of S̄x can be written as u =∑k
i=1 ρiηi, for k > 0, where

ηi ∈ ∂J(x) and
∑k

i=1 ρi = 1. By Fenchel identity3 applied to the gauge J , and using Lemma 3(iii),
we have

〈x, ηi〉 = J(x) + ιC◦(ηi) ∀i.

Since ηi ∈ ∂J(x)⊆ C◦, we obtain

〈x, ηi〉 = J(x) ∀i,

Multiplying by ρi and summing this identity over i and using the fact that
∑k

i=1 ρi = 1, we obtain
the desired result.

(ii) For any v ∈ Sx, we have v + ex ∈ S̄x since ex ∈ S̄x. Thus applying (i), we obtain 〈x, ex + v〉 = J(x)
and 〈x, ex〉 = J(x). Combining both identities implies that 〈x, v〉 = 0, ∀v ∈ Sx, or equivalently that
x ∈ S⊥

x = Tx.

3 The Fenchel identity states that, for a closed function, f (x) + f ∗(s)= 〈s, x〉 if, and only if, s ∈ ∂f (x).
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(iii) Since fx ∈ ri ∂J(x)⊂ S̄x, Proposition 1 implies that fx = PSx(fx) + PTx(fx)= PSx(fx) + ex. Hence,
using Proposition 4, we obtain

∂J(x) − fx = (C◦ − fx) ∩ (S̄x − fx)

= (C◦ − fx) ∩ (Sx − {PSx(fx)})
= (C◦ − fx) ∩ Sx.

We therefore obtain

Jx,◦
fx (η)= γ(C◦−fx)∩Sx(η)

= max(γC◦−fx(η), γSx(η))

= max(γC◦−fx(η), ιSx(η))

= γC◦−fx(η) + ιSx(η).

At this stage, Lemma 4 does not apply straightforwardly since 0 ∈ C◦, but fx |= 0 in general.
However, proceeding as in the proof of that lemma, we arrive at

γC◦+{−fx}(η)= sup
ρ∈[0,1]

ρJ◦ +∨ (1 − ρ)σ{−fx}◦ ,

where, from Definition 1, {−fx}◦ = {η : 〈η, fx〉�−1}, which indeed contains the origin as an
interior point. Continuing from the last equality, we get, using Lemma 3,

γC◦+{−fx}(η)= sup
ρ∈[0,1]

ρJ◦ +∨ (1 − ρ)γ{−fx}◦◦(η)

= sup
ρ∈[0,1]

ρJ◦ +∨ (1 − ρ)γconv({−fx}∪{0})(η)

= sup
ρ∈[0,1]

ρJ◦ +∨ (1 − ρ)γ{−μfx: μ∈[0,1]}(η).

It is easy to see that

γ{−μfx: μ∈[0,1]}(−η)=
{

τ if η ∈ τ fx, τ ∈R+,

+∞ otherwise.

Thus

γC◦+{−fx}(η)= sup
ρ∈[0,1]

inf
τ�0

ρJ◦(τ fx + η) + (1 − ρ)τ .

Recalling that J◦ is a finite-valued gauge, hence continuous, the objective in the sup inf fulfills
the assumption of the second assertion of Lemma 4, whence we obtain

γC◦+{−fx}(η)= inf
τ�0

max(J◦(τ fx + η), τ).
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(iv) Using some calculus rules with support functions and assertion (ii), we have

Jx
fx(d)= Jx

fx(dSx)= σ(C◦+{−fx})∩Sx(dSx) By definition of Jx,◦
fx

= conv
(
inf(σC◦+{−fx}(dSx), σSx(dSx))

)
[20, Theorem 3.3.3(iii)]

= conv
(
inf(σC◦+{−fx}(dSx), ιTx(dSx))

)
Conjugacy rule on subspaces

= σC◦+{−fx}(dSx) dSx ∈ Sx = T⊥
x

= σC◦(dSx) − 〈PSx(fx), dSx〉 [20, Theorem 3.3.3(i)]

= J(dSx) − 〈PSx(fx), dSx〉 Lemma 3 and definition of J . �

Proof of Lemma 1. To lighten the notation, define V = par C.

(i) [20, Proposition V.2.1.2].

(ii) [20, Proposition V.2.1.3].

(iii) The proof is immediate from the definition and 0 ∈ C.

(iv) As 0 ∈ C, we have

0 � σC(d) � σaff C(d)= σV (d).

Thus σC(d)= 0, ∀d ∈ V⊥, or equivalently, V⊥ ⊂ Ker σC , whence we get that σC(d)= σC(dV ).

(v) The fact that σC is finite-valued and is a consequence of (ii) since C is assumed bounded. Now,
in view of [20, Theorem V.2.2.3], we have the equivalent characterization

0 ∈ ri C ⇔ σC(d) > 0 ∀d such that σC(d) + σC(−d) > 0.

By definition of the support function and closedness of C, σC(d) + σC(−d) > 0 if, and
only if, there exists two points x and x′ in C satisfying 〈x − x′, d〉> 0, or equivalently
d /∈ (C − C)⊥ = V⊥. We then conclude that 0 ∈ ri C ⇔ σC(d) > 0, ∀d /∈ V⊥. Combining this
with (iv), the claim follows. �

Proof of Lemma 6. Lipschitz continuity of F on U means that, for any pair x, x′ in U , we have

F(x)⊆ F(x′) + β||x − x′||B(0) and F(x′)⊆ F(x) + β||x − x′||B(0),

which in turn is equivalent to

σF(x′)(u) � σF(x)+β||x′−x||B(0) = σF(x)(u) + β||x − x′||||u||,
σF(x)(u) � σF(x′)+β||x′−x||B(0) = σF(x′)(u) + β||x − x′||||u||

and thus

|σF(x′)(u) − σF(x)(u)|� β||x′ − x||||u||.
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By assumption, for any x ∈ U , F(x) is compact, and thus σF(x) is everywhere finite by Lemma 1(ii).
Moreover, since 0 ∈ ri F(x), we have from Lemma 1(v) that σF(x) is coercive on par(F(x)). More-
over, dom(γF(x))= par(F(x)) and γF(x) is coercive on par(F(x)); see Lemma 2(v). It follows from this
coercivity and finiteness that, for any u ∈ par(F(x)), one has

σF(x)(u) � |||Id|||σF(x)→γF(x)γF(x)(u) � (sup
x∈U

|||Id|||σF(x)→γF(x) )︸ ︷︷ ︸
Cσ→γ

γF(x)(u), (A.2)

γF(x)(u) � |||Id|||γF(x)→σF(x)σF(x)(u) � (sup
x∈U

|||Id|||γF(x)→σF(x) )︸ ︷︷ ︸
Cγ→σ

σF(x)(u), (A.3)

where Cσ→γ <+∞ and Cγ→σ <+∞. Clearly, σF(x) and γF(x) are equivalent on par(F(x)) uniformly
over x ∈ U . Therefore, there is a constant C that can be easily expressed in terms of Cσ→γ and Cγ→σ ,
such that, for any u ∈ par(F(x)) ∩ par(F(x′)),

|γF(x′)(u) − γF(x)(u)|� C|σF(x′)(u) − σF(x)(u)|� Cβ||u||||x′ − x||. �

Appendix B. Proofs of Section 3

Proof of Proposition 1. (i) This is due to the fact that ex is the orthogonal projection of 0 on the
affine space S̄x. It is therefore an element of S̄x ∩ (S̄x − ex)

⊥, i.e. ex ∈ S̄x ∩ Tx.

