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In this paper, we aim at recovering an unknown signal x0 from noisy measurements
y = Φx0 + w , where Φ is an ill-conditioned or singular linear operator and w accounts
for some noise. To regularize such an ill-posed inverse problem, we impose an analysis
sparsity prior. More precisely, the recovery is cast as a convex optimization program
where the objective is the sum of a quadratic data fidelity term and a regularization
term formed of the �1-norm of the correlations between the sought after signal and
atoms in a given (generally overcomplete) dictionary. The �1-sparsity analysis prior is
weighted by a regularization parameter λ > 0. In this paper, we prove that any minimizer
of this problem is a piecewise-affine function of the observations y and the regularization
parameter λ. As a byproduct, we exploit these properties to get an objectively guided
choice of λ. In particular, we develop an extension of the Generalized Stein Unbiased
Risk Estimator (GSURE) and show that it is an unbiased and reliable estimator of an
appropriately defined risk. The latter encompasses special cases such as the prediction risk,
the projection risk and the estimation risk. We apply these risk estimators to the special
case of �1-sparsity analysis regularization. We also discuss implementation issues and
propose fast algorithms to solve the �1-analysis minimization problem and to compute the
associated GSURE. We finally illustrate the applicability of our framework to parameter(s)
selection on several imaging problems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Regularization of linear inverse problems

In many applications, the goal is to recover an unknown signal x0 ∈ RN from noisy and linearly degraded observations
y ∈ RQ . The forward observation model reads

y = Φx0 + w, (1)

where w ∈ RQ is the noise component and the mapping Φ : RN → RQ is a known linear operator which generally models
an acquisition process that entails loss of information so that Q � N . Even when Q = N , Φ is typically ill-conditioned
or even rank-deficient. In image processing, typical applications covered by the above degradation model are entry-wise
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masking (inpainting), convolution (acquisition blur), Radon transform (tomography) or a random sensing matrix (compressed
sensing).

Solving for an accurate approximation of x0 from the system (1) is generally ill-posed [1]. In order to regularize them
and reduce the space of candidate solutions, one has to incorporate some prior knowledge on the typical structure of
the original object x0. This prior information accounts for the smoothness of the solution and can range from uniform
smoothness assumption to more complex geometrical priors.

Regularization is a popular way to impose such a prior, hence making the search for solutions feasible. The general
variational problem we consider can be stated as

x�
λ(y) ∈ Arg min

x∈RN
F (x, y) + λR(x), (2)

where F is the so-called data fidelity term, R is an appropriate regularization term that encodes the prior on the sought
after signal, and λ > 0 a regularization parameter. This parameter balances between the amount of allowed noise and the
regularity dictated by R . In this paper, we consider a quadratic data fidelity term taking the form

F (x, y) = 1

2
‖y − Φx‖2

2. (3)

If it were to be interpreted in Bayesian language, this data fidelity would amount to assuming that the noise is white
Gaussian.

The popular Thikonov class of regularizations corresponds to quadratic forms R(x) = 〈x, K x〉, where K is a symmetric
semidefinite positive kernel. This typically induces some kind of uniform smoothness on the recovered vector. To capture
the more intricate geometrical complexity of image structures, non-quadratic priors are required, among which sparse reg-
ularization through the �1-norm has received a considerable interest in the recent years. This non-smooth regularization is
at the heart of this paper.

1.2. Sparse �1-analysis regularization

We call a dictionary D = (di)
P
i=1 a collection of P atoms di ∈RN . The dictionary may be redundant in RN , in which case

P > N and Φ if surjective if it has full row rank. D can also be viewed as a linear mapping from RP to RN which is used to
synthesize a signal x ∈ Span(D) ⊆RN as x = Dα = ∑P

i=1 αidi , where α is not uniquely defined if D is a redundant dictionary.
The �1-analysis regularization in a dictionary D corresponds to using R = R A in (2) where

R A(x) = ∥∥D∗x
∥∥

1. (4)

This leads us to the following minimization problem which is the focus of this paper

x�
λ(y) ∈ Arg min

x∈RN

1

2
‖y − Φx‖2

2 + λ
∥∥D∗x

∥∥
1. (Pλ(y))

Since the objective function in (Pλ(y)) is proper (i.e. not infinite everywhere), continuous and convex, the set of (global)
minimizers of (Pλ(y)) is non-empty and compact if, and only if,

Ker Φ ∩ Ker D∗ = {0}. (H0)

All throughout this paper, we suppose that this condition holds.
The most popular �1-analysis sparsity-promoting regularization is the total variation, which was first introduced for

denoising (in a continuous setting) in [2]. In a discrete setting, it corresponds to taking D∗ as a finite difference discretization
of the gradient operator. The corresponding prior R A favors piecewise constant signals and images. A comprehensive review
of total variation regularization can be found in [3].

The theoretical properties of total variation regularization have been previously investigated. A distinctive feature of this
regularization is its tendency to yield a staircasing effect, where discontinuities not present in the original data might be
artificially created by the regularization. This effect has been studied by Nikolova in the discrete case in a series of papers,
see e.g. [4], and by Ring in [5] in the continuous setting. The stability of the discontinuity set of the solution of the 2-D
continuous total variation denoising is studied in [6].

When D is the standard basis, i.e. D = Id, the analysis sparsity regularization R A specializes to the so-called synthesis
regularization. The corresponding variational problem (Pλ(y)) is referred to as the Lasso problem in the statistics com-
munity [7] and Basis-Pursuit DeNoising (BPDN) in the signal processing community [8]. Despite synthesis and analysis
regularizations both minimize objective functions involving the �1-norm, the properties of their respective minimizers may
differ significantly. Some insights on the relation and distinction between analysis and synthesis-based sparsity regulariza-
tions were first given in [9]. When D is orthogonal, and more generally when D is square and invertible, analysis and
synthesis regularizations are equivalent in the sense that the set of minimizers of one problem can be retrieved from that
of an equivalent form of the other through a bijective change of variable. However, when D is redundant, synthesis and
analysis regularizations depart significantly.

While the theoretical guarantees of synthesis �1-regularization have been extensively studied, the analysis case remains
much less investigated [10–13].
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1.3. Geometrical insights into �1-analysis regularization

In the synthesis prior, sparsity of a vector α ∈ RP is measured in terms of its �0 pseudo-norm, or equivalently the
cardinality of its support supp(α), i.e.

‖α‖0 = ∣∣supp(α)
∣∣ = ∣∣{i ∈ {1, . . . , P } \ αi 
= 0

}∣∣.
In the analysis prior, the sparsity is measured on the correlation vector D∗x. It then appears natural to keep track of the

support of D∗x. To fix terminology, we define this support and its complement.

Definition 1. The D-support I (respectively D-cosupport J ) of a vector x ∈ RN is defined as I = supp(D∗x) (respectively
J = Ic = {1, . . . , P } \ I).

A vector x with a D-cosupport J is then such that the correlations between this vector and the columns of D J are zero.
This is equivalent to saying that x lives in a subspace G J defined as follows.

Definition 2. Given J a subset of {1, . . . , P }, the cospace G J is defined as

G J = Ker D∗
J .

It was shown in [13] that the subspace G J plays a pivotal role in robustness and identifiability guarantees of (Pλ(y)).
In fact, the subspaces G J carry all necessary information to characterize signal models of sparse analysis type. More

precisely, vectors of cosparsity k = | J | live in a union of subspaces

Θk = {
G J \ J ⊆ {1, . . . , P } and dimG J = k

}
,

and the signal space RN can be decomposed as RN = ⋃
k∈{0,...,N} Θk . This model has been introduced in [12] under the

name cosparse model.
For synthesis sparsity, i.e. D = Id, Θk are nothing but the set of axis-aligned subspaces of dimension k. For the 1-D

total variation prior, where D corresponds to finite forward differences, Θk is the set of piecewise constant signals with
k − 1 steps. A few other examples of subspaces Θk , including those corresponding to translation invariant wavelets, are
discussed in [12]. More general union of subspaces models have been introduced in sampling theory to model various types
of non-linear signal ensembles, see e.g. [14].

1.4. Local behavior of minimizers

Local variations and sensitivity/perturbation analysis of problems in the form of (2) is an important topic in optimization
and optimal control. Comprehensive monograph on the subject are [15,16]. In this paper, we focus on the variations with
respect to the regularization parameter λ and the observations y, i.e. we study the set-valued mapping (λ, y) �→ Mλ(y)

where Mλ(y) is the set of minimizers of (2).
In the synthesis case (D = Id) with Q > N , the work of [17,18] showed that, for a fixed y, the mapping λ �→ x�

λ(y) is
piecewise affine, i.e. the solution path is polygonal. Further, they characterized changes in the solution x�

λ(y) at vertices of
this path. Based on these observations, they presented the homotopy algorithm, which follows the solution path by jumping
from vertex to vertex of this polygonal path. This idea was extended to the underdetermined case in [19,20]. A homotopy-
type scheme was proposed in [21] for sparse �1-analysis regularization in the overdetermined case (Q > N). We will discuss
the latter work in more detail in Section 4.

