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Abstract. The 1-norm was proven to be a good convex regularizer for the recovery of sparse
vectors from under-determined linear measurements. It has been shown that with an appropriate
measurement operator, a number of measurements of the order of the sparsity of the signal (up
to log factors) is sufficient for stable and robust recovery. More recently, it has been shown that
such recovery results can be generalized to more general low-dimensional model sets and (convex)
regularizers. These results lead to the following question: to recover a given low-dimensional
model set from linear measurements, what is the “best” convex regularizer? To approach this
problem, we propose a general framework to define several notions of “best regularizer” with
respect to a low-dimensional model. We show in the minimal case of sparse recovery in dimension
3 that the 1-norm is optimal for these notions. However, generalization of such results to the
n-dimensional case seems out of reach. To tackle this problem, we propose looser notions of best
regularizer and show that the 1-norm is optimal among weighted 1-norms for sparse recovery
within this framework.

1. Introduction
We consider the observation model in a Hilbert space H (with associated norm ‖ · ‖H):

y = Mx0 (1)

where M is an under-determined linear operator, y is a m-dimensional vector and x0 is the
unknown. We suppose that x0 belongs to a low-dimensional model Σ (a union of subspaces).
We consider the following minimization program.

x∗ ∈ arg min
Mx=y

R(x) (2)

where R is a regularization function. A huge body of work gives practical regularizers ensuring
that x∗ = x0 for several low-dimensional models (in particular sparse and low rank models, see
[5] for a most complete review of these results). The operator M is generally required to satisfy
some property (e.g., the restricted isometry property) to guarantee recovery. In this work, we
aim at finding the “best” regularizer for exact recovery of x0 ∈ Σ. Ideally we would like to set
R = ιΣ (the characteristic function of Σ) but it is not practical in many cases (sparse and low
rank recovery) as it is generally not convex, and even NP-hard to compute as a combinatorial
problem. Consequently, we restrict the search for the best regularizer to a class of interesting
regularizers C. In our examples, the set C is a subset of the set of convex functions. Other
interesting classes might be considered, such as partly smooth functions [9].

http://creativecommons.org/licenses/by/3.0
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1.1. Best regularizer with respect to a low dimensional model
Defining what is the “best” regularizer in C for recovery is not immediate. Ideally, to fit to
the inverse problem, we must define a compliance measure that depends on both the kind of
unknown and measurement operator we consider. If we have some knowledge that M ∈ M
where M is a set of linear operators, we want to define a compliance measure AΣ,M(R) that
tells us if a regularizer is good in these situations, and maximize it. Such maximization might
yield a function R∗ that depends on M (e.g., in [7], when looking for tight continuous relaxation
of the �0 penalty a dependency on M appears). We aim for a more universal notion of optimal
regularizer that does not depend on M . Hence, we look for a compliance measure AΣ(R) and
its maximization

R∗ ∈ argmax
R∈C

AΣ(R). (3)

In the sparse recovery example studied in this article, the existence of a maximum of AΣ(R) is
verified. However, we could ask ourselves what conditions on AΣ(R) and C are necessary and
sufficient for the existence of a maximum, which is out of the scope of this article.

1.2. Compliance measures
When studying recovery with a regularization function R, two types of guarantees are generally
used: uniform and non-uniform. To describe these recovery guarantees, we use the following
definition of descent vectors.

Definition 1.1 (Descent vectors). For any x ∈ H, the collection of descent vectors of R at x is

TR(x) := {z ∈ H : R(x+ z) ≤ R(x)} . (4)

We write TR(Σ) :=
⋃

x∈Σ TR(x). Recovery is characterized by descent vectors (recall that x∗

is the result of minimization (2)):

• Uniform recovery: Let M a linear operator. Then “for all x0 ∈ Σ, x∗ = x0” is equivalent
to TR(Σ) ∩ kerM = {0}.

• Non-uniform recovery: Let M a linear operator and x0 ∈ Σ. Then x∗ = x0 is equivalent to
TR(x0) ∩ kerM = {0}.