(ii) This is straightforward from the fact that Sx = {η ∈R
N : ηTx = 0}, S̄x = Sx + ex and ex ∈ Tx

from (i). �

Proof of Proposition 2. The proof it follows from Lemma 2(v) since 0 ∈ ri(∂J(x) − fx). �

Proof of Proposition 3. The gauge Jx
fx is the support function of the compact convex set

Kx
def.= ∂J(x) − fx = {η ∈R

N : Jx,◦
fx (η) � 1} ⊂ Sx,

where the inclusion follows from Proposition 2. Observe that 0 ∈ ri Kx. We then invoke Lemma 1 to get
the desired claims. �

Proof of Theorem 1. Invoking Proposition 1, we get that, for every η ∈ ∂J(x), ηTx = ex and PTx(fx)= ex.
It remains now to uniquely characterize the part of the subdifferential lying in Sx, i.e. ∂J(x) − ex. Since
fx ∈ ri ∂J(x), we have from the one-to-one correspondence of Lemma 2(i) and the definition of the
subdifferential gauge,

η ∈ {η ∈R
N : Jx,◦

fx (ηSx − PSx(fx)) � 1} ⇐⇒ ηSx − PSx(fx) ∈ ∂J(x) − fx

⇐⇒ ηSx ∈ ∂J(x) − ex

⇐⇒ η ∈ ∂J(x). �
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Proof of Proposition 6. This is a convenient rewriting of the fact that x is a global minimizer if, and
only if, 0 is a subgradient of the objective function at x.

(i) For problem (Pλ(y)), this is equivalent to

1

λ
Φ∗(y − Φx) ∈ ∂J(x).

Projecting this relation on T and S yields the desired result.

(ii) Let us turn to problem (P0(y)). We have at any global minimizer x

0 ∈ ∂J(x) + Φ∗N{α: α=y}(Φx),

where N{α: α=y}(x) is the normal cone of the constraint set {α : α = y} at x, which is obviously
the whole space R

Q. Thus, this monotone inclusion is equivalent to the existence of α ∈R
Q

such that

Φ∗α ∈ ∂J(x).

Projecting again this on T and S proves the assertion. �

Proof of Lemma 7. Let J = γC , x ∈ T and x′ ∈ S.
⇒: We recall that C = {u : J(u) � 1}. By virtue of Lemma 3(iii), we have

J◦(x + x′)= sup
u∈C

〈x + x′, u〉

= sup
J(u)�1

〈x + x′, u〉

= sup
J(uT+uS)�1

〈x, uT 〉 + 〈x′, uS〉

= sup
J(uT )+J(uS)�1

〈x, uT 〉 + 〈x′, uS〉 by separability of J

= sup
ρ∈[0,1]

sup
J(uT )�ρ,J(uS)�1−ρ

〈x, uT 〉 + 〈x′, uS〉

= sup
ρ∈[0,1]

ρ sup
J(uT )�1

〈x, uT 〉 + (1 − ρ) sup
J(uS)�1

〈x′, uS〉

= sup
ρ∈[0,1]

ρ sup
v∈C∩T

〈x, v〉 + (1 − ρ) sup
w∈C∩S

〈x′, w〉

= sup
ρ∈[0,1]

ρσC∩T (x) + (1 − ρ)σC∩S(x
′)

= max(σC∩T (x), σC∩S(x
′)).

Using [20, Theorem V.3.3.3(iii)], we have

σC∩T (x)= conv (inf(σC(x), ιS(x)))= σC(x)= J◦(x)
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and
σC∩S(x

′)= conv
(
inf(σC(x′), ιT (x′))

)= σC(x′)= J◦(x′),

the implication follows.
⇐: Using again Lemma 3, we obtain

J(x + x′)= sup
u∈C◦

〈x + x′, u〉

= sup
J◦(uT+uS)�1

〈x, uT 〉 + 〈x′, uS〉

= sup
max(J◦(uT ),J◦(uS))�1

〈x, uT 〉 + 〈x′, uS〉

= sup
J◦(uT )�1,J◦(uS)�1

〈x, uT 〉 + 〈x′, uS〉

= sup
v∈C◦∩T

〈x, v〉 + sup
w∈C◦∩S

〈x′, w〉

= σC◦∩T (x) + σC◦∩S(x
′)

= conv (inf(σC◦(x), ιS(x))) + conv
(
inf(σC◦(x′), ιT (x′))

)
= σC◦(x) + σC◦(x′)

= J(x) + J(x′).

This concludes the proof. �

Proof of Proposition 7. Let J = γC. We only need to show that Jx,◦
ex

(ηSx)= J◦(ηSx). This follows from
Proposition 2, Lemmas 7 and 3(ii). Indeed,

Jx,◦
ex

(ηSx)= inf
τ�0

max(J◦(τex + ηSx), τ) from Proposition 2

= inf
τ�0

max(τJ◦(ex), J◦(ηSx), τ) from Lemma 7

= inf
τ�0

max(J◦(ηSx), τ) from ex ∈ ∂J(x)⊂ C◦

= J◦(ηSx). �

Appendix C. Proofs of Section 4

Proof of Lemma 8. Let x1, x2 be two (global) minimizers of (Pλ(y)). Suppose that Φx1 |=Φx2. Define
xt = tx1 + (1 − t)x2 for any t ∈ (0, 1). By strict convexity of u �→ ||y − u||22, one has

1

2
||y − Φxt||22 <

t

2
||y − Φx1||22 +

1 − t

2
||y − Φx2||22.

Since J is convex, we obtain
J(xt) � tJ(x1) + (1 − t)J(x2).

Combining these two inequalities contradicts the fact that x1, x2 are global minimizers of (Pλ(y)). �
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Proof of Theorem 2. To prove this theorem, we need the following lemmata. �

Lemma C.1 Let C be a non-empty closed convex set and f be a proper lsc convex function. Let x be a
minimizer of minz∈C f (z). If

f ′(x, z − x) > 0 ∀z ∈ C, z |= x,

then x is the unique solution of f on C.

Proof. We first show that t �→ (f (x + t(z − x)) − f (z))/t is non-decreasing on (0, 1]. Indeed, let
g : [0, 1] →R be a convex function such that g(0)= 0. Let (t, s) ∈ (0, 1]2 with s > t. Then,

g(t)= g(s(t/s))= g(s(t/s) + (1 − t/s)0)

� t
g(s)

s
+ (1 − t/s)g(0)

= t
g(s)

s
,

which proves that t ∈ (0, 1] �→ g(t)/t is non-decreasing on (0, 1]. Since f is convex, applying this result
shows that the function

t ∈ (0, 1] �→ g(t)= f (x + t(z − x)) − f (z)

is such that g(0)= 0 and g(t)/t is non-decreasing.
Assume now that f ′(x, z − x) > 0. Then, for every x ∈ C,

g(1)= f (z) − f (x) � f ′(x, z − x) > 0 ∀z ∈ C, z |= x,

which is equivalent to x being the unique minimizer of f on C. �

We now compute the directional derivative of a finite-valued convex function J .

Lemma C.2 The directional derivative J ′(x, δ) at point x ∈R
N in the direction δ reads

J ′(x, δ)= 〈ex, δTx〉 + 〈PSx(fx), δSx〉 + Jx
fx(δSx).

Proof. This comes directly from the structure of Jx
fx . Indeed, one has

Jx
fx(δSx)= Jx

fx(δ) Using Proposition 3(ii)

= sup
η∈∂J(x)−{−fx}

〈η, δ〉

=−〈δ, fx〉 + sup
η∈∂J(x)

〈η, d〉

=−〈δ, fx〉 + J ′(x, δ)

=−〈ex, δTx〉 − 〈PSx(fx), δSx〉 + J ′(x, δ).

