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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION*
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Abstract. Analysis sparsity is a common prior in inverse problem or machine learning including
special cases such as total variation regularization, edge Lasso, and fused Lasso. We study the
geometry of the solution set (a polyhedron) of the analysis \ell 1 regularization (with \ell 2 data fidelity
term) when it is not reduced to a singleton without any assumption of the analysis dictionary nor the
degradation operator. In contrast with most theoretical work, we do not focus on giving uniqueness
and/or stability results but rather describe a worst-case scenario where the solution set can be big in
terms of dimension. Leveraging a fine analysis of the sublevel set of the regularizer itself, we draw a
connection between support of a solution and the minimal face containing it and, in particular, prove
that extreme points can be recovered thanks to an algebraic test. Moreover, we draw a connection
between the sign pattern of a solution and the ambient dimension of the smallest face containing it.
Finally, we show that any arbitrary subpolyhedra of the level set can be seen as a solution set of
sparse analysis regularization with explicit parameters.
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1. Introduction. We focus on a convex regularization problem promoting spar-
sity in an analysis dictionary in the context of a linear inverse problem/regression
problem where the regularization reads

min
x\in \BbbR n

1

2
\| y - \Phi x\| 22 + \lambda \| D\ast x\| 1,(1.1)

where y \in \BbbR q is an observation/response vector, \Phi : \BbbR n \rightarrow \BbbR q is the sensing/acquisition
linear operator, D : \BbbR p \rightarrow \BbbR n is a dictionary, and \lambda > 0 the hyperparameter used as a
trade-off between fidelity and regularization. Note that at this point, we do not make
any assumption on the dictionary D or the acquisition operator \Phi .

This convex regularization is known as analysis \ell 1-regularization [11] in the inverse
problems community or generalized Lasso [33] in statistics. Let us mention that it
includes several popular regularizers as special cases as (anisotropic) total variation
[23] when D is a discrete difference operator, wavelet coefficient analysis [28] using
a wavelet transform as an analysis dictionary or fused Lasso [31] when using the
concatenation of the identity matrix and a discrete difference operator, i.e., using a
Lasso regularization with an additional constraint on the (discrete) gradient. In the
noiseless context, when y \in Im\Phi , the following constrained formulation is used instead
of the Tikhonov formulation (1.1) as

min
x\in \BbbR n

\| D\ast x\| 1 subject to \Phi x= y.(1.2)
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 843

We focus here on the noisy version of the regularization in order to keep our discussion
concise. The purpose of this paper is to answer the following question:

When the solution set of (1.1) is not reduced to a singleton, what is its
``geometry""?

One possible motivation could be to study some generalized solution path of such
a problem, not with respect to the hyperparameter \lambda (see, e.g., [10, 17, 33]) but with
respect to some parameter of D. For example, consider

D\rho =

\biggl( 
\rho 0
0 1

\biggr) 
, \Phi =

\bigl( 
1 1

\bigr) 
, y= 2, \lambda = 1;

one can show that the solution set is

\{ (1,0)\} if \rho < 1, [(1,0), (0,1)] if \rho = 1, \{ (0,1)\} if \rho > 1.

Even if most of the time the solution set is reduced to a singleton (see below), it is
essential to describe what happens when it is not the case to understand the behavior
of the generalized solution path. In this paper, we do not tackle fully this multivalued
point of view and leave the sensitivity analysis for future work.

1.1. Previous works.
Uniqueness certificate of analysis regularization. Among several theoretical issues,

sufficient condition for uniqueness of the solution set of (1.1) has been extensively
studied; see, for instance, [36, 21, 1, 38, 29]. Several uniqueness conditions can be
proposed, where the simplest is for instance requiring n \leqslant q and \Phi having full rank:
the \ell 2-loss term is strictly convex, and uniqueness follows from it. The task of studying
the case when the solution set is not reduced to a singleton can be seen as rather
formal since most of the time the solution set is reduced to a singleton [33, 36], but
nevertheless, it exhibits interesting properties of sparse analysis regularization. See
subsection 3.3 for a discussion of some of these conditions.

Solution set of generic convex program. Describing the geometry of the solution
set in convex optimization has been a subject of intense study starting from the work
of [19] and its generalization to nonsmooth convex programs [8]. Several extensions
have been proposed such as [15] for pseudo-linear programs or in a different setting
(minimization of concave function); [18] shows that one can describe one solution with
minimal sparsity level.

Representer theorems. We shall also remark that coming from the statistics com-
munity, [16] (and popularized in [25]) initiates a line of work coined as representer
theorems, culminating recently in [7] and [34]. The basic idea of these kinds of results
is to show that under some assumptions, one can write every element of the solution
set of a convex program as a sum of elementary atoms.

Description of polytopes. Convex polytopes and polyhedrons are central objects in
geometry [39] and convex analysis. Part of our results provides a connection between
faces and signs of vector living in the analysis domain. We can draw a connection with
the study of oriented matroid [5] and zonotopes [6] (analysis \ell 1-ball are zonotopes) as
described in [39, Lecture 7], in particular in section 7.3.

1.2. Contributions. In contrast to these lines of work, we take here a more
direct and specific approach. We give below an overview of our contributions.

Geometry of the analysis \ell 1-ball. The first part of our work (2) is dedicated to
studying the geometry of the analysis \ell 1-ball. We study across several results the
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844 XAVIER DUPUIS AND SAMUEL VAITER

direction and the relative interior of the intersection between the sublevel set of the
regularizer and another set. We refine our analysis progressively starting from any
convex component of the level set, then looking to subpolyhedra of the sublevel set
ending by the faces itself of the level set. We show several specific results:

\bullet The sign pattern defines a bijection between the set of exposed faces of the
analysis \ell 1-ball and the set of feasible signs in the dictionary D as proved in
(2.24).

\bullet The extreme points of the analysis \ell 1-ball can be recovered with a purely
algebraic result thanks to (2.25). We draw a link between our result and a
remark in [7] which is a topological argument

Geometry of the solution set. Thanks to the study of the analysis \ell 1-ball, we give
in a second part (3) consequences on the solution set of (1.1). We show that

\bullet Using (2.16) and (2.17), we describe the geometry of the solution set in (3.6).
\bullet The solution set of (1.1) admits extreme points if and only if the condition

denoted by (H0) and assumed to hold all throughout [36] or [35], namely,
Ker\Phi \cap KerD\ast = \{ 0\} , holds. In this case, the extreme points are precisely
those which satisfy the condition denoted by (HJ) in [35] at a given solution
to perform a sensitivity analysis; see (3.9).

\bullet For any affine space which intersect nontrivially the unit-sphere, one can find
\Phi , y such that the solution set is exactly this intersection; see (3.11) and
(3.12).

1.3. Notations. For a given integer n, the set of all integers between 1 and n is
denoted by [n] = \{ 1, . . . , n\} .

Vectors and support. Given u \in \BbbR m, the support supp(u) and the sign vector
sign(u) are defined by

supp(u) = \{ i\in [m] : ui \not = 0\} and sign(u) = (sign(ui))i\in [m],

and its cardinal is coined the \ell 0-norm \| u\| 0 = | supp(u)| . The cosupport cosupp(u)
is the set cosupp(u) = [m]\setminus supp(u). Given u, v \in \BbbR m, the inner product is written
\langle u, v\rangle =\sum m

i=1 uivi, and the associated norm is written \| u\| 2 =
\sqrt{} 

\langle u, u\rangle . We will also
use the \ell 1-norm \| u\| 1 =

\sum m
i=1 | ui| and \ell \infty -norm \| u\| \infty =maxi\in [m] | ui| .

Linear operators. Given a linear operator D \in \BbbR n\times m, D\ast \in \BbbR m\times n is the transpose
operator, D+ \in \BbbR n\times m its Moore--Penrose pseudo-inverse, KerD \subseteq \BbbR m its null space,
and ImD \in \BbbR n its column space. Given I \subseteq [m], DI \in \BbbR n\times | I| is the matrix formed
by the column of D indexed by I. The identity operator is denoted Idm or Id. Given
a vector u \in \BbbR m, xI is the vector of components indexed by I. Given a subspace
F \subseteq \BbbR m, we denote by \Pi F the orthogonal projection on F . Given a vector u\in \BbbR n, its
diagonalized matrix diag(u) \in \BbbR n\times n is the diagonal matrix such that diag(u)ii = ui

for every i\in [n].
Convex analysis. Given a convex, lower semicontinuous, proper function f :\BbbR m \rightarrow 

\BbbR , its subdifferential \partial f is given

\partial f(u) = \{ \eta \in \BbbR m : f(u)\geqslant f(v) + \langle \eta , u - v\rangle \} .

Given a convex set C, the affine hull aff(C) is the smallest affine set containing C,
the direction dir(C) of C is the direction of aff(C) and its relative interior ri(C) is
the interior of C relative to its affine hull aff(C). The relative boundary rbd(C)
of C is the boundary of C relative to aff(C). The dimension dim(C) of C is the
dimension of aff(C). We say that x \in C is an extreme point if there are no two
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 845

different x1, x2 \in C such that x= x1+x2

2 . The set of all extreme points of C is denoted
by ext(C). For instance, given two points x1 \not = x2 \in \BbbR n, the segment C = [x1, x2]
is such that its affine hull is aff(C) = \{ x1 + tx2 : t\in \BbbR \} , its relative interior is
the open segment ri(C) = (x1, x2), its relative boundary and set of extreme points
ext(C) = rbd(C) = \{ x1, x2\} , its dimension is 1, and its direction is dir(C) =\BbbR (x1 - x2).

1.4. Examples of operators \bfitD \ast . We illustrate our results in this paper in dif-
ferent analysis regularization settings. In particular, we focus our interest on different
operators:

\bullet The Lasso [30], corresponding to D = DLasso = Id, used to recover sparse
vectors.

\bullet The total variation regularization [23], and more specifically the 1D total
variation, i.e., when D : \BbbR n \rightarrow \BbbR n - 1 is a forward difference operator on n
points:

D\ast =

\left(      
 - 1 +1 0 \cdot \cdot \cdot 0

0  - 1 +1
. . .

...
...

. . .
. . .

. . . 0
0 \cdot \cdot \cdot 0  - 1 +1

\right)      .

This is a popular prior in image processing to regularize ``cartoon"" or piece-
wise regular images.

\bullet More generally, we consider the graph-total variation regularization [26] where
D =DG is the vertex-edge incidence matrix of a graph G. Specific instance
include the 1D and anisotropic 2D total variation [23], cluster Lasso [27].

2. The unit ball of the sparse analysis regularizer. This section contains
the core of our results. After giving preliminary results on sign vectors in subsec-
tion 2.1, we show that the unit ball is a convex polyhedron by giving its half-space
representation in subsection 2.2. Then, we study properties of convex subset of the
unit-sphere in subsection 2.3 which leads us to Lemma 2.8 which turns to be the foun-
dation of latter results. Subsection 2.4 contains a sequence of results which represent
our main contribution: Theorem 2.16, which describes in detail the affine components
of the unit ball, Proposition 2.17, which instantiates this result to the setting of an
affine component included in the unit sphere, Proposition 2.18, which extends this
result to any exposed faces, and finally Proposition 2.19, which gives a necessary and
sufficient condition of extremality. Finally, in subsection 2.5, we reformulate our pre-
vious results in order to describe the exposed faces of the unit ball and to show that
there exists a bijection between the set of exposed faces and feasible signs. We also
draw a connection to the work of [7].

2.1. Preliminary results on sign vectors. We first define an order on the set
of all possible signs \{  - 1,0,+1\} p along with a notion of consistency of signs which can
be related to the idea of ``subsigns.""

Definition 2.1. Let s, s\prime \in \{  - 1,0,+1\} p. We say that
\bullet s\preceq s\prime if for all i\in [p], si \not = 0 \Rightarrow s\prime i = si;
\bullet s and s\prime are consistent if for all i\in [p], si \not = 0 and s\prime i \not = 0 \Rightarrow s\prime i = si.

The following remarks connect the notion of support/cosupport to this sign
pattern.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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846 XAVIER DUPUIS AND SAMUEL VAITER

Remark 2.2.
1. s\preceq s\prime \Rightarrow supp(s)\subset supp(s\prime )\leftrightarrow cosupp(s\prime )\subset cosupp(s);
2. If s and s\prime are consistent, then

s\preceq s\prime \leftrightarrow supp(s)\subset supp(s\prime )\leftrightarrow cosupp(s\prime )\subset cosupp(s);

3. If s\preceq s\prime \prime and s\prime \preceq s\prime \prime , then s and s\prime are consistent;
4. The set \{  - 1,0,+1\} p endowed with the order relation \preceq is a poset.

The following lemma gives a characterization of the \ell 1-norm which will be used
intensively in latter results.

Lemma 2.3. Let \theta \in \BbbR p. Then for any s \in \{  - 1,0,+1\} p, \langle s, \theta \rangle \leq \| \theta \| 1, and the
equality holds if and only if sign(\theta )\preceq s.

Proof. We prove the result componentwise. Let \alpha \in \BbbR . Then for any s \in 
\{  - 1,0,+1\} , s\alpha \leq | \alpha | . Suppose now that sign(\alpha ) \preceq s. If \alpha = 0, then s\alpha = | \alpha | ,
and if \alpha \not = 0, then s = sign(\alpha ) and s\alpha = | \alpha | . Conversely, suppose that sign(\alpha ) \npreceq s.
Then \alpha \not = 0 and s \not = sign(\alpha ), i.e., s= 0 or s= - sign(\alpha ). In both cases, s\alpha < | \alpha | .

2.2. Half-space representation of the unit ball. We denote by B1 (resp.,
\partial B1) the unit ball (resp., the unit sphere) or sublevel set (resp., level set) for the value
1 of the sparse analysis regularizer R : x \mapsto \rightarrow \| D\ast x\| 1:

B1 = \{ x\in \BbbR n : \| D\ast x\| 1 \leq 1\} ,
\partial B1 = \{ x\in \BbbR n : \| D\ast x\| 1 = 1\} .

Since R is one-homogeneous, the results of this section apply to all sublevel sets for
positive values.

Proposition 2.4. The unit ball B1 is a full-dimensional convex polyhedron, a
half-space representation of which is given by

B1 =
\bigcap 