Hence, a regularization function R is “good” if TR(Σ) leaves a lot of space for kerM to not
intersect it (trivially). In dimension n, if there is no orientation prior on the kernel of M , the
amount of space left can be quantified by the “volume” of TR(Σ) ∩ S(1) where S(1) is the unit
sphere with respect to ‖ · ‖H. Hence a compliance measure for uniform recovery can be defined
as

AU
Σ(R) := 1− vol (TR(Σ) ∩ S(1))

vol(S(1))
. (5)

More precisely, here, the volume vol(E) of a set E is the measure of E with respect to the uniform
measure on the sphere S(1) (i.e. the n−1-dimensional Haussdorf measure of TR(Σ)∩S(1)). When
maximizing this compliance measure with convex regularizers (proper, coercive and continuous),
it has been shown that we can limit ourselves to atomic norms with atoms included in the model
[8, Lemma 2.1]. When looking at non-uniform recovery for random Gaussian measurements, the

quantity vol(TR(x0)∩S(1))
vol(S(1)) represents the probability that a randomly oriented kernel of dimension

1 intersects (non trivially) TR(x0). The highest probability of intersection with respect to x0
quantifies the lack of compliance of R, hence we can define:

ANU
Σ (R) := 1− sup

x∈Σ

vol (TR(x) ∩ S(1))

vol(S(1))
(6)

Note that this can be linked with the Gaussian width and statistical dimension theory of sparse
recovery [3, 1].
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Remark 1.1. In infinite dimension, the volume of the sphere S(1) vanishes, making the
measures above uninteresting. However, [8] and [6] show that we can often come back to a low-
dimensional recovery problem in an intermediate finite (potentially high dimensional) subspace of
H. Adapting the definition of S(1) to this subspace allows to extend these compliance measures.

Another possibility for the n-dimensional case, which we develop in this article, is to use
recovery results based on the restricted isometry property (RIP). They have been shown to be
adequate for multiple models [8], to be tight in some sense [4] for sparse and low rank recovery,
to be necessary in some sense [2] and to be well adapted to the study of random operators [6].
In particular, it has been shown that if M has a RIP with constant δ < δΣ(R) on the secant
set Σ − Σ, with δΣ(R) being fully determined by Σ and R [8], then stable recovery is possible.
Hence, by taking

ARIP
Σ (R) := δΣ(R), (7)

the larger ARIP
Σ is, the less stringent are RIP recovery conditions for recovery of elements of Σ

with R. We develop these ideas more precisely in Section 3 and perform the maximization with
such measure in the sparse recovery case.

1.3. Optimality results
Within this framework we show the following results:

(i) In Section 2, whenH = R
3, Σ = Σ1 the set of 1-sparse vectors and C is the set of (symmetric)

atomic norms with atoms included in the model. Both AU
Σ(R) and ANU

Σ (R) are uniquely
maximized by multiples of the �1-norm (Theorem 2.1). In this case, it is possible to exactly
compute and maximize the compliance measure. While this study gives a good geometrical
insight of the quantities at hand, extending these exact calculations to the general k-sparse
recovery in dimension n seems out of reach.

(ii) In Section 3, we describe precisely how compliance measures based on RIP recovery can
be defined. We then study two of these measures (based on state of the art recovery
guarantees) for H = R

n, Σ = Σk the set of k-sparse vectors (vectors with at most k non
zero coordinates) and C the set of weighted �1-norms. We show that both of these measures
are uniquely maximized by multiples of the �1-norm (Theorem 3.1 and Theorem 3.2).

2. The case of 1-sparse vectors in 3D
We investigate in detail the case of 3-dimensional vectors which are 1 sparse, i.e. the simplest
interesting case (uniform recovery of 1-sparse vectors in 2 dimensions is impossible if M is
not invertible). Here, we have Σ = Σ1 and H = R

3. We consider weighted �1-norms, i.e.,
atomic norms of the form C = {‖ · ‖w : ‖z‖w = w1|z1| + w2|z2| + w3|z3|} = {‖ · ‖A : A =
{±w−1i ei}i=1,3, wi > 0,max |wi| = 1} (where ‖ · ‖A is the atomic norm generated by atoms A
). To maximize AU

Σ (respectively ANU
Σ ), we have to compute the surface of the intersections

of 3 descent cones with the unit sphere S(1) (respectively the surface of the biggest possible
intersection of a descent cone with S(1)).

As shown in Figure 1, with symmetries, we need to compute the intersection of 3 descent
cones of a weighted �1-norm at 1-sparse vectors. This is the object of Lemma 2.1. Note that
in the case of asymmetrical atoms, we would then need to calculate 6 × 4 intersections of the
sphere with a tetrahedron. To ease the notations, we introduce the following quantities which
represent the cosine of the angles of a tetrahedron of interest. For i �= j, set μi = w−1i ,βij(μ) =

cos(αij) =
(
1 + (μj/μi)

2
)− 1

2
and βii =

∏
i �=j βij .
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Figure 1. Left: a representation of the surface of interest. Right: parameterization of the
angles of a tetrahedron.