We are now in a position to show Theorem 3. We provide the proof for (Pλ(y)). That of (P0(y)) is
similar.



MODEL SELECTION WITH LOW COMPLEXITY PRIORS 271

Let x be a solution of (Pλ(y)). According to Lemma 8, the set of minimizers of (Pλ(y)) reads
M ⊆ x + Ker(Φ), which is a closed convex set. We can therefore rewrite (Pλ(y)) as

min
z∈M

J(z).

Invoking Lemma C.1 with C = M, x is thus the unique minimizer if

∀δ ∈ Ker(Φ) \ {0}, J ′(x, δ) > 0.

Using Lemma C.2 and the fact that Ker(Φ) is a subspace, this is equivalent to

∀δ ∈ Ker(Φ) \ {0}, 〈ex, δT 〉 + 〈PS(fx), δS〉< Jx
fx(−δS),

which is (NSPS). �

Proof of Corollary 1. Using [20, Theorem V.2.2.3] and the fact that J ′(·; δ) is the support function of
∂J(x), we know that

η ∈ ri(∂J(x))⇔ J ′(x, δ) > 〈η, δ〉 ∀δ such that J ′(x, δ) + J ′(x,−δ) > 0.

Applying this with η =Φ∗α ∈ ri(∂J(x)), and using Lemma C.2, we obtain

Φ∗α ∈ ri(∂J(x))⇔ J ′(x, δ) > 〈α, Φδ〉 ∀δ such that Jx
fx(δ) + Jx

fx(−δ) > 0.

Moreover, since Jx
fx and Ker(Jx

fx)= Tx = T from Proposition 3(iii), and (CT ) holds, we obtain

Φ∗α ∈ ri(∂J(x))⇔ J ′(x, δ) > 〈α, Φδ〉 ∀δ /∈ T

⇒ J ′(x, δ) > 0 ∀δ ∈ Ker(Φ).

We conclude using Theorem 2. �

Proof of Theorem 3. (i) Let the dual vector be α = (y − Φx)/λ, and η =Φ∗α ∈ ∂J(x) by
Theorem 1(i). We then observe that

η ∈ {η ∈R
N : J◦

fx(ηS − PS(fx)) < 1} ⇐⇒ ηS − PS(fx) ∈ ri(∂J(x) − {0})
⇐⇒ η ∈ ri(∂J(x)).

Thus, applying Corollary 1 with such a dual vector yields the assertion.

(ii) The proof is similar to (i) except that we invoke Theorem 1(ii).
�

Appendix D. Proofs of Section 5

Proof of Theorem 4. Without loss of generality, we show this result for Γ = ||·|| since for every x ∈R
N ,

Γ (x) � |||Id|||Γ→�2 ||x||.
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Recall that J is partly smooth at x relative to Tx, and ∂J : R
N ⇒ R

N is Lipschitz continuous around
x relative to Tx.

• Existence of fx. Such a mapping exists according to [2, Theorem 9.4.3].

• ν-stability. Using [24, Proposition 2.10] the sharpness property Definition 7(ii) is locally stable.
Hence, for x′ ∈ Tx in a neighborhood of x, Tx′(Tx)= Tx = Tx′ . The radius of this neighborhood can
be taken as νx.

• μ-stability. Using [20, Corollary VI.2.1.3], we write, for any h ∈ Tx,

J(x + th)= J(x) + t〈s, h〉 + o(t)= J(x) + t〈ex, h〉 + o(t),

where s ∈ F∂J(x)(h). Since J restricted to Tx ∩ U is C2 according to the smoothness property, repeat-
ing this argument at order 2 allows one to conclude that the mapping z ∈ Tx ∩ U �→ ez is C1, when
local Lipschitz continuity follows immediately.

• τ -stability. One has

Jx,◦
fx (PS(fx − fx′)) � |||PSx |||Jx,◦

fx
→�2 ||fx − fx′ ||� τx||x − x′||,

where τx = |||PSx |||Jx,◦
fx

→�2β and β is the Lipschitz constant associated to fx, proving (5.4).

• ξ -stability. By assumption, there exists a neighborhood of x, say U , such that ∂J is κ-Lipschitz on
U ∩ Tx, and x �→ fx is β-Lipschitz. Hence, the mapping x �→ (∂J(x) − fx) is (κ + β)-Lipschitz on
U ∩ Tx. Moreover, from the ν-stability, we have Sx = par(∂(x))= par(∂(x′)) for all x′ in U ∩ Tx. In
view of Lemma 6, we get that, for any u ∈ Sx, there is a constant C <+∞ such that

Jx′,◦
fx′ (u) − Jx,◦

fx (u) � C(β + κ)||x′ − x||||u||.

Since ||u||� |||Id|||�2→Jx,◦
fx

J x,◦
fx (u), we get the desired bound by setting ξx = C(β + κ)|||Id|||�2→Jx,◦

fx
. �

Proof of Proposition 8. (i) First, we have (recall that H and G are everywhere finite)

∂H(x)= ∂J(x) + ∂G(x).

Let SJ = span(∂J(x) − ηJ ) and SG = span(∂G(x) − ηG) for any pair ηJ ∈ ∂J(x) and ηG ∈ ∂G(x).
Choosing ηH = ηJ + ηG ∈ ∂H(x), we have

SH = span(∂H(x) − ηH)

= span((∂J(x) − ηJ )+(∂G(x) − ηG))

= span(span(∂J(x) − ηJ )+span(∂G(x) − ηG))

= span(SJ ∪ SG).

As a consequence, we have TH = (SH )⊥ = TJ ∩ TG.
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(ii) Moreover, since TH⊥SJ ∪ SG, we have from Proposition 1(iii) that

eH = PTH (∂H(x))= PTH (∂J(x)+∂G(x))

= PTH (eJ + PSJ ∂J(x) + eG + PSG∂G(x))

= PTH (eJ + eG).

(iii) As f J
x ∈ ri ∂J(x) and f G

x ∈ ri ∂G(x), it follows from [36, Corollary 6.6.2] that

f H
x = f J

x + f G
x ∈ ri ∂J(x) + ri ∂G(x)= ri(∂J(x) + ∂G(x))= ri ∂H(x).

The subdifferential gauge associated to H is then

Hx,◦
f = γ∂H(x)−f H

x
= γ(∂J(x)−f J

x )+(∂G(x)−f G
x ),

which is coercive and finite on SH according to Proposition 2. Invoking Lemma 4, we get the
desired result since, for any ρ � 0,

u �→ ρJx,◦
f J
x

(u) + (1 − ρ)Gx,◦
f G
x

(η − u)= ργ∂J(x)−f J
x
(u) + (1 − ρ)γ∂G(x)−f G

x
(η − u)

is finite and continuous on SJ ∩ (SG + η) for η ∈ SH = span(SJ + SG) by (i). �

Proof of Proposition 9. In the following, all operator bounds that appear are finite owing to the coer-
civity assumption on the involved gauges in Definition 8 of a partly smooth regularizer.

It is straightforward to see that the function Γ H = max(Γ J , Γ G) is indeed a gauge, which is finite
and coercive on TH = TJ ∩ TG. Moreover, given that both J and G are partly smooth relative to a
linear manifold at x with corresponding parameters νJ

x and νG
x , we have with the advocated choice of

Γ H and νH
x ,

Γ J (x − x′) � νJ
x and Γ G(x − x′) � νG

x

for every ∀x′ ∈ TH
x such that Γ H(x − x′) � νH

x . It follows that the following conditions are satisfied.