1.5. Risk estimation and parameter selection

This paper also addresses unbiased estimation of the �2-risk when recovering a vector x0 ∈ RN from the measurements y
in (1), e.g. by solving (2), under the assumption that w is white Gaussian noise. A central concept for risk estimation is that
of the degrees of freedom (DOF). Let x̂θ (y) be an estimator of x0 from (1), parameterized by some parameters θ . The DOF
of such an estimator was defined by Efron [22] as

dfθ =
Q∑

i=1

covw(yi, (Φ x̂θ (y))i)

σ 2
.

The DOF is generally used to quantify the complexity of a statistical modeling procedure. It plays a central role in many
model validation and selection criteria, e.g. Mallows’ C p (Mallows [23]), AIC (Akaike information criterion [24]), BIC (Bayesian
information criterion [25]), GCV (generalized cross-validation [26]) or SURE (Stein Unbiased Risk Estimator [27]). In the spirit
of the SURE theory, a good unbiased estimator of the DOF is sufficient to provide an unbiased estimate of the �2-risk in
reconstructing Φx0, i.e. the prediction risk Ew(‖Φ x̂θ (y) − Φx0‖2). For instance, the SURE is given by
2
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SURE
(
x̂θ (y)

) = ∥∥y − Φ x̂θ (y)
∥∥2

2 − Q σ 2 + 2σ 2d̂f θ (y) (5)

with

d̂f θ (y) = tr

(
∂Φ x̂θ (y)

∂ y

)
,

where Ew(d̂ f θ (y)) = dfθ , ∂Φ x̂θ (y)
∂ y is the Jacobian matrix of the vector function y �→ Φ x̂θ (y) and tr is the trace operator.

The SURE depends solely on y, without prior knowledge of x0. This can prove very useful as a basis to automatically
choose the parameters θ of the estimator, e.g. θ = λ when solving (2), or the smoothing parameters in families of linear
estimates [28] such as for ridge regression or smoothing splines. In some settings, it has been shown that it offers better
accuracy than GCV and related non-parametric selection techniques [29]. However, compared to GCV, the SURE requires the
knowledge of the noise variance σ 2.

The SURE has been widely used in the statistics and signal processing communities as a principled and efficient way for
parameter selection with a variety of non-linear estimators. For instance, it was used for wavelet denoising [30–32], wavelet
shrinkage for a class of linear inverse problems [33] and non-local filtering [34–36].

For general linear inverse problems, the estimator of the prediction risk and the parameter(s) minimizing it can depart
substantially from those corresponding to the estimation risk Ew(‖x̂θ (y) − x0‖2

2) [37]. To circumvent this difficulty, in [38],
the authors attempted to approximate the estimation risk by relying on a regularized version of the inverse of Φ . However,
in general, either Φ should have a trivial kernel or, otherwise, x0 should live outside to ker(Φ) to guarantee the existence
of an unbiased estimator of the estimation risk [39].

In [40], a generalized SURE (GSURE) has been developed for noise models within the multivariate canonical exponential
family. This allows one to derive an unbiased estimator of the risk on a projected version of x̂θ (y), which in turn covers the
case where Φ has a non-trivial kernel and a part of x0 is in it. Indeed, in the latter scenario, the GSURE can at best estimate
the projection risk Ew(‖Π x̂θ (y) − Πx0‖2

2) where Π is the orthogonal projector on ker(Φ)⊥ .

1.6. Contributions

This paper describes the following contributions:

1. Local affine parameterization: we show that any solution x�
λ(y) of (Pλ(y)) is a piecewise-affine function of (y, λ). Fur-

thermore, for fixed λ, and for y outside a set of Lebesgue measure zero, the prediction μ�
λ(y) locally varies along a

constant subspace. This is a distinctly novel contribution which generalizes previously known results (see Section 4.1
for a detailed discussion). It also forms the cornerstone of unbiased estimation of the DOF.

2. GSURE: we derive a unifying framework to compute unbiased estimates of several risks in �2 sense, for estimators of x0
from y as observed in (1) when w is a white Gaussian noise. This framework encompasses for instance the prediction,
the projection and the estimation risks (see Section 4.3 for a discussion to related work).

3. �1-analysis unbiased risk estimation: combining the results from the previous two contributions, we derive a closed-form
expression of an unbiased estimator of the DOF for (Pλ(y)), whence we deduce GSURE estimates of the different risks.

4. Numerical computation of GSURE: we also address in detail numerical issues that rise when implementing our DOF
estimator and GSURE for (Pλ(y)). We show that the additional computational effort to compute the DOF estimator
(hence the GSURE) from its closed-form is invested in solving simple linear systems. This turns out to be much faster
than iterative approaches existing in the literature which are computationally demanding (see Section 4.4 for a detailed
discussion).

1.7. Organization of the paper

The rest of the paper is organized as follows. Sections 2 and 3 describe each of our main contributions. Section 4 draws
some connections with relevant previous works. Section 5 illustrates our results on some numerical examples. The proofs
are deferred to Appendix A awaiting inspection by the interested reader.

1.8. Notation

We first summarize the main notations used throughout the paper. We focus on real vector spaces. The sign vector
sign(α) of α ∈ RP is

∀i ∈ {1, . . . , P }, sign(α)i =
{+1 if αi > 0,

0 if αi = 0,
−1 if αi < 0.
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Its support is

supp(α) = {
i ∈ {1, . . . , P } \ αi 
= 0

}
.

For a subset I ⊂ E , |I| will denote its cardinality, and Ic = E \ I its complement.
The matrix M J for J a subset of {1, . . . , P } is the submatrix whose columns are indexed by J . Similarly, the vector s J is

the restriction of s to the entries of s indexed by J .
tr and div are respectively the trace and divergence operators. The matrix Id is the identity matrix, where the underlying

space will be clear from the context. For any matrix M , M+ is its Moore–Penrose pseudoinverse and M∗ is its adjoint.

2. Perturbation theory of �1-analysis regularization

Throughout this section, it is important to point out that we only require that the noise vector w ∈ RQ to be bounded.
The fact that it could be deterministic or random is irrelevant here.

2.1. Local affine parameterization

Our first contribution derives a local affine parameterization of minimizers of (Pλ(y)) as functions of (y, λ) ∈ RQ ×R+ .
To develop our theory, the invertibility of Φ on G J will play a vital role. For this, we need to assume that

Ker Φ ∩ G J = {0}. (H J )

To intuitively understand the importance of this assumption, think of the ideal case where one wants to estimate a D-sparse
signal x0 from y = Φx0 + w , whose D-cosupport J is assumed to be known. This can be achieved by solving a least-squares
problem. The latter has a unique solution if (H J ) holds.

Of course, J is not known in general, and one may legitimately ask whether (H J ) is fulfilled for some solution of (Pλ(y)).
We will provide an affirmative answer to this question in Theorem 2(ii), i.e. there always exists a solution of (Pλ(y)) such
that (H J ) holds.

With assumption (H J ) at hand, we now define the following matrix whose role will be clarified shortly.

Definition 3. Let J be a D-cosupport. Suppose that (H J ) holds. We define the matrix Γ [ J ] as

Γ [ J ] = U
(
U∗Φ∗ΦU

)−1
U∗, (6)

where U is a matrix whose columns form a basis of G J .

Observe that the action of Γ [ J ] could be rewritten as an optimization problem

Γ [ J ]u = arg min
D∗

J x=0

1

2
‖Φx‖2 − 〈x, u〉.

Let us now turn to sensitivity of the minimizers x�
λ(y) of (Pλ(y)) to perturbations of (y, λ). More precisely, our aim

is to study properties, including continuity and differentiability, of x�
λ(y) and Φx�

λ(y) as functions of y and λ. Toward
this end, we will exploit the fact that x�

λ(y) obeys an implicit equation given in Lemma 2 (see Appendix A.2). But as
optimal solutions turn out to be not everywhere differentiable (change of the D-support and thus of the cospace), we will
concentrate on a local analysis where (y, λ) vary in a small neighborhood that typically avoids non-differentiability to occur.
This is exactly the reason why we introduce the transition space H defined below. It corresponds to the set of observation
vectors y and regularization parameters λ where the cospace G J of any solution of (Pλ(y)) is not stable with respect to
small perturbations of (y, λ).