Lemma 2.1. Let i ∈ {1, 2, 3}, x ∈ Rei a 1-sparse vector and μ1, μ2, μ3 > 0 three positive real
numbers. Then,

vol
(
T‖·‖w(x) ∩ S(1)

)
= 4 tan−1

(
1

1 + ci(μ)

)
(8)

where
ci(μ) = 1 +

∑
j �=i

βij(μ) +
∏
j �=i

βij(μ). (9)

With this Lemma 2.1, we can prove that the �1-norm is the best regularizer for 1-sparse
signals both for uniform and non-uniform recovery among all weighted �1-norms.

Theorem 2.1. Let Σ = Σ1 the set of 1-sparse vectors in R
3 and C = {‖ · ‖w : ‖z‖w =

w1|z1| + w2|z2| + w3|z3|,max |wi| = 1, wi > 0}. The �1-norm is the best regularizer among
the class C for Σ, both for the uniform and non-uniform case,

argmax
R∈C

AU
Σ(R) = argmax

R∈C
ANU

Σ (R) = ‖ · ‖1

We expect a similar result if C is generalized to asymmetrical atomic norms. To extend these
exact calculations to the n-dimensional case, we would need to be able to compare intersections
of spheres and descent cones of R without an analytic formula, which appears to be a very
difficult task.

3. Compliance measures based on the RIP
In this Section, we detail how we can use RIP recovery conditions to build compliance measures
that are more easily managed. We start by recalling definitions and results about RIP recovery
guarantees then apply our methodology. We also give Lemma that emphasize the relevant
quantity (depending on the geometry of the regularizer and the model) to optimize.

Definition 3.1 (RIP constant). In a Hilbert space H, let Σ a union of subspaces. Let M a
linear map, the RIP constant of M is defined as

δ(M) = inf
x∈Σ−Σ

∣∣∣∣‖Mx‖2H
‖x‖2H

− 1

∣∣∣∣ , (10)

where Σ− Σ (differences of elements of Σ) is called the secant set.
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In [8], an explicit constant δsuffΣ (R) is given, such that δ(M) < δsuffΣ (R) guarantees exact
recovery of elements of Σ by minimization (2). This constant is only sufficient (and sharp in
some sense for sparse and low rank recovery). An ideal RIP based compliance measure would

be to use a sharp RIP constant δsharpΣ (R) (which is not explicit, it is an open question to derive
closed form formulations of this constant for sparsity and other low-dimensional models) defined
as:

δsharpΣ (R) := inf
M :kerM∩TR(Σ) �={0}

δ(M). (11)

It is the best RIP constant of measurement operators where uniform recovery fail. The lack of

analytic expressions for δsharpΣ (R) limits the possibilities of exact optimization with respect to
R. We propose to look at two compliance measures:

• Measures based on necessary RIP conditions [4] which yields sharp recovery constants for
particular set of operators, e.g.,

δnecΣ (R) := inf
z∈TR(Σ)\{0}

δ(I −Πz). (12)

where Πz is the orthogonal projection onto the one-dimensional subspace span(z) (other
intermediate necessary RIP constants can be defined). Another open question is to

determine whether δnecΣ (R) = δsharpΣ (R) generally or for some particular models.

• Measures based on sufficient RIP constants for recovery (e.g., δsuffΣ (R) from [8]).

Note that we have the relation

δsuffΣ (R) ≤ δsharpΣ (R) ≤ δnecΣ (R). (13)

To summarize, in the following, instead of considering the most natural RIP based compliance

measure (based on δsharpΣ (R) ), we use the best known bounds of this measure.

3.1. Compliance measures based on necessary RIP conditions
In this case, instead of working with actual RIP constants, it is easier to use (equivalently) the
restricted conditioning.

Definition 3.2 (Restricted conditioning).

γ(M) :=
supx∈(Σ−Σ)∩S(1) ‖Mx‖2H
infx∈(Σ−Σ)∩S(1) ‖Mx‖2H

. (14)

The RIP constant δ(M) is increasing with respect to γ(M). In the following, we consider the
compliance measure

ARIP,nec
Σ (R) := γΣ(R) = inf

z∈TR(Σ)\{0}
γ(I −Πz). (15)

When maximizing ARIP,nec
Σ (R), we look at optimal regularizers for recovery with tight frames

with a kernel of dimension 1.
From here, we specialize to Σ = Σk and H = R

n. Hence Σ− Σ = Σ2k with k ≥ 1 and n ≥ 3
(for n < 3 uniform recovery is not possible for non-invertible M). To show optimality of the

�1-norm, we use the following characterization of ARIP,nec
Σ (R).