• Since J and G are both partly smooth relative to a linear manifold, we have TJ
x = TJ

x′ and TG
x = TG

x′ ,
and thus by Proposition 8(i)

TH
x = TJ

x ∩ TG
x = TJ

x′ ∩ TG
x′ = TH

x′ = TH .

• μH
x -stability: we have from Proposition 8(ii)

Γ H(eH
x − eH

x′ )= Γ H(PTH (eJ
x + eG

x − eJ
x′ − eG

x′ ))

� Γ H(PTH (eJ
x − eJ

x′)) + Γ H(PTH (eG
x − eG

x′))

� |||PTH |||Γ J→Γ H Γ J (eJ
x − eJ

x′) + |||PTH |||Γ G→Γ H Γ G(eG
x − eG

x′ )

� (μJ
x |||PTH |||Γ J→Γ H + μG

x |||PTH |||Γ G→Γ H )Γ H(x − x′),

where we used μJ
x - and μG

x -stability of J and G in the last inequality.
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• τH
x -stability: the fact that SJ ⊆ SH and SG ⊆ SH and subadditivity of gauges lead to

Hx,◦
f H
x

(PSH (f H
x − f H

x′ ))= Hx,◦
f H
x

(PSJ (f J
x − f J

x′ ) + PSG(f G
x − f G

x′ ) + PSH (eJ
x − eJ

x′) + PSH (eG
x − eG

x′ ))

� Hx,◦
f H
x

(PSJ (f J
x − f J

x′ )) + Hx,◦
f H
x

(PSG(f G
x − f G

x′ ))

+ Hx,◦
f H
x

(PSH (eJ
x − eJ

x′)) + Hx,◦
f H
x

(PSH (eG
x − eG

x′)). (D.1)

According to Proposition 8(iii), we have

Hx,◦
f (PSJ (f J

x − f J
x′ ))= inf

η1+η2=PSJ (f J
x −f J

x′ )
max(Jx,◦

f J
x

(η1), Gx,◦
f G
x

(η2)).

Since dom Jx,◦
f J
x
= SJ , (η1, η2)= (PSJ (f J

x − f J
x′ ), 0) is a feasible point of the last problem, and we

obtain
Hx,◦

f H
x

(PSJ (f J
x − f J

x′ )) � Jx,◦
f J
x

(PSJ (f J
x − f J

x′ )).

Moreover, as eJ
x , eJ

x′ ∈ TJ (see Proposition 1(ii)) and SJ ⊆ SH , we have

min
η1∈TJ ,η2SJ ,η1+η2∈SH

||η1 + η2 − (eJ
x − eJ

x′)||2 = min
η1∈TJ ,η2SJ ,η1+η2∈SH

||η1 − (eJ
x − eJ

x′)||2 + ||η2||2

= min
η1∈TJ ,η2SJ ,η1∈SH

||η1 − (eJ
x − eJ

x′)||2 + ||η2||2

= min
η1∈SH∩TJ

||η1 − (eJ
x − eJ

x′)||2,

that is,
PSH (eJ

x − eJ
x′)= PSH∩TJ (eJ

x − eJ
x′).

Thus
Hx,◦

f H
x

(PSH (eJ
x − eJ

x′)) � |||PSH∩TJ |||Γ J→Hx,◦
f H
x

Γ J (eJ
x − eJ

x′).

Similar reasoning leads to the following bounds:

Hx,◦
f H
x

(PSG(f G
x − f G

x′ )) � Gx,◦
f G
x

(
PSG(f G

x − f G
x′ )
)

,

Hx,◦
f H
x

(PSH (eG
x − eG

x′ )) � |||PSH∩TG |||Γ J → Hx,◦
f H
x

Γ G(eG
x − eG

x′ ).

Having this, we can continue to bound (D.1) as

Hx,◦
f H
x

(PSH (f H
x − f H

x′ )) � Jx,◦
f J
x

(PSJ (f J
x − f J

x′ )) + Gx,◦
f G
x

(PSG(f G
x − f G

x′ ))

+ |||PSH∩TJ |||Γ J → Hx,◦
f H
x

Γ J (eJ
x − eJ

x′) + |||PSH∩TG |||Γ J → Hx,◦
f H
x

Γ G(eG
x − eG

x′ )

� τ J
x Γ J (x − x′) + τG

x Γ G(x − x′) + μJ
x |||PSH∩TJ |||Γ J → Hx,◦

f H
x

Γ J (x − x′)

+ μG
x |||PSH∩TG |||Γ G → Hx,◦

f H
x

Γ G(x − x′)

� (τ J
x + τG

x + μJ
x |||PSH∩TJ |||Γ J → Hx,◦

f H
x

+ μG
x |||PSH∩TG |||Γ G→Hx,◦

f H
x

)Γ H(x − x′),

where the last two inequalities J and G follow from μJ
x -, τ J

x -, μG
x - and τG

x -stability of J and G.
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• ξH
x -stability: Proposition 8(iii) again yields that, for any η ∈ SH ,

H◦
f H
x′
(η)= inf

η1+η2=η
max(J◦

f J
x′
(η1), G◦

f G
x′
(η2))

� max(J◦
f J
x′
(η̄1), G◦

f G
x′
(η̄2))

for any feasible (η̄1, η̄2) ∈ SJ × SG ∩ {(η1, η2 : η1 + η2 = η}. Now both J and G are partly smooth
relative to a linear manifold, hence, respectively, ξ J

x - and ξG
x -stable. Therefore, with the form of Γ H

we have

J◦
f J
x′
(η̄1) � (1 + ξ J

x Γ J (x − x′))Jx,◦
f J
x

(η̄1) � βJx,◦
f J
x

(η̄1),

G◦
f G
x′
(η̄2) � (1 + ξG

x Γ G(x − x′))Gx,◦
f G
x

(η̄2) � βGx,◦
f G
x

(η̄2),

where β = 1 + max(ξ J
x , ξG

x )Γ H(x − x′); whence we obtain

max(J◦
f J
x′
(η1), G◦

f G
x′
(η2)) � β max(Jx,◦

f J
x

(η̄1), Gx,◦
f G
x

(η̄2)).

Taking in particular

(η̄1, η̄2) ∈ Argmin
η1+η2=η

max(Jx,◦
f J
x

(η1), Gx,◦
f G
x

(η2)),

we arrive at

H◦
f H
x′
(η) � β inf

η1+η2=η
max(J◦

f J
x
(η1), G◦

f G
x
(η2))= βH◦

f H
x
(η).

This completes the proof. �

Proof of Corollary 2. Differentiability entails that ∂G(x)= {fx}, whence we obtain TG
x =R

N and
eG

x =∇G(x) (see Example 3). Applying Proposition 8, we get the result. It is sufficient to remark that
the smooth perturbation G translates the subdifferential ∂J(x) by ∇G(x). Hence, using our choice of
f J+G
x , we find the same subdifferential gauge. �

Proof of Corollary 3. Since G is C2 on R
N , it is obviously partly smooth relative to TG

x =R
N according

to [24, Example 3.1]. We now exhibit the constants involved.

• ν-stability. For every x′ ∈R
N , x′ ∈ TG

x , and thus νG
x =+∞, implying that νH

x = νJ
x .

• μ-stability. Using the μ-stability of J and the fact that ∇G is β-Lipschitz, we get that

μH
x =μJ

x |||PTJ |||Γ J→Γ H + β|||PTJ |||�2→Γ H .

• τ - and ξ -stability. Since S = {0}, τG
x = ξG

x = 0, and we get from Proposition 9

τH
x = τ J

x and ξH
x = ξ J

x . �
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Proof of Proposition 10. (i) As J is finite-valued, we have ∂J = D ◦ ∂J0 ◦ D∗, hence S = DS0 =
�(DS0) and T = S⊥ = Ker(D∗

S0
).

(ii) As S = DS̄0 = De0 + S, we get from Proposition 1

e ∈ argmin
z∈S̄

||z|| = argmin
z−De0∈S

||z|| = De0 + argmin
h∈S

||h + De0||

= De0 + PS(−De0)= (Id − PS)De0 = PT De0 = DT e0.

(iii) With such a choice of fx, we have

f0,D∗x ∈ ri ∂J0(D
∗x)⇒ Df0,D∗x ∈ Dri ∂J0(D

∗x)

⇐⇒ fx ∈ ri D∂J0(D
∗x) ⇐⇒ fx ∈ ri ∂J(x).

We follow the same lines as in the proof of Lemma 5, where we additionally invoke Proposi-
tion 3(ii) to obtain

Jx
fx(d)= σ∂J(x)−fx(d)

= σD(∂J0(D∗x)−f0,D∗x)(d)

= σ∂J0(D∗x)−f0,D∗x(D
∗d)

= JD∗x
0,f0,D∗x

(D∗d)

= JD∗x
0,f0,D∗x

(D∗
S0

d).

Note that Jx
fx is indeed constant along affine subspaces parallel to Ker(D∗

S0
)= S⊥ = T . We now

get that, for every η ∈ S = Ker(D+
S0

)⊥,

Jx
fx(η)= σJx

fx
(d)�1(η)

= σJD∗x
0,f0,D∗x

(D∗
S0

d)�1(η)

= (ιJD∗x
0,f0,D∗x

(w)�1 ◦ D∗
S0

)∗(η)

= inf
v

σJD∗x
0,f0,D∗x

(w)�1(v) s.t. DS0 v = η

= inf
z∈Ker(DS0 )

JD∗x,◦
0,f0,D∗x

(D+
S0

η + z).

The infimum is finite and is attained necessarily at some z ∈ Ker(DS0) ∩ S0 |= ∅ since
dom JD∗x,◦

0,f0,D∗x
= S0 and �(D+

S0
)=�(D∗

S0
)⊂ S0. Moreover, Ker(DS0) ∩ S0 = Ker(D) ∩ S0. �

Proof of Proposition 11. In the following, all operator bounds that appear are finite owing to the coer-
civity assumption on the involved gauges in Definition 8 of a partly smooth regularizer.

• Let x′ be such that

Γ (x − x′) � 1

|||D∗|||Γ→Γ0

ν0,D∗x.



MODEL SELECTION WITH LOW COMPLEXITY PRIORS 277

Hence,

Γ0(D
∗x − D∗x′) � |||D∗|||Γ→Γ0Γ (x − x′) � ν0,D∗x.

As J0 is partly smooth relative to a linear manifold at D∗x, we have T0,D∗x = T0,D∗x′ = T0 and, conse-
quently, using Proposition 10(i), Tx = Ker(D∗

S0,D∗x
)= Ker(D∗

S0,D∗x′ )= Tx′ = T = S⊥.

• μx-stability: we now have

Γ (ex − e′x)= Γ (PT D(e0,D∗x − e0,D∗x′)) Proposition 10(ii)

� |||DT |||Γ0→Γ Γ0(e0,D∗x − e0,D∗x′)

� μ0,D∗x|||DT |||Γ0→Γ Γ0(D
∗x − D∗x′) using μ0,D∗x-stability of J0

� μ0,D∗x|||DT |||Γ0→Γ |||D∗|||Γ→Γ0Γ (x − x′).

• τx-stability: since f0,D∗x ∈ ∂J0(D∗x) and f0,D∗x′ ∈ ∂J0(D∗x′), one has

f0,D∗x − f0,D∗x′ = PS0(f0,D∗x − f0,D∗x′) + e0,D∗x − e0,D∗x′ .

Thus, subadditivity yields

Jx,◦
fx (PS(fx − fx′))= Jx,◦

fx (DS(f0,D∗x − f0,D∗x′))

� Jx,◦
fx (DSPS0(f0,D∗x − f0,D∗x′)) + Jx,◦

fx (DS(e0,D∗x − e0,D∗x′)).

Using Proposition 10(iii) and τ0,D∗x-stability of J0, we get the following bound on the first term:

Jx,◦
fx (DSPS0(f0,D∗x − f0,D∗x′))= inf

z∈Ker(D)∩S0

JD∗x,◦
0,f0,D∗x

(D+
S0

DSPS0(f0,D∗x − f0,D∗x′) + z)

� JD∗x,◦
0,f0,D∗x

(D+
S0

DSPS0(f0,D∗x − f0,D∗x′))

� |||D+
S0

DS|||JD∗x,◦
0,f0,D∗x

→JD∗x,◦
0,f0,D∗x

JD∗x,◦
0,f0,D∗x

(PS0(f0,D∗x − f0,D∗x′))

� τ0,D∗x|||D+
S0

DS|||JD∗x,◦
0,f0,D∗x

→JD∗x,◦
0,f0,D∗x

Γ0(D
∗x − D∗x′)

� τ0,D∗x|||D+
S0

DS|||JD∗x,◦
0,f0,D∗x

→JD∗x,◦
0,f0,D∗x

|||D∗|||Γ→Γ0Γ (x − x′).

Now, combining Proposition 10(iii) and μ0,D∗x-stability of J0, we obtain the following bound on the
second term:

Jx,◦
fx (DS(e0,D∗x − e0,D∗x′)) � JD∗x,◦

0,f0,D∗x
(D+

S0
DS(e0,D∗x − e0,D∗x′))

� |||D+
S0

DS|||Γ0→JD∗x,◦
0,f0,D∗x

Γ0(e0,D∗x − e0,D∗x′)

� μ0,D∗x|||D+
S0

DS|||Γ0→JD∗x,◦
0,f0,D∗x

|||D∗|||Γ→Γ0Γ (x − x′).
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Combining these inequalities, we arrive at

Jx,◦
fx (PS(fx − fx′)) � (τ0,D∗x|||D+

S0
DS|||JD∗x,◦

0,f0,D∗x
→JD∗x,◦

0,f0,D∗x

+ μ0,D∗x|||D+
S0

DS|||Γ0→JD∗x,◦
0,f0,D∗x

)|||D∗|||Γ→Γ0Γ (x − x′),

whence we get τx-stability.

• ξx-stability: from Proposition 10(iii), we can write, for any η ∈ S,

Jx′,◦
fx′ (η)= inf

z∈Ker(D)∩S0

JD∗x′,◦
0,f0,D∗x′ (D

+
S0

η + z)

� Jx′,◦
fx′ (D+

S0
η + z̄)

for any z̄ ∈ Ker(D) ∩ S0.
Owing to ξ0,D∗x-stability of J0, and since D+

S0
η ∈ S0, we have, for any feasible z̄ ∈ Ker(D) ∩ S0,

JD∗x′,◦
0,f0,D∗x′ (D

+
S0

η + z̄) � (1 + ξ0,D∗xΓ0(D
∗x − D∗x′))JD∗x,◦

0,f0,D∗x
(D+

S0
η + z̄).

Taking in particular

z̄ ∈ Argmin
z∈Ker(D)∩S0

JD∗x,◦
0,f0,D∗x

(D+
S0

η + z),

we get the bound

Jx′,◦
fx′ (η) � (1 + ξ0,D∗xΓ0(D

∗x − D∗x′)) inf
z∈Ker(D)∩S0

JD∗x,◦
0,f0,D∗x

(D+
S0

η + z)

= (1 + ξ0,D∗xΓ0(D
∗x − D∗x′))Jx′,◦

fx′ (η)

= (1 + ξ0,D∗x|||D∗|||Γ→Γ0Γ (x − x′))Jx′,◦
fx′ (η),

where we used again Proposition 10(iii) in the first equality. �

Appendix E. Proofs of Section 6

Proof of Theorem 5. This is a straightforward consequence of Theorem 3(ii) by constructing an appro-
priate dual certificate from IC(x0). Define e = ex0 , f = fx0 and S = T⊥. Taking the dual vector α =Φ

+,∗
T e,

we have, on the one hand,

Φ∗
TΦ

+,∗
T e = e

since e ∈ �(Φ∗
T ).

On the other hand,

Jx0,◦
f0 (Φ∗

S Φ
+,∗
T e − PS f )= IC(x0) < 1. �
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Proof of Theorem 6. To lighten the notation, we let ε = ||w||, ν = νx0 , μ=μx0 , τ = τx0 , ξ = ξx0 , f = fx0 .
The strategy is to construct a vector which, by (CT ), is the unique solution to

min
x∈T

1

2
||y − Φx||2 + λJ(x), (PT

λ (y))

and then to show that it is actually the unique solution to (Pλ(y)) under the assumptions of Theorem 6.
The following lemma gives a convenient implicit equation satisfied by the unique solution

to (PT
λ (y)).

Lemma C.3 Let x0 ∈R
N and define T = Tx0 . Assume that (CT ) holds. Then (PT

λ (y)) has exactly one
minimizer x̂, and the latter satisfies

x̂ = x0 + Φ+
T w − λ(Φ∗

TΦT )−1ẽ, where ẽ ∈ PT (∂J(x̂)). (E.1)

Proof. Assumption (CT ) implies that the objective in (PT
λ (y)) is strongly convex on the feasible set T ,

whence uniqueness follows immediately. By a trivial change of variable, (PT
λ (y)) is also rewritten in the

unconstrained form

x̂ = argmin
x∈RN

1

2
||y − ΦT x||2 + λJ(PT x).

Thus, using Proposition 6(i), x̂ has to satisfy

Φ∗
T (y − ΦT x̂) + λẽ = 0

for any ẽ ∈ PT (∂J(x̂)). Owing to the invertibility of Φ on T , i.e. (CT ), we obtain (E.1). �

We are now in a position to prove Theorem 6. This is to be achieved in three steps:

Step 1: We show that in fact Tx̂ = T .

Step 2: Then, we prove that x̂ is the unique solution of (Pλ(y)) using Theorem 3.

Step 3: We finally exhibit an appropriate regime on λ and ε for the above two statements to hold.

E.1. Step 1: Subspace equality. By construction of x̂ in (PT
λ (y)), it is clear that x̂ ∈ T . The key argu-

ment now is to use that J is partly smooth relative to a linear manifold at x0, and to show that

Γ (x0 − x̂) � ν, (E.2)

which in turn will imply subspace equality, i.e. Tx̂ = T (see Definition 8).
We have from (E.1) and subadditivity that

Γ (x0 − x̂) � Γ (−Φ+
T w) + λΓ ((Φ∗

TΦT )−1ẽ)

� |||(Φ∗
TΦT )−1|||Γ→Γ {Γ (−Φ∗

T w) + λΓ (ẽ)}
� |||(Φ∗

TΦT )−1|||Γ→Γ {|||Φ∗
T |||�2→Γ ε + α0λ}, (E.3)
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where α0 = Γ (ẽ). Consequently, to show that (E.2) is verified, it is sufficient to prove that

Aε + Bλ � ν, (C1)

where we set the positive constants

A = |||(Φ∗
TΦT )−1|||Γ→Γ |||Φ∗

T |||�2→Γ ,

B = α0|||(Φ∗
TΦT )−1|||Γ→Γ .

Suppose for now that (C1) holds and, consequently, Tx̂ = T . Then decomposability of J on T
(Theorem 1) implies that

ê = PTx̂(∂J(x̂))= PT (∂J(x̂))= ẽ,

where we define ê = ex̂. Thus (E.1) yields the following implicit equation

x̂ = x0 + Φ+
T w − λ(Φ∗

TΦT )−1ê. (E.4)

E.2. Step 2: x̂ is the unique solution of (Pλ(y)). Recall that, under condition (C1), J is decomposable
at x̂ and x0 with the same model subspace T . Moreover, (E.4) is nothing, but condition (4.1) in Theorem 3
satisfied by x̂. To deduce that x̂ is the unique solution of (Pλ(y)), it remains to show that (4.2) holds, i.e.

J x̂,◦
f̂

(λ−1Φ∗
S (y − Φ x̂) − f̂S) < 1, (E.5)

where we use the shorthand notations f̂ = fx̂ and f̂S = PS f̂ .
Under condition (C1), the ξ -stability property (5.5) of J at x0 yields

J x̂,◦
f̂

(λ−1Φ∗
S (y − Φ x̂) − f̂S) � (1 + ξΓ (x0 − x̂))Jx0,◦

f0 (λ−1Φ∗
S (y − Φ x̂) − f̂S). (E.6)

Furthermore, from (E.4), we can derive

λ−1Φ∗
S (y − Φ x̂) − f̂S =Φ∗

S Φ
+,∗
T ê + λ−1Φ∗

S QT w − f̂S , (E.7)

where QT = Id − ΦTΦ+
T = PKer(Φ∗

T ). Inserting (E.7) in (E.6), we obtain

J x̂,◦
f̂

(λ−1Φ∗
S (y − Φ x̂) − f̂S) � (1 + ξΓ (x0 − x̂))Jx0,◦

f0 (Φ∗
S Φ

+,∗
T ê + λ−1Φ∗

S QT w − f̂S).

Moreover, subadditivity yields

Jx0,◦
f0 (Φ∗

S Φ
+,∗
T ê + λ−1Φ∗

S QT w − f̂S) � Jx0,◦
f0 (Φ∗

S Φ
+,∗
T e − fS) + Jx0,◦

f0 (Φ∗
S Φ

+,∗
T (ê − e))

+ Jx0,◦
f0 (PS(f − f̂ )) + Jx0,◦

f0 (λ−1Φ∗
S QT w). (E.8)

We now bound each term of (E.8). In the first term, one recognizes

Jx0,◦
f0 (Φ∗

S Φ
+,∗
T e − fS) � IC(x0). (E.9)
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Appealing to the μ-stability property, we obtain

Jx0,◦
f0 (Φ∗

S Φ
+,∗
T (ê − e)) � |||−Φ∗

S Φ
+,∗
T |||Γ→J

x0,◦
f0

Γ (e − ê)

� μ|||−Φ∗
S Φ

+,∗
T |||Γ→J

x0,◦
f0

Γ (x0 − x̂). (E.10)

From τ -stability, we have

Jx0,◦
f0 (fS − f̂S) � τΓ (x0 − x̂). (E.11)

Finally, we use a simple operator bound to obtain

Jx0,◦
f0 (λ−1Φ∗

S QT w) � 1

λ
|||Φ∗

S QT |||�2→J
x0,◦
f0

ε. (E.12)

Following the same steps as for the bound (E.3), except using ẽ = ê here, gives

Γ (x0 − x̂) � |||(Φ∗
TΦT )−1|||Γ→Γ {|||Φ∗

T |||�2→Γ ε + λΓ (ê)}. (E.13)

Plugging inequalities (E.9)–(E.13) into (E.6), we get the upper bound

J x̂,◦
f̂

(Φ∗
S Φ

+,∗
T ê + λ−1Φ∗

S QT w − f̂S)

� (1 + ξΓ (x0 − x̂))

(
IC(x0) + Γ (x0 − x̂)(μ|||−Φ∗

S Φ
+,∗
T |||Γ→J

x0,◦
f0

+ τ) + 1

λ
|||Φ∗

S QT |||�2→J
x0,◦
f0

ε

)
� (1 + ξ(c1ε + λc2))

(
IC(x0) + (c1ε + λc2)μ̄ + 1

λ
c4ε

)
< 1,

where we have introduced

μ̄=μc3 + τ and α1 = Γ (ê)= Γ (ẽ)= α0

and

c1 = A, c2 = α1|||(Φ∗
TΦT )−1|||Γ→Γ ,

c3 = |||−Φ∗
S Φ

+,∗
T |||Γ→J

x0,◦
f0

, c4 = |||Φ∗
S QT |||�2→J

x0,◦
f0

.

If it is then sufficient that

(1 + ξ(c1ε + λc2))

(
IC(x0) + (c1ε + λc2)μ̄ + 1

λ
c4ε

)
< 1, (E.14)

for (4.2) in Theorem 3 to be in force.
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In particular, if
Cε � λ

holds for some constant C > 0 to be fixed later, then inequality (E.14) is true if

P(λ)= aλ2 + bλ + c > 0, where

⎧⎪⎨⎪⎩
a =−ξμ̄(c1/C + c2)

2,

b =−(c1/C + c2)(ξIC(x0) + ξc4/C + μ̄),

c = 1 − IC(x0) − c4/C.

(E.15)

Let us set the value of C to

C = 2c4

1 − IC(x0)
,

which, for 0 � IC(x0) < 1, ensures that c = (1 − IC(x0))/2 is bounded and positive, and thus, the poly-
nomial P has a negative and a positive root λmax equal to

λmax = b

2a
φ
(
−4

ac

b2

)
,

⎧⎪⎨⎪⎩
a =−ξμ̄((1 − IC(x0))c1/(2c4) + c2)

2

b =−((1 − IC(x0))c1/(2c4) + c2)(μ̄ + (1 + IC(x0))ξ/2)

c = (1 − IC(x0))/2

= μ̄ + (1 + IC(x0))ξ/2

ξμ̄((1 − IC(x0))c1/c4 + 2c2)
φ

(
2ξ(1 − IC(x0))μ̄

(μ̄ + (1 + IC(x0))ξ/2)2

)
� 1 − IC(x0)

ξ
H(μ̄/ξ),

where

φ(β)=
√

1 + β − 1, and H(β)= β + 1/2

β(c1/c4 + 2c2)
φ

(
2β

(β + 1)2

)
.

To get the above lower bound on λmax, we used that φ is increasing (in fact strictly) and concave on R+
with φ(1)= 0, and that IC(x0) ∈ [0, 1[. Consequently, we can conclude that the bounds

2c4

1 − IC(x0)
ε � λ � 1 − IC(x0)

ξ
H(μ̄/ξ) (C2)

imply condition (E.14), which in turn yields (E.5).

E.3. Step 3: (C1) and (C2) are in agreement. It remains now to show the compatibility of (C1)
and (C2), i.e. to provide appropriate regimes of λ and ε such that both conditions hold simultaneously.
We first observe that (C1) and the left-hand side of (C2) both hold for λ, fulfilling

λ � C0ν, where C0 =
(

A

2c4
+ B

)−1

�
(

1 − IC(x0)

2c4
A + B

)−1

.

This updates (C2) to the following ultimate range on λ:

2c4

1 − IC(x0)
ε � λ � min

(
C0ν,

1 − IC(x0)

ξ
H(μ̄/ξ)

)
.
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Now, in order to have an admissible non-empty range for λ, the noise level ε must be upper-bounded as

ε � 1 − IC(x0)

2c4
min

(
C0ν,

1 − IC(x0)

ξ
H(μ̄/ξ)

)
.

Finally, the constants provided in the statement of the theorem (and subsequent discussion) are as
follows:

AT = 2c4, BT = C0, DT = c3 and ET = c1/c4 + 2c2,

which completes the proof. �

Appendix F. Proofs of Section 7

Proof of Proposition 12. The subdifferential of ||·||1 reads

∂||·||1(x)= {η ∈R
N : η(I) = sign(x(I)) and ||η(Ic)||∞ � 1}.

The expressions of Sx, Tx, ex and fx follow immediately. Since ex ∈ ri ∂||·||1(x) and ||·||1 is separable, it
follows from Definition 6 that the �1-norm is a strong gauge. Therefore J◦

fx = J◦ = ||·||∞, and Proposi-
tion 7 specializes to the stated subdifferential.

Turning to partial smoothness, let x′ ∈ T , i.e. I(x′)⊆ I(x), and assume that

||x − x′||∞ � νx = (1 − δ)min
i∈I

|xi|, δ ∈]0, 1].

This implies that ∀i ∈ I(x), |x′i|> νx − ||x − x′||∞ � 0, which in turn yields I(x′)= I(x), and thus Tx′ = Tx.
Since the sign is also locally constant on the restriction to T of the �∞-ball centered at x of radius νx,
one can choose μx = 0. Finally, τx = ξx = 0 because fx = ex. �

Proof of Proposition 14. The proof of the first part was given in Sections 3.1 and 3.2, where the �∞-
norm example was considered.

It remains to show partial smoothness. Let x′ ∈ T , and assume that

||x − x′||1 � νx = (1 − δ)

(
||x||∞ − max

j/∈I
|xj|
)

, δ ∈]0, 1].

This means that x′ lies in the relative interior of the �1-ball (relatively to T) centered at x of radius
||x||∞ − maxi∈I |xj|. Within this ball, the support and the sign pattern restricted to the support are
locally constant, i.e. I(x)= I(x′) and sign(x(I(x)))= sign(x′(I(x′))). Thus Tx′ = Tx = T and ex′ = ex, and
from the latter we deduce that μx = 0. As fx = ex, we also conclude that τx = ξx = 0, which completes
the proof. �

Proof of Proposition 15. Again, the proof of the first part was given in Sections 3.1 and 3.3, where the
�1 − �2-norm example was handled.
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Let x′ ∈ T , i.e. I(x′)⊆ I(x), and νx = (1 − δ)min
b∈I

||xb||, δ ∈]0, 1]. First, observe that the condition

||x − x′||∞,2 = max
b∈B

||xb − x′b||� νx

ensures that, for all b ∈ I,

||x′b||� ||xb|| − ||xb − x′b||> νx − ||x − x′||∞,2 � 0,

and thus I(x′)= I(x), i.e. Tx′ = Tx. Moreover, since the gauge is strong, one has τx = ξx = 0. To establish
the μx-stability, we use the following lemma.

Lemma C.4 Given any pair of non-zero vectors u and v, where ||u − v||� ρ||u|| for 0 < ρ < 1, we have∥∥∥∥ u

||u|| −
v

||v||
∥∥∥∥� Cρ

||u − v||
||u|| ,

where Cρ = (
√

2/ρ)

√
1 −
√

1 − ρ2 ∈]1,
√

2[.

Proof. Let d = v − u and β = 〈u, d〉/||u||||d|| ∈ [−1, 1]. We then have the following identities:∥∥∥∥ u

||u|| −
v

||v||
∥∥∥∥2

= 2 − 2
〈u, v〉
||u||||v|| = 2 − 2

||u||2 + ||u||||d||β
||u||
√

||u||2 + ||d||2 + 2||u||||d||β , (F.1)

for non-zero vectors u and d, the unique maximizer of (F.1) is β� =−||d||/||u||. Note that the assumption
||d||/||u||� ρ < 1 assures β� to comply with the admissible range of β and, further, the argument of the
square root will always be positive. Now, inserting β� in (F.1), and using concavity of

√· on R+ and
that ||d||/||u||� ρ, we can deduce the following bound:

∥∥∥∥ u

||u|| −
v

||v||
∥∥∥∥2

� 2 − 2

√
1 − ||d||2

||u||2 = 2 − 2

√(
1 − ||d||2

ρ2||u||2
)
+ ||d||2

ρ2||u||2 (1 − ρ2)

� 2 − 2

(
1 − ||d||2

ρ2||u||2 + ||d||2
ρ2||u||2

√
1 − ρ2

)

= 2 − 2

(
1 − 1 −

√
1 − ρ2

ρ2

||d||2
||u||2

)

= 2
1 −
√

1 − ρ2

ρ2

||d||2
||u||2 . �

By definition of νx, we have (1 − δ)||xb||> νx for δ ∈]0, 1], ∀b ∈ I, and thus ||xb − x′b||� νx �
(1 − δ)||xb||. Lemma C.4 then applies, and it follows that ∀b ∈ I,

||N (xb) −N (x′b)||� Cρ

||x′b − xb||
||xb|| � Cρ

||x′b − xb||
νx

,
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and therefore we obtain

||N (x) −N (x′)||∞,2 � Cρ

νx
||x′ − x||∞,2,

which implies μx-stability for μx = Cρ/νx. �

Proof of Proposition 16. In general, the subdifferential of J0 reads

∂J0(u)=

⎧⎪⎨⎪⎩
∑
i∈I

ρisia
i : ρ ∈ΣI , si ∈

⎧⎪⎨⎪⎩
{0} if ui > 0

[0, 1] if ui = 0

{1} if ui < 0

⎫⎪⎬⎪⎭,

where ΣI is the canonical simplex in R
|I|, and I = {i ∈ {0} : (xi)+ = J0(x)}.

• If ui � 0, ∀i ∈ {1, . . . , NH }, the above expression becomes

∂J0(u)= {−μfx : μ ∈ [0, 1]},

where I0 = {i ∈ {1, . . . , NH } : ui = J0(u)= 0}. Equivalently, ∂J0(u) is the intersection of the unit �1-
ball and the positive orthant on R

|I0|. The expressions of Su, Tu and eu then follow immediately. We
see that ∂J0(u) then contains eu = 0, but not in its relative interior. Choosing any fu as advocated,
we have fu ∈ ri ∂J0(u). To get the subdifferential gauge, we use some calculus rules on gauges and
apply Lemma 2 to obtain

Ju,◦
fu (η(I0))= inf

τ�0, τ(fu)i�−ηi ∀i∈I0

max(||τ fu + η||1, τ),

where the extra-constraints on τ come from the fact that ∂J0(u) is in the positive orthant, and the �1

norm is the gauge of the unit �1-ball. We then have

Ju,◦
fu (η(I0))= inf

τ�0,μτ�maxi∈I0 −ηi

max

(
τ
∑
i∈I0

(μai + ηi), τ

)

= inf
τ�maxi∈I0 (−ηi)+/μ

max

(
τμ|I0| +

∑
i∈I0

ηi, τ

)
.

• Assume now that ui > 0 for at least one i ∈ {1, . . . , NH }. In such a case, J0(u)= ||u||∞, and the
subdifferential becomes

∂J0(u)=ΣI+ ,

where I+{i ∈ {1, . . . , NH } : ui = J0(u)= 0}. The forms of Su, Tu, eu, fu and the subdifferential gauge
can then be retrieved from those of the �∞-norm with s(I+) = 1 and s(Ic+) = 0.
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For partial smoothness, the parameters are derived following the same lines as for the �∞-norm. Let
u′ ∈ T , and assume that

||u − u′||1 � νu = (1 − δ)

(
max
i∈I+

ui − max
j �∈I+,uj>0

uj

)
for δ ∈]0, 1]. This means that x′ lies in the relative interior of the �1-ball (relatively to T) centered at x
of radius

max
i∈I+

ui − max
j �∈I+,uj>0

uj = ||u||∞ − max
j �∈I+,uj>0

|uj|.

Within this set, one can observe that the set I+ associated to u is constant. Moreover, the sign pattern is
also constant leading to the fact that Tu′ = Tu = T . Hence, we deduce as in the �∞-case that μu = τu =
ξu = 0. �

Appendix G. Proofs of Section 8

Proof of Theorem 7. To lighten the notation, we drop the dependence on x of T , S and e. Without loss
of generality, by symmetry of the norm, we will assume that the entries of x are positive.

We follow the same program as in the compressed sensing literature; see e.g. [9]. The key ingredient
of the proof is the fact that, owing to the isotropy of the Gaussian ensemble, αF and Φ∗

S are independent.
Thus, for some τ > 0,

Pr(IC(x) � 1) � Pr(IC(x) � 1|||αF ||� τ) + Pr(||αF ||� τ).

As soon as Q � dim(T)= N − |I| + 1, ΦT is full column rank. Thus

||αF ||2 = 〈e, (Φ∗
TΦT )−1e〉.

Here (Φ∗
TΦT )−1 is an inverse Wishart matrix with Q degrees of freedom. To estimate the deviation of

this quadratic form, we use classical results on inverse χ2 random variables with Q − N + |I| degrees
of freedom and we get the tail bound

Pr

(
‖αF‖�

√
1

Q − N + |I| − t
‖e‖
)

� e−t2/4(Q−N+|I|)

for t > 0. Now, conditionally on αF , the entries of αS = PSΦ
∗αF are i.i.d. N (0, ||αF ||2) and so are those

of −αS by trivial symmetry of the centered Gaussian. Thus, using a union bound, we obtain

Pr(IC(x) � 1|||αF ||� τ) � Pr(max
i∈I

(−(αSx)i)+ � 1/|I||||αF ||� τ)

� Pr(max
i∈I

((αSx)i)+ � 1/|I||||αF ||� τ)

� |I|Pr((z)+ � 1/(τ |I|))
� |I|Pr(z � 1/(τ |I|))
� |I|e−1/2τ 2|I|2 .
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Observe that (αS)i = 0 for all i ∈ Ic. Choosing

τ =
√

1

|I|(Q − N + |I| − t)
,

where we used that ||e|| = 1/
√

I, and inserting in the above probability terms, we obtain

Pr(||αF ||� τ) � e−t2/4(Q−N+|I|),

Pr(IC(x) � 1|||αF ||� τ) � e−((Q−N+|I|−t)/2|I|−log(|I|/2)).

Equating the arguments of the exponentials and solving

t2

4q
+ t

2|I| −
(

q

2|I| − log |I|
2

)
= 0

for t to get equal probabilities, we obtain

t = q

|I|

(√
1 + 2|I|

(
1 − 2

2|I| log(|I|/2)

q

)
− 1

)
,

where q = Q − N + |I|� 1 by the restricted injectivity assumption. Setting

β = q

2|I| log(|I|/2)
,

we get under the bound on Q that β > 1, and

t = 2β log

( |I|
2

)(√
1 + 2|I|β − 1

β
− 1

)
.

Inserting t in one of the probability terms, and after basic algebraic rearrangements, we get the
probability of success with the expression of the function f (β, |I|). �
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