Definition 4. The transition space H is defined as

H =
⋃

J⊂{1,...,P }
(H J ) holds

⋃
K⊂ J

Im Π̃ [ J ]�Im D J\K

⋃
s Jc ∈{−1,1}| J c |

⋃
σK ∈{−1,1}|K |

H J ,K ,s Jc ,σK ,

where

H J ,K ,s Jc ,σK = {
(y, λ) ∈RQ ×R+ \ PG J\K Π̃ [ J ] y = PG J\K λ

(
Ω̃ [ J ]s J c − D K σK

)}
,

with Π̃ [ J ] = Φ∗(ΦΓ [ J ]Φ∗ − Id), Ω̃ [ J ] = (Φ∗ΦΓ [ J ] − Id)D J c and PG J\K is the orthogonal projector on G J\K .

The following theorem summarizes our first sensitivity analysis result on the optimal solutions of (Pλ(y)).
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Theorem 1. Let (y, λ) /∈ H and let x�
λ(y) be a solution of (Pλ(y)). Let I and J be the D-support and D-cosupport of x�

λ(y) and
s = sign(D∗x�

λ(y)). Suppose that (H J ) holds. For any ȳ ∈RQ and λ̄ ∈R+ , define

x�
λ̄
( ȳ) = Γ [ J ]Φ∗ ȳ − λ̄Γ [ J ]D I sI .

There exists an open neighborhood B ⊂ RQ ×R+ of (y, λ) such that for every ( ȳ, λ̄) ∈ B, x�
λ̄
( ȳ) is a solution of (Pλ̄( ȳ)).

An immediate consequence of this theorem is that, for a fixed y ∈ RQ , if (Pλ(y)) admits a unique solution x�
λ(y) for

each λ, then {x�
λ(y): λ ∈ R+} identifies a polygonal solution path. As we move along the solution path, the cospace is

piecewise constant as a function of λ, changing only at critical values corresponding to the vertices on the polygonal path.

2.2. Local variations of the prediction

We now turn to quantifying explicitly the local variations of the prediction μ�
λ(y) = Φx�

λ(y) with respect to the observa-
tion y. First, it is not difficult to see that even if (Pλ(y)) admits several solutions, all of them share the same image under Φ;
see Lemma 4 for a formal proof of this assertion. This allows to denote without ambiguity μ�

λ(y) as a single-valued mapping.
Before stating our second sensitivity analysis result, we need to define the restriction to RQ of the transition space H.

Definition 5. Let λ ∈R∗+ . The λ-restricted transition space is

H·,λ = {
y ∈RQ \ (y, λ) ∈ H

}
.

Theorem 2. Fix λ ∈ R∗+ . Then,

(i) the λ-restricted transition space H·,λ is of Lebesgue measure zero;
(ii) for y /∈H·,λ , there exists x�

λ(y) a solution of (Pλ(y)) with a D-cosupport J that obeys (H J );
(iii) the mapping y �→ μ�

λ(y) is of class C∞ on RQ \H·,λ (a set of full Lebesgue measure), and

∂μ�
λ(y)

∂ y
= ΦΓ [ J ]Φ∗, (7)

where J is such that (H J ) holds.

3. Generalized Stein unbiased risk estimator

Throughout this section, for our statements to be statistically meaningful, the noise is assumed to be white Gaussian,
w ∼N (0, σ 2 IdQ ) of bounded variance σ 2.

3.1. GSURE for an arbitrary estimator

We first consider an arbitrary estimator x̂θ (y) with parameters θ such that μ̂θ (y) = Φ x̂θ (y) is a single-valued map-
ping. We similarly write μ0 = Φx0. Of course the results described shortly will apply when the estimator is taken as any
minimizer of (Pλ(y)), in which case θ = λ.

We here develop an extended version of GSURE that unbiasedly estimates the risk of reconstructing Aμ0 with an ar-
bitrary matrix A ∈ RM×Q . This allows us to cover in a unified framework unbiased estimation of several classical risks
including the prediction risk (with A = Id), the projection risk when Φ is rank-deficient (with A = Φ∗(ΦΦ∗)+), and the
estimation risk when Φ has full rank (with A = Φ+ = (Φ∗Φ)−1Φ∗). A quantity that will enter into play in the risk of
estimating Aμ0 is the degrees of freedom defined as

df A
θ =

Q∑
i=1

covw((Ay)i, (Aμ̂θ (y))i)

σ 2
.

Definition 6. Let A ∈ RM×Q . We define the Generalized Stein Unbiased Risk Estimate (GSURE) associated to A as

GSUREA(
x̂θ (y)

) = ∥∥A
(

y − μ̂θ (y)
)∥∥2

2 − σ 2 tr
(

A∗ A
) + 2σ 2d̂ f

A
θ (y),

where

d̂f
A
θ (y) = tr

(
A

∂μ̂θ (y)

∂ y
A∗

)
.

Unbiasedness of the GSURE The next result shows that GSUREA(x̂θ (y)) is an unbiased estimator of an appropriate �2-risk,

and d̂ f
A
θ (y) is an unbiased estimator of df A .
θ
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Theorem 3. Let A ∈ RM×Q . Suppose that y �→ μ̂θ (y) is weakly differentiable, so that its divergence is well-defined in the weak sense.
If y = Φx0 + w with w ∼N (0, σ 2 IdQ ), then

Ew GSUREA(
x̂θ (y)

) = Ew
(∥∥Aμ0 − Aμ̂θ (y)

∥∥2
2

)
and Ewd̂f

A
θ (y) = df A

θ .

Remark 1. Theorem 3 can be straightforwardly adapted to deal with any white Gaussian noise with a non-singular covari-
ance matrix Σ . It is sufficient to consider the change of variable y �→ Σ−1/2 y and Φ �→ Σ−1/2Φ . This is in the same vein
as [40].

All estimators of the form GSUREB with B such that BΦ = AΦ share the same expectation given by Theorem 3. Hence,
there are several ways to estimate the risk in reconstructing Aμ0. For the estimation of the prediction, projection and
estimation risks, we now give the corresponding expressions and associated estimators (with subscript notations) as direct
consequences of Theorem 3:

• A = Id: in which case GSUREId becomes

GSUREΦ

(
x̂θ (y)

) = ∥∥y − μ̂θ (y)
∥∥2

2 − Q σ 2 + 2σ 2 tr

(
∂μ̂θ (y)

∂ y

)
which provides an unbiased estimate of the prediction risk

RiskΦ(x0) = Ew
∥∥Φ x̂θ (y) − Φx0

∥∥2
2.

This coincides with the classical SURE defined in (5).
• A = Φ∗(ΦΦ∗)+: when Φ is rank-deficient, Π = Φ∗(ΦΦ∗)+Φ is the orthogonal projector on ker(Φ)⊥ = Im(Φ∗). Denot-

ing xML(y) = Φ∗(ΦΦ∗)+ y the maximum likelihood estimator (MLE), GSUREΦ∗(ΦΦ∗)+ becomes

GSUREΠ

(
x̂θ (y)

) = ∥∥xML(y) − Π x̂θ (y)
∥∥2

2 − σ 2 tr
((

ΦΦ∗)+) + 2σ 2 tr

((
ΦΦ∗)+ ∂μ̂θ (y)

∂ y

)
.

It provides an unbiased estimate of the projection risk

RiskΠ(x0) = Ew
∥∥Π x̂θ (y) − Πx0

∥∥2
2.

If Φ is the synthesis operator of a Parseval tight frame, i.e. ΦΦ∗ = Id, the projection risk coincides with the prediction
risk and so do the corresponding GSURE estimates

RiskΠ(x0) = RiskΦ(x0) and GSUREΠ

(
x̂θ (y)

) = GSUREΦ

(
x̂θ (y)

)
.

It is also worth noting that if x̂θ (y) never lies in ker(Φ), then RiskΠ(x0) coincides with the estimation risk up to the
additive constant ‖(Id − Π)x0‖2

2.
• A = (Φ∗Φ)−1Φ∗: in this case Φ has full rank, and the mapping y �→ x̂θ (y) is single-valued and weakly differentiable.

The maximum likelihood estimator is now xML(y) = (Φ∗Φ)−1Φ∗ y, and GSURE(Φ∗Φ)−1Φ∗
takes the form

GSUREId
(
x̂θ (y)

) = ∥∥xML(y) − x̂θ (y)
∥∥2

2 − σ 2 tr
((

Φ∗Φ
)−1) + 2σ 2 tr

(
Φ

(
Φ∗Φ

)−1 ∂ x̂θ (y)

∂ y

)
.

This is an unbiased estimator of the estimation risk given by

RiskId(x0) = Ew
∥∥x̂θ (y) − x0

∥∥2
2.

Reliability of the GSURE We now assess the reliability of the GSURE by computing the expected squared-error between
GSUREA(x̂θ (y)) and the true squared-error on Aμ0

SEA(
x̂θ (y)

) = ∥∥Aμ0 − Aμ̂θ (y)
∥∥2

2.

Theorem 4. Under the assumptions of Theorem 3, we have

Ew
[(

GSUREA(
x̂θ (y)

) − SEA(
x̂θ (y)

))2]
= 2σ 4 tr

[(
A∗ A

)2] + 4σ 2Ew
∥∥A∗ A

(
μ0 − μ̂θ (y)

)∥∥2
2

− 4σ 4Ew

(
tr

[
A

∂μ̂θ (y)

∂ y
A∗ A

(
2 Id − ∂μ̂θ (y)

∂ y

)
A∗

])
.
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3.2. GSURE for �1-analysis regularization

We now specialize the previous results to the case where the estimator x̂θ (y) is a solution of (Pλ(y)); i.e. x̂θ (y) = x�
λ(y)

and μ̂θ (y) = μ�
λ(y). For notational clarity and to highlight the dependency of dim(G J ) on y, for y /∈ H·,λ , we write d(y) =

dim(G J ) where J is the D-cosupport of any solution x�
λ(y) such that (H J ) holds. We then obtain the following corollary as

a consequence of Theorems 2 and 3.

Corollary 1. Let y = Φx0 + w with w ∼N (0, σ 2 IdQ ). Then μ�
λ(y) is weakly differentiable and

GSUREΦ

(
x�
λ(y)

) = ∥∥y − μ�
λ(y)

∥∥2
2 − Q σ 2 + 2σ 2d(y),

GSUREΠ

(
x�
λ(y)

) = ∥∥xML(y) − Πx�
λ(y)

∥∥2
2 − σ 2 tr

((
ΦΦ∗)+) + 2σ 2 tr

(
ΠΓ [ J ]),

GSUREId
(
x�
λ(y)

) = ∥∥xML(y) − x�
λ(y)

∥∥2
2 − σ 2 tr

((
Φ∗Φ

)−1) + 2σ 2 tr
(
Γ [ J ]).

Moreover, d(y) is an unbiased estimator of the DOF of (Pλ(y)), i.e.

dfλ = df Id
λ = Ewd(y).

In particular, this result states that dim(G J ) is an unbiased estimator of the DOF of (Pλ(y)) response without requiring
any assumption to ensure uniqueness of x�

λ(y). This DOF estimator formula is valid everywhere except on a set of (Lebesgue)
measure zero.

Building upon Theorems 2 and 4, we derive the relative reliability of the GSURE for (Pλ(y)), and show that it decays
with the number of measurements at the rate O (1/Q ).

Corollary 2. Let A ∈ RM×Q and y = Φx0 + w with w ∼N (0, σ 2 IdQ ). Then

Ew

[(
GSUREA(x�

λ(y)) − SEA(x�
λ(y))

Q σ 2

)2]
= O

(‖A‖4

Q

)
,

where ‖A‖ is the spectral norm of A. In particular, if ‖A‖ is independent of Q , the decay rate of the relative reliability is O (1/Q ).

3.3. Numerical considerations

The remaining obstacle faced when implementing the GSURE formulae of Corollary 1 is to compute the divergence term,

i.e. the last trace term as given by d̂ f
A
λ (y) = tr(AΦΓ [ J ]Φ∗ A∗) (see Definition 6). However, for large-scale data as in image

and signal processing, the computational storage required for the matrix in the argument of the trace would be prohibitive.

Additionally, computing Γ [ J ] can only be reasonably afforded for small data size. Fortunately, the structure of d̂ f
A
λ (y) and

the definition of Γ [ J ] allows to derive an efficient and principled way to compute the trace term. This is formalized in the
next result.

Proposition 1. One has

d̂f
A
λ (y) = EZ

(〈
ν(Z),Φ∗ A∗ A Z

〉)
(8)

where Z ∼N (0, IdP ), and where for any z ∈ RP , ν = ν(z) solves the following linear system(
Φ∗Φ D J

D∗
J 0

)(
ν
ν̃

)
=

(
Φ∗z

0

)
. (9)

In practice, the empirical mean estimator is replaced for the expectation in (8), hence giving

1

k

k∑
i=1

〈
ν(zi),Φ

∗ A∗ Azi
〉 WLLN−−−→ d̂f

A
λ (y), (10)

for k realizations zi of Z , where WLLN stands for the Weak Law of Large Numbers. Consequently, the computational bulk of

computing an estimate of d̂f
A
λ (y) is invested in solving for each ν(zi) the symmetric linear system (9) using e.g. a conjugate

gradient solver.
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4. Relation to other works

4.1. Local variations

The local behavior of x�
λ(y) as a function of λ is already known in the �1-synthesis case, both for the case where Φ is

full rank [17,18], and Q < N [20]. Our local affine parameterization in Theorem 1 generalizes these results to the analysis
case regardless of the number of measurements. Our result also goes beyond the work of [21] which investigates the
overdetermined case with an �1-analysis regularization and develops a homotopy algorithm.

4.2. Degrees of freedom

In the synthesis overdetermined case with full rank Φ , [41] showed that the number of nonzero coefficients is an unbi-
ased estimate for the degrees of freedom of (Pλ(y)). This was generalized to an arbitrary Φ in [42]. Corollary 1 encompasses
these results as special cases by taking D = Id.

For the �1-analysis regularization with full rank Φ , Tibshirani and Taylor [21] showed that dfλ = Ew dim(G J ), where J is
the D-cosupport of the unique solution to (Pλ(y)). This is exactly the assertion of Corollary 1, since (H J ) is in force when
rank(Φ) = N .

While a first version of this paper was submitted, it came to our attention that Tibshirani and Taylor [43, Theorem 3]
recently and independently developed an unbiased estimator of the DOF for (Pλ(y)) that covers the case where Q < N .
More precisely, they showed that dim(Φ(G J )) is an unbiased estimator of df (λ), where J is the D-cosupport of any solution
to (Pλ(y)). This coincides with Corollary 1 when J satisfies (H J ). Their proof however differs from ours, and in particular,
it does not study directly the local behavior of x�

λ(y) as a function of y or λ (Theorem 1).

4.3. Generalized Stein unbiased risk estimator

In [40], the author derived expressions equivalent to GSUREΠ and GSUREId up to a constant which does not depend on
the estimator. However, her expressions were developed separately, whereas we have shown that these GSURE estimates
originate from a general result stated in Theorem 3. Another distinction between our work and [40] lies in the assumptions
imposed. The author [40] supposes x̂θ (y) to be a weakly differentiable function of Φ∗ y/σ 2. In contrast, we just require that
the prediction y �→ μ̂θ (y) (a single-valued map) is weakly differentiable, as classically assumed in the SURE theory.

Indeed, let u = Φ∗ y/σ 2, and define x̂θ (y) = z�
θ (u). Assume that u �→ z�

θ (u) is weakly differentiable (and a fortiori a
single-valued mapping).

When Φ is rank-deficient, [40] proves unbiasedness of the following estimator of the projection risk

GSURE(Eldar)
Π

(
z�
θ (u)

) = ‖Πx0‖2
2 + ∥∥Π z�

θ (u)
∥∥2

2 − 2
〈
z�
θ (u), xML(y)

〉 + 2 tr

(
Π

∂z�
θ (u)

∂u

)
.

Since by assumption
∂Φz�

θ (u)

∂u = Φ
∂z�

θ (u)

∂u , and using the chain rule, the following holds

σ 2 tr

((
ΦΦ∗)+ ∂μ̂θ (y)

∂ y

)
= σ 2 tr

((
ΦΦ∗)+ ∂Φz�

θ (u)

∂u

∂u

∂ y

)
= tr

(
Π

∂z�
θ (u)

∂u

)
whence it follows that

GSUREΠ

(
x̂θ (y)

) − GSURE(Eldar)
Π

(
x̂θ (y)

) = ∥∥xML(y)
∥∥2

2 − ‖Πx0‖2
2 − σ 2 tr

((
ΦΦ∗)+)

.

A similar reasoning when Φ has full rank leads to

GSUREId
(
x̂θ (y)

) − GSURE(Eldar)
Id

(
x̂θ (y)

) = ∥∥xML(y)
∥∥2

2 − ‖x0‖2
2 − σ 2 tr

((
Φ∗Φ

)−1)
.

Both our estimators and those of [40] are unbiased, but they do not have necessarily the same variance. Given that
they only differ by terms that do not depend on x̂θ (y), and in particular on the parameter (here θ ), selecting the latter by
minimizing our GSURE expressions or those of [40] is expected to lead to the same results.

Let us finally mention that in the context of deconvolution, GSUREΠ boils down to the unbiased estimator of the projec-
tion risk obtained in [44].

4.4. Numerical computation of the GSURE

In least-squares regression regularized by a sufficiently smooth penalty term, the DOF can be estimated in closed-
form [45]. However even in such simple cases, the computational load and/or storage can be prohibitive for large-scale
data.

To overcome the analytical difficulty for general non-linear estimators, when no closed-form expression is available, first
attempts developed bootstrap-based (asymptotically) unbiased estimators of the DOF [29]. Ye [46] and Shen and Ye [47]
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proposed a data perturbation technique to approximate the DOF (and the SURE) when its closed-form expression is not
available or numerically expensive to compute. For denoising, a similar Monte Carlo approach has been used in [48] where
it was applied to total variation denoising, wavelet soft-thresholding, and Wiener filtering/smoothing splines.

Alternatively, an estimate can be obtained by recursively differentiating the sequence of iterates that converges to a so-
lution of the original minimization problem. Initially, it has been proposed by [38], and then refined in [49], to compute
the GSURE of sparse synthesis regularization by differentiating the sequence of iterates of the forward–backward splitting
algorithm. We have recently proposed a generalization of this methodology to any proximal splitting algorithm, and exempli-
fied it on �1-analysis regularization including the isotropic total variation regularization, and �1–�2 synthesis regularization
which promotes block sparsity [50].

In our case, we have shown that the computation of a good estimator of the DOF, and therefore of GSUREA for various
risks, boils down to solving linear systems. This is much more efficient than the previous general-purpose iterative methods
that are computationally expensive.

5. Numerical experiments

In this section, we exemplify the usefulness of our GSURE estimator which can serve as a basis for automatically tuning
the value of λ. This is achieved by computing, from a single realization of the noise w ∼ N (0, σ 2 Id), the parameter λ that
minimizes the value of GSURE when solving (Pλ(y)) from y = Φx0 + w for various scenarios on Φ and x0.

5.1. Computing minimizers

Denoising Although it is convex, solving problem (Pλ(y)) is rather challenging given its non-smoothness. In the case where
Φ = Id, the objective functional of (Pλ(y)) is strictly convex, and one can compute its unique solution x�

λ(y) by solving an
equivalent Fenchel–Rockafellar dual problem [51]

x�
λ(y) = y + Dα�

λ(y) where α�
λ(y) ∈ Arg min

‖α‖∞�λ

‖y + Dα‖2
2.

This dual problem can be solved using e.g. projected gradient descent or a multi-step accelerated version.

General case The proximity operator of x �→ ‖D∗x‖1 is not computable in closed-form for an arbitrary dictionary D . This
precludes the use of popular iterative soft-thresholding (actually the forward–backward proximal splitting) without sub-
iterating. We therefore appeal to a more elaborate primal–dual splitting algorithm. We use in our numerical experiments the
relaxed Arrow–Hurwicz algorithm as revitalized recently in [52]. This algorithm achieves full splitting where all operators
are applied separately: the proximity operators of g �→ 1

2 ‖y − g‖2
2 and u �→ λ‖u‖1 (which are known in closed-form), and

the linear operators Φ and D and their adjoints. To cast (Pλ(y)) in the form required to apply this scheme, we can rewrite
it as

minx∈RN F
(

K (x)
)

where

⎧⎨⎩ F (g, u) = 1

2
‖y − g‖2

2 + λ‖u‖1,

K (x) = (
Φx, D∗x

)
.

Note that other algorithms could be equally applied to solve (Pλ(y)), e.g. [53–55].

5.2. Parameter selection using the GSURE

Super-resolution with total variation regularization In this example, Φ is a vertical sub-sampling operator of factor two (hence
Q /N = 0.5). The noise level has been set such that the observed image y has a peak signal-to-noise ratio (PSNR) of 27.78 dB.
We used an anisotropic total variation regularization; i.e. the sum of the �1-norms of the partial derivatives in the first and
second direction (not to be confused with the isotropic total variation). Fig. 1(d) depicts the projection risk and its GSUREΠ

estimate obtained from (10) with k = 1 as a function of λ. The curves appear unimodal and coincide even with k = 1 and a
single noise realization. Consequently, GSUREΠ provides a high-quality selection of λ minimizing the projection risk. Close-
up views of the central parts of the degraded, restored (using the optimal λ), and true images are shown in Fig. 1(a)–(c) for
visual inspection of the restoration quality.

Compressed sensing with wavelet analysis regularization We consider in this example a compressed sensing scenario where Φ

is a random partial DCT measurement matrix with an under-sampling ratio Q /N = 0.5. The noise is such that input image
y has a PSNR set to 27.50 dB. We took D as the shift-invariant Haar wavelet dictionary with 3 scales. Again, we estimate
GSUREΠ with k = 1 in (10). The results observed on the super-resolution example are confirmed in this compressed sensing
experiment both visually and qualitatively, see Fig. 2.
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Fig. 1. Illustration of the selection of λ by minimizing GSUREΠ in a super-resolution problem (Q /N = 0.5) with anisotropic total variation regularization.
(a) The observed image y. (b) A solution x�

λ(y) of (Pλ(y)) at the optimal λ (the one minimizing GSUREΠ ). (c) The underlying true image x0. (d) Projection
risk RiskΠ and its GSUREΠ estimate obtained from (10) using k = 1 random realization.

6. Conclusion

In this paper, we studied the local behavior of solutions to �1-analysis regularized inverse problems of the form (Pλ(y)).
We proved that any minimizer x�

λ(y) of (Pλ(y)) is a piecewise-affine function of the observations y and the regularization
parameter λ. This local affine parameterization is completely characterized by the D-support I of x�

λ(y), i.e. the set of
indices of atoms in D with nonzero correlations with x�

λ(y). As a byproduct, for y outside a set of zero Lebesgue measure,
the first-order variations of Φx�

λ(y) with respect to y are obtained in closed-form.
We capitalized on these results to derive a closed-form expression of an unbiased estimator of the degrees of freedom

of (Pλ(y)), and to objectively and automatically choose the regularization parameter λ when the noise contaminating the
observations is additive-white Gaussian. Toward this goal, a unified framework to unbiasedly estimate several risk measures
is proposed through the GSURE methodology. This encompasses several special cases such as the prediction, the projec-
tion and the estimation risk. A computationally efficient algorithm is designed to compute the GSURE in the context of
�1-analysis reconstruction. Illustrations on different imaging inverse problems exemplify the potential applicability of our
theoretical findings.

Appendix A. Proofs

Throughout, we use the shorthand notation Ly,λ for the objective function in (Pλ(y))

Ly,λ(x) = 1

2
‖y − Φx‖2

2 + λ
∥∥D∗x

∥∥
1.

We remind the reader that condition (H0) is supposed to hold true in all our statements.

A.1. Preparatory lemmata

The following key lemma will be central in our proofs. It gives the first-order necessary and sufficient optimality condi-
tions for the analysis variational problem (Pλ(y)).
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Fig. 2. Illustration of the selection of λ by minimizing GSUREΠ in a compressed sensing problem (Q /N = 0.5) by an �1-analysis regularization in a shift-
invariant Haar wavelet dictionary. (a) The MLE xML. (b) A solution x�

λ(y) of (Pλ(y)) at the optimal λ (the one minimizing GSUREΠ ). (c) The underlying true
image x0. (d) Projection risk RiskΠ and its GSUREΠ estimate obtained from (10) using k = 1 random realization.

Lemma 1. A vector x�
λ(y) is a solution of (Pλ(y)) if, and only if, there exists σ ∈R| J | , where J is the D-cosupport of x�

λ(y), such that

σ ∈ Σy,λ

(
x�
λ(y)

)
(11)

with

Σy,λ

(
x�
λ(y)

) = {
σ ∈R| J | \ Φ∗(Φx�

λ(y) − y
) + λD I sI + λD J σ = 0 and ‖σ‖∞ � 1

}
, (12)

where I = J c is the D-support of x�
λ(y) and s = sign(D∗x�

λ(y)).

Proof. The subdifferential of a real-valued proper convex function F : RN → R ∪ {∞} is denoted ∂ F . From standard convex
analysis, we recall of ∂ F at a point x in the domain of F

∂ F (x) = {
g ∈RN \ ∀z ∈RN , F (z) � F (x) + 〈g, z − x〉}.

It is clear from this definition that x�
λ(y) is a (global) minimizer of F if, and only if, 0 ∈ ∂ F (x). By classical subdifferential

calculus, the subdifferential of Ly,λ at x is the non-empty convex compact set

∂Ly,λ(x) = {
Φ∗(Φx − y) + λDu \ u ∈RN : uI = sign

(
D∗x

)
I and ‖u J ‖∞ � 1

}
.

Therefore 0 ∈ ∂Ly,λ(x�
λ(y)) is equivalent to the existence of u ∈ RN such that uI = sign(D∗x�

λ(y))I and ‖u J ‖∞ � 1 satisfying

Φ∗(Φx�
λ(y) − y

) + λDu = 0.

Taking σ = u J , this is equivalent to σ ∈ Σy,λ(x�
λ(y)). �

The following lemma gives an implicit equation satisfied by any (non-necessarily unique) minimizer x�
λ(y) of (Pλ(y)).

Lemma 2. Let x�
λ(y) be a solution of (Pλ(y)). Let I be the D-support and J the D-cosupport of x�

λ(y) and s = sign(D∗x�
λ(y)).

We suppose that (H J ) holds. Then, x�
λ(y) satisfies

x�
λ(y) = Γ [ J ]Φ∗ y − λΓ [ J ]D I sI . (13)
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Proof. Owing to the first-order necessary and sufficient optimality condition (Lemma 1), there exists σ ∈ Σy,λ(x�
λ(y)) satis-

fying

Φ∗(Φx�
λ(y) − y

) + λD I sI + λD J σ = 0. (14)

By definition, x�
λ(y) ∈ G J = (Im D J )

⊥ . We can then write x�
λ(y) = Uα for some α ∈ Rdim(G J ) . Since U∗D J = 0, multiplying

both sides of (14) on the left by U∗ , we get

U∗Φ∗(ΦUα − y) + λU∗D I sI = 0.

Since U∗Φ∗ΦU is invertible, the implicit equation of x�
λ(y) follows immediately. �

Suppose now that a vector satisfies the above implicit equation. The next lemma derives two equivalent necessary and
sufficient conditions to guarantee that this vector is actually a solution to (Pλ(y)).

Lemma 3. Let y ∈ RQ , let J be a D-cosupport such that (H J ) holds and let I = J c . Suppose that x�
λ(y) satisfies

x�
λ(y) = Γ [ J ]Φ∗ y − λΓ [ J ]D I sI ,

where s = sign(D∗x�
λ(y)). Then, x�

λ(y) is a solution of (Pλ(y)) if, and only if, there exists σ ∈ R| J | satisfying one of the following
equivalent conditions

σ − Ω [ J ]sI + 1

λ
Π [ J ] y ∈ Ker D J and ‖σ‖∞ � 1, (15)

or

Π̃ [ J ] y − λΩ̃ [ J ]sI + λD J σ = 0 and ‖σ‖∞ � 1, (16)

where Ω̃ [ J ] = (Φ∗ΦΓ [ J ] − Id)D I , Π̃ [ J ] = Φ∗(ΦΓ [ J ]Φ∗ − Id), Ω [ J ] = D+
J Ω̃ [ J ] and Π [ J ] = D+

J Π̃ [ J ] .

Proof. First, we observe that x�
λ(y) ∈ G J . According to Lemma 1, x�

λ(y) is a solution of (Pλ(y)) if, and only if, there exists
σ ∈ Σy,λ(x�

λ(y)). Since (H J ) holds, Γ [ J ] is properly defined. We can then plug the assumed implicit equation in (12) to get

Φ∗(ΦΓ [ J ]Φ∗ y − λΦΓ [ J ]D I sI − y
) + λD I sI + λD J σ = 0.

Rearranging the terms multiplying y and sI , we arrive at

Φ∗(ΦΓ [ J ]Φ∗ − Id
)

y − λ
(
Φ∗ΦΓ [ J ] − Id

)
D I sI + λD J σ = 0.

This shows that x�
λ(y) is a minimizer of (Pλ(y)) if, and only if

Π̃ [ J ] y − λΩ̃ [ J ]sI + λD J σ = 0 and ‖σ‖∞ � 1.

To prove the equivalence with (16), we first note that U∗Ω̃ [ J ] = 0 implying that Im(Ω̃ [ J ]) ⊆ Im(D J ). Since D J D+
J is

the orthogonal projector on Im(D J ), we get Ω̃ [ J ] = D J D+
J Ω̃ [ J ] = D J Ω

[ J ] . With a similar argument, we get Π̃ [ J ] = D J Π
[ J ] .

Hence, the existence of σ ∈ Σy,λ(x�
λ(y)) such that ‖σ‖∞ � 1 is equivalent to

D J σ = D J Ω
[ J ]sI − 1

λ
D J Π

[ J ] y where ‖σ‖∞ � 1,

which in turn is equivalent to

σ − Ω [ J ]sI + 1

λ
Π [ J ] y ∈ Ker D J where ‖σ‖∞ � 1. �

We now show that even if (Pλ(y)) admits several solutions x�
λ(y), all of them share the same image under Φ , which in

turn implies that y �→ μ�
λ(y) is a single-valued mapping.

Lemma 4. If x1 and x2 are two minimizers of (Pλ(y)), then Φx1 = Φx2 .

Proof. Let x1, x2 be two minimizers of (Pλ(y)). Suppose that Φx1 
= Φx2. Take x3 = ρx1 + (1 − ρ)x2, ρ ∈ (0,1). Strict
convexity of u �→ ‖y − u‖2

2 implies that

1‖y − Φx3‖2
2 <

ρ ‖y − Φx1‖2
2 + 1 − ρ ‖y − Φx2‖2

2.
2 2 2
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Jensen’s inequality again applied to the �1-norm gives∥∥D∗x3
∥∥

1 � ρ
∥∥D∗x1

∥∥
1 + (1 − ρ)

∥∥D∗x2
∥∥

1.

Together, these two inequalities yield Ly,λ(x3) < Ly,λ(x1), which contradicts our initial assumption that x1 is a minimizer
of (Pλ(y)). �
A.2. Proof of Theorem 1

Proof. Let (y, λ) /∈H. By construction, the vector x�
λ̄
( ȳ) obeys D∗

J x�
λ̄
( ȳ) = 0. Accordingly, for ( ȳ, λ̄) sufficiently close to (y, λ),

one has

sign
(

D∗x�
λ̄
( ȳ)

) = sign
(

D∗x�
λ(y)

)
.

Since x�
λ is a solution of (Pλ(y)), using Lemmas 2 and 3, there exists σ such that

Π̃ [ J ] y − λΩ̃ [ J ]sI + λD J σ = 0 and ‖σ‖∞ � 1. (17)

Let us split J = K ∪ L, K ∩ L = ∅ such that ‖σK ‖∞ = 1 and ‖σL‖∞ < 1. Note that σK ∈ {−1,1}|K | .
We first suppose that Im Π̃ [ J ] ⊆ Im DL . To prove that x�

λ̄
( ȳ) is solution to (Pλ̄( ȳ)), we show that there exists σ̄ such that

‖σ̄‖∞ � 1 and

Π̃ [ J ] ȳ − λ̄Ω̃ [ J ]sI + λ̄D K σ̄K + λ̄DL σ̄L = 0.

We impose that σ̄K = σK and take σ̄L as

σ̄L = σL − 1

λ
D+

L Π̃ [ J ]
(

λ − λ̄

λ̄
y + λ

λ̄
( ȳ − y)

)
.

Hence,

Π̃ [ J ] ȳ − λ̄Ω̃ [ J ]sI + λ̄D J σ̄ = Π̃ [ J ] ȳ − λ̄Ω̃ [ J ]sI + λ̄D K σK + λ̄DLσL

− DL D+
L

λ̄

λ
Π̃ [ J ]

(
λ − λ̄

λ̄
y + λ

λ̄
( ȳ − y)

)
= Π̃ [ J ] y − λΩ̃ [ J ]sI + λD K σK + λDLσL︸ ︷︷ ︸

=0

− Π̃ [ J ](y − ȳ) + (λ − λ̄)Ω̃ [ J ]sI − (λ − λ̄)D K σK − (λ − λ̄)DLσL

− DL D+
L

λ̄

λ
Π̃ [ J ]

(
λ − λ̄

λ̄
y + λ

λ̄
( ȳ − y)

)
.

Since Im Π̃ [ J ] ⊆ Im DL and DL D+
L is the orthogonal projector on Im(DL), we have Π̃ [ J ] = DL D+

L Π̃ [ J ] . It follows that,

Π̃ [ J ] ȳ − λ̄Ω̃ [ J ]sI + λ̄D J σ̄

= λ̄ − λ

λ

[
Π̃ [ J ] y − λΩ̃ [ J ]sI + λD K σK + λDLσL

]
= 0.

Now, for ( ȳ, λ̄) close enough to (y, λ), we have

‖σ̄L‖∞ =
∥∥∥∥σL + 1

λ
D+

L Π̃ [ J ]
(

λ̄ − λ

λ̄
y + λ

λ̄
(y − ȳ)

)∥∥∥∥∞
� 1,

whence we deduce that x�
λ̄
( ȳ) is a solution of (Pλ̄( ȳ)).

In fact, for (y, λ) /∈H, we inevitably have Im Π̃ [ J ] ⊆ Im DL . Indeed, projecting (17) on GL gives

0 = PGL

(
Π̃ [ J ] y − λΩ̃ [ J ]sI + λD J σ

) = PGL

(
Π̃ [ J ] y − λΩ̃ [ J ]sI + λD K σK

)
,

or equivalently

PGL Π̃
[ J ] y = PGL λ

(
Ω̃ [ J ]sI − D K σK

)
.

If Im Π̃ [ J ] � Im DL , then (y, λ) ∈H J ,K ,sI ,σK , a contradiction. This concludes the proof. �
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A.3. Proof of Theorem 2

Proof of (i). First it is easy to see that H J ,K ,s Jc ,σK in Definition 4 is a vector subspace of RQ × R. Moreover H J ,K ,s Jc ,σK ⊆
ker PG J\K B , where B = [Π̃ [ J ] − Ω̃ [ J ]s J c + D K σK ].

Now, fix λ. H·,λ is included in

H̃λ =
⋃

J⊂{1,...,P }
(H J ) holds

⋃
K⊂ J

Im Π̃ [ J ] 
⊂Im D J\K

⋃
s Jc ∈{−1,1}| J c |

⋃
σK ∈{−1,1}|K |

H̃ J ,K ,s Jc ,σK ,

where

H̃λ
J ,K ,s Jc ,σK

= {
y ∈RQ \ PG J\K Π̃ [ J ] y = PG J\K λ

(
Ω̃ [ J ]s J c + D K σK

)}
.

Since Im Π̃ [ J ] � Im(D J\K ), Hλ
J ,K ,s Jc ,σK

is an affine subspace of RQ with dim(H̃λ
J ,K ,s Jc ,σK

) = dim(ker PG J\K Π̃ [ J ]) < Q , where

the inequality follows from the rank-nullity theorem and the fact that G J\K is a (non-empty) strict subspace of RQ . Given
that H̃λ is a finite union of subspaces H̃λ

J ,K ,s Jc ,σK
all strictly included in RQ , H̃λ has a Lebesgue measure zero and so does

H·,λ ⊆ H̃λ .
Note that with a similar reasoning, one can show that H is also of zero Lebesgue measure using the fact that B � Im D J\K

if Π̃ [ J ] � Im D J\K since Im Π̃ [ J ] ⊆ Im B . �
Proof of (ii). The proof of this statement is constructive. Denote by Mλ(y) the set of minimizers of (Pλ(y)). To lighten the
notation, we drop the dependence on y and λ from x�

λ(y) ∈Mλ(y).

First step. We prove the following statement((
x� ∈ Mλ(y) ∧ ¬(Hsupp(D∗x�)c )

) �⇒ ∃x��
λ (y) ∈ Mλ(y) ∧ supp

(
D∗x��

)
� supp

(
D∗x�

))
,

where ∧ and ¬ are respectively the logical conjunction and negation symbols. In plain words, let x� be a solution of (Pλ(y)).
Suppose (H J ) does not hold where J is the D-cosupport of x� . We prove that there exists a solution x��

λ (y) of D-support
strictly included in I = J c .

Since (H J ) does not hold, there exists z ∈ KerΦ with z 
= 0 and D∗
J z = 0. We define for every t ∈ R, the vector vt =

x� + tz. Denote B the subset of R defined by

B = {
t ∈R \ sign

(
D∗vt

) = sign
(

D∗x�
)}

.

B is a non-empty convex set and 0 ∈ B. Moreover for all t ∈ B, ∂Ly,λ(vt) = ∂Ly,λ(x�). It then follows from Lemma 1 that
for all t ∈ B, vt is a solution of (Pλ(y)). As a consequence, using Lemma 4, we get

∀t ∈ B, Φvt = Φx� and
∥∥D∗vt

∥∥
1 = ∥∥D∗x�

∥∥
1.

Since lim|t|→∞ ‖D∗vt‖1 = +∞, the set B is bounded. It is also an open set as a finite intersection of P open sets corre-
sponding to the solutions to sign((D∗x�)i + tzi) = sign((D∗x�)i). Hence, B is an open interval of R which contains 0, i.e.
there exist t1, t0 ∈ R such that

B = ]t1, t0[ where −∞ < t1 < 0 and 0 < t0 < +∞.

Since t0 /∈ B, the D-support of vt0 is strictly included in I . Moreover by continuity,

Φvt0 = Φx� and
∥∥D∗vt0

∥∥
1 = ∥∥D∗x�

∥∥
1.

Hence, vt0 is a solution of (Pλ(y)) of D-support strictly included in I .

Second step. We now prove our claim, i.e.

∃x� ∈ Mλ(y) such that (Hsupp(D∗x�)c ) holds.

Consider (x�
(1), . . . , x�

(P+1)) ∈ (Mλ(y))P+1 such that for every i ∈ {1, . . . , P + 1}, the condition (H Ji ) does not hold for J i =
supp(D∗x�

(i))
c and J1 � J2 � · · · � J P+1. Then, we have a strictly increasing sequence of P + 1 subsets of {1, . . . , P } which

is impossible. Hence, according to the first step of our proof, there exists i ∈ {1, . . . , P + 1} such that (H Ji ) holds. �
Proof of (iii). By virtue of statement (ii), there exists a solution x�

λ(y) of (Pλ(y)) such that (H J ) holds. Let us consider this
solution. Using Theorem 1 for ȳ close enough to y, we have
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Φx�
λ( ȳ) = ΦΓ [ J ]Φ∗ ȳ − λΦΓ [ J ]D I sI ,

where J is the D-cosupport of x�
λ(y). Since I (hence J ) and sI are locally constant under the assumptions of the theorem,

so is the vector λΦΓ [ J ]D I sI , it follows that μ�
λ( ȳ) = Φx�

λ( ȳ) can be written as

μ�
λ( ȳ) = μ�

λ(y) + ΦΓ [ J ]Φ∗( ȳ − y),

whence we deduce

∂μ�
λ(y)

∂ y
= ΦΓ [ J ]Φ∗.

Moreover, owing to statement (i), this expression is valid on RQ \H·,λ , a set of full Lebesgue measure. �
A.4. Proof of Theorem 3

We first recall Stein’s lemma whose proof can be found in [27].

Lemma 5 (Stein’s lemma). Let y = Φx0 + w with w ∼ N (0, σ 2 IdQ ). Assume that g : y �→ g(y) is weakly differentiable (and a
fortiori a single-valued mapping), then

Ew
〈
w, g(y)

〉 = σ 2Ew tr

[
∂ g(y)

∂ y

]
.

Let us now turn to the proof of Theorem 3.

Proof of Theorem 3. Since y �→ μ̂θ (y) = Φ x̂θ (y) is weakly differentiable, so is A∗ Aμ̂θ (y) and we have

∂ A∗ Aμ̂θ (y)

∂ y
= A∗ A

∂μ̂θ (y)

∂ y
.

Then, using Lemma 5, we get

Ew
〈
w, A∗ Aμ̂θ (y)

〉 = σ 2Ew tr

(
A∗ A

∂μ̂θ (y)

∂ y

)
= σ 2Ewd̂f

A
θ (y).

Using the decomposition Ay = AΦx0 + Aw , we obtain

Ew
∥∥Ay − Aμ̂θ (y)

∥∥2
2 = Ew‖AΦx0 + Aw‖2

2 − 2Ew
〈
AΦx0 + Aw, Aμ̂θ (y)

〉 +Ew
∥∥Aμ̂θ (y)

∥∥2
2

= Ew‖AΦx0‖2
2 + σ 2 tr

(
A∗ A

) − 2Ew
〈
AΦx0, Aμ̂θ (y)

〉
− 2Ew

〈
w, A∗ Aμ̂θ (y)

〉 +Ew
∥∥Aμ̂θ (y)

∥∥2
2

= Ew
∥∥AΦx0 − Aμ̂θ (y)

∥∥2
2 + σ 2 tr

(
A∗ A

) − 2σ 2Ewd̂f
A
θ (y).

Moreover,
∑

i covw((Ay)i, (Aμ̂θ (y))i) = Ew〈Aw, Aμ̂θ (y)〉, which shows that d̂ f
A
θ (y) is indeed an unbiased estimator

of df A
θ . �

A.5. Proof of Theorem 4

Proof. Denote by R A the reliability of the GSURE for the estimator x̂θ (y), i.e.

R A = Ew
(
GSUREA(

x̂θ (y)
) − SEA(

x̂θ (y)
))2

.

Let Q A(x̂θ (y)) be the quantity defined as

Q A(
x̂θ (y)

) = ‖Aμ0‖2
2 + ∥∥Aμ̂θ (y)

∥∥2
2 − 2

〈
Ay, Aμ̂θ (y)

〉 + 2σ 2d̂f
A
θ (y).

We have GSUREA(x̂θ (y)) − Q A(x̂θ (y)) = ‖Ay‖2
2 −Ew‖Ay‖2

2, where

Ew‖Ay‖2
2 = ‖Aμ0‖2

2 + σ 2 tr
(

A∗ A
)

and Vw‖Ay‖2
2 = 2σ 4

(
tr

[(
A∗ A

)2] + 2
‖A∗ Aμ0‖2

2

σ 2

)
.

It results that Ew(GSUREA(x̂θ (y)) − Q A(x̂θ (y))) = 0, and hence
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Ew
(

Q A(
x̂θ (y)

)) = Ew
(
GSUREA(

x̂θ (y)
)) = Ew

(
SEA)

.

Remark that Q A(x̂θ (y)) − SEA(x̂θ (y)) = 2(σ 2d̂f
A
θ (y) − 〈Aw, Aμ̂θ (y)〉). We can now rewrite the reliability in the following

form

R A = Ew
(
GSUREA(

x̂θ (y)
) − Q A(

x̂θ (y)
) + Q A(

x̂θ (y)
) − SEA(

x̂θ (y)
))2

= Vw‖Ay‖2
2 +Ew

(
Q A(

x̂θ (y)
) − SEA(

x̂θ (y)
))2 + 4Ew

(‖Ay‖2
2

(
σ 2d̂f

A
θ (y) − 〈

Aw, Aμ̂θ (y)
〉))︸ ︷︷ ︸

=T

.

Lemma 5 gives Ew〈Aw, Aμ̂θ (y)〉 = σ 2Ewd̂f
A
θ (y), and we get

T = 2Ew
(〈Aw, Aμ0〉

(
σ 2d̂f

A
θ (y) − 〈

Aw, Aμ̂θ (y)
〉))︸ ︷︷ ︸

T1

+Ew
(‖Aw‖2

2

(
σ 2d̂ f

A
θ (y) − 〈

Aw, Aμ̂θ (y)
〉))︸ ︷︷ ︸

T2

.

Let μ�
A(y) = A∗ Aμ̂θ (y), μ0

A = A∗ Aμ0 and w A = A∗ Aw . Observe that d̂ f
A
θ (y) = divμ�

A(y) and wi(μ
�
A(y))i is weakly differ-

entiable. Then by integration by parts (in the same vein as in the proof of Stein’s Lemma 5), we get

T1 = 2σ 2
∑
i, j

Ew

(
wi

(
μ0

A

)
i

∂μ�
A(y) j

∂ w j

)
− 2

∑
i, j

Ew
(

wi
(
μ0

A

)
i w jμ

�
A(y) j

)
= −2σ 2

∑
i, j

Ew

((
μ0

A

)
i

∂ wi

∂ w j
μ�

A(y) j

)
= −2σ 2Ew

〈
μ0

A,μ�
A(y)

〉
and

T2 = σ 2
∑
i, j

Ew

(
wi(w A)i

∂μ�
A(y) j

∂ w j

)
−

∑
i, j

Ew
(

wi(w A)i w jμ
�
A(y) j

)
= −σ 2

∑
i, j

Ew

(
∂ wi(w A)i

∂ w j
μ�

A(y) j

)

= −σ 2
∑

j

Ew

(
μ�

A(y) j

(∑
i

∂ wi(w A)i

∂ w j

))
.

In turn,∑
i

∂ wi(w A)i

∂ w j
= ∂

∂ w j
‖Aw‖2

2 = 2
(

A∗ Aw
)

j = 2(w A) j .

Hence,

T2 = −2σ 2
∑

j

Ew
((

μ�
A(y)

)
j(w A) j

) = −2σ 2Ew
〈
w A,μ�

A(y)
〉

= −2σ 2Ew
〈
A∗ Aw, A∗ Aμ�(y)

〉 = −2σ 4Ewd̂f
A∗ A
θ (y),

where the last equality is again a consequence of Lemma 5. It follows that T = −2σ 2(Ew〈μ0
A,μ�

A(y)〉 + σ 2Ewd̂f
A∗ A
θ (y)).

Moreover using [56, Property 1] we have

Ew
(

Q A(
x̂θ (y)

) − SEA(
x̂θ (y)

))2 = 4Ew
(
σ 2 divμ�

A(y) − 〈
w,μ�

A(y)
〉)2

= 4σ 2
(
Ew

∥∥μ�
A(y)

∥∥2
2 + σ 2Ew tr

[(
∂μ�

A(y)

∂ y

)2])
.

Therefore, the reliability is given by

R A = 2σ 4 tr
[(

A∗ A
)2] + 4σ 2Ew

∥∥μ0
A − μ�

A(y)
∥∥2

2 + 4σ 4Ew

(
tr

[(
∂μ�

A(y)

∂ y

)2]
− 2d̂f

A∗ A
θ (y)

)
.

Rearranging the last term above, we obtain the derived expression. �
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A.6. Proof of Corollary 1

Proof. Let λ ∈ R∗+ . From Theorem 2(iii), y �→ Φx�
λ(y) is differentiable almost everywhere and we can invoke Theorem 3 to

derive the GSURE expressions.
We also observe that V = ΦΓ [ J ]Φ∗ is the orthogonal projector on Im V = Φ(G J ), so that tr V = dim(Im V ) =

rank(ΦPG J ). Since Φ is injective on G J under (H J ), it follows that tr V = dim(G J ). Hence, using Theorem 3 with A = Id,
Theorem 2(ii) and (7), it follows that dim(G J ) is an unbiased estimator of df (λ). �
A.7. Proof of Corollary 2

Proof. As V = ΦΓ [ J ]Φ∗ is the orthogonal projector on Φ(G J ), we have

tr
[

AV A∗ A(2 Id − V )A∗] � 0.

Moreover A∗ A is Hermitian, hence tr[(A∗ A)2] = ‖A∗ A‖2
F , we obtain (with the notation of reliability Section A.5) the follow-

ing upper bound of the

R A � 2σ 4
∥∥A∗ A

∥∥2
F + 4σ 2‖A‖4E

∥∥μ0 − μ�
λ(y)

∥∥2
2

where ‖.‖F is the Frobenius norm and ‖.‖ the matrix spectral norm. Then, for A ∈ RM×Q , using classical inequalities, we
get ∥∥A∗ A

∥∥2
F � rank(A)‖A‖4 = min(M, Q )‖A‖4 � Q ‖A‖4.

Since x�
λ(y) is a solution of (Pλ(y)), we have

1

2

∥∥y − μ�
λ(y)

∥∥2
2 � Ly,λ

(
x�
λ(y)

)
� Ly,λ(0) = 1

2
‖y‖2

2.

Thus, using Jensen’s inequality, we get

E
∥∥μ0 − μ�

λ(y)
∥∥2

2 � 2E
(‖μ0 − y‖2

2 + ∥∥y − μ�
λ(y)

∥∥2
2

)
� 2E

(‖w‖2
2 + ‖y‖2

2

)
� 2

(‖μ0‖2
2 + 2Q σ 2).

Altogether, this yields the following upper bound

R A

σ 4 Q 2
� ‖A‖4

(
18

Q
+ 8‖μ0‖2

2

σ 2 Q 2

)
.

Since ‖μ0‖2 < ∞, this concludes the proof. �
A.8. Proof of Proposition 1

Proof. We have

tr
[

AΦΓ [ J ]Φ∗ A∗] = tr
[
ΦΓ [ J ]Φ∗ A∗ A

]
.

Hence denoting ν(z) = Γ [ J ]Φ∗z, and using the fact that for any matrix U , tr U = EZ 〈Z , U Z〉, we arrive at (8).
We then use the fact that Γ [ J ]Φ∗ , the inverse of Φ on G J , is the mapping that solves the following linearly constrained

least-squares problem

Γ [ J ]Φ∗z = arg min
h∈G J

‖Φh − z‖2
2.

Writing the KKT conditions of this problem leads to (9), where ν̃ are the Lagrange multipliers. �
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