Lemma 3.1. Let Σ = Σk and H = R
n. Then

ARIP,nec
Σ (R) =

1

1− infz∈TR(Σ)\{0} supx∈(Σ−Σ)∩S(1)
〈x,z〉2
‖z‖2H

. (16)
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We consider the set C = {R : R(x) =
∑

wi|xi| = ‖x‖w,max |wi| = 1, w ∈ (R∗+)
n}. Note that

argmax
R∈C

ARIP,nec
Σ (R) = argmin

R∈C
sup

z∈TR(Σ)\{0}

‖zT c
2
‖22

‖zT2‖22
= argmin

R∈C
BΣ(R) (17)

where T2 is a notation for the support of 2k biggest coordinates in z, i.e. for all i ∈ T2, j ∈ T c
2 ,

we have |zi| ≥ |zj |.
Studying the quantity BΣ(R) := sup

z∈TR(Σ)\{0}

‖zTc
2
‖22

‖zT2‖22
for R ∈ C permits to conclude.

Theorem 3.1. Let Σ = Σk, H = R
n and C = {R : R(x) =

∑
wi|xi| = ‖x‖w,max |wi| = 1, w ∈

(R∗+)
n}. Suppose n ≥ 2k, then

‖ · ‖1 = argmax
R∈C

ARIP,nec
Σ (R). (18)

In the next section, we will see that the optimization of the sufficient RIP constant leads to
very similar expressions.

3.2. Compliance measures based on sufficient RIP conditions
In [8], it was shown for Σ a union of subspaces and an arbitrary regularizer R, that an explicit

RIP constant δsuffΣ (R) is sufficient to guarantee reconstruction. From here we set Σ := Σk,
C = {R : R(x) =

∑
wi|xi| = ‖x‖w,max |wi| = 1, w ∈ (R∗+)

n}.
Proposition 3.1. Let Σ = Σk the set of k-sparse vectors. Consider the constant δsuffΣ (R) from
[8][Eq. (5)], we have:

δsuffΣ (R) =
1√

sup
z∈TR(Σ)\{0}

‖zTc‖2Σ
‖zT ‖22

+ 1 (19)

where T denotes the support of the k biggest coordinates of z and ‖ · ‖Σ is the atomic norm
generated by Σ ∩ S(1) (the convex gauge induced by the convex envelope of Σ ∩ S(1)).

In the following, we use

ARIP,suff
Σ (R) := δsuffΣ (R). (20)

It must be noted that characterization of Proposition 3.1 was used as a lower bound on δsuffΣ

in [8] (hence this part of the proof of the control of δsuffΣ in [8] is exact).
Similarly to the necessary case, from Proposition 3.1, we have

argmax
R∈C

ARIP,suff
Σ (R) = argmin

R∈C
sup

z∈TR(Σ)\{0}

‖zT c‖2Σ
‖zT ‖22

= argmin
R∈C

DΣ(R) (21)

where T denotes the support of the k biggest coordinates of z and DΣ(R) := sup
z∈TR(Σ)\{0}

‖zTc‖2Σ
‖zT ‖22

.

Remark the similarity between the fundamental quantity to optimize for the necessary case and
the sufficient case BΣ(R) and DΣ(R). Studying the quantity DΣ(R) for R ∈ C leads to the
result.

Theorem 3.2. Let Σ = Σk, H = R
n and C = {R : R(x) =

∑
wi|xi| = ‖x‖w,max |wi| = 1, w ∈

(R∗+)
n}. Suppose n ≥ 2k, then

‖ · ‖1 = arg sup
R∈C

ARIP,suff
Σ (R). (22)
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4. Discussion and future work
We have shown that, not surprisingly, the �1-norm is optimal among weighted �1-norms for sparse
recovery for several notions of compliance. This result had to be expected due to symmetries
of the problem. However, the important point is that we could explicitly quantify the notion of
good regularizer. This is promising for the search of optimal regularizers for more complicated
low-dimensional models such as “sparse and low rank” models or hierarchical sparse models.
For the case of sparsity, we expect to be able to generalize the optimality of the �1-norm to the
more general case of atomic norms with atoms included in the model. We also expect similar
result for low-rank recovery and the nuclear norm as technical tools are very similar.

It must be noted that for RIP compliance measures, we did not use a constructive proof
(we exhibited the maximum of the compliance measure). A constructive proof, i.e. an exact
calculation and optimization of the quantities BΣ(R) and DΣ(R) would be more satisfying as it
would not require the knowledge of the optimum, which is our ultimate objective.

We used compliance measures based on (uniform) RIP recovery guarantees to give results for
the general sparse recovery case, it would be interesting to do such analysis using (non-uniform)
recovery guarantees based on the statistical dimension or Gaussian width of the descent cones
[3, 1]. One would need to precisely lower and upper bound these quantities, similarly to our
approach with the RIP, to get satisfying results.

Finally, while these compliance measures are designed to make sense with respect to known
results in the area of sparse recovery, one might design other compliance measures tailored for
particular needs, in this search for optimal regularizers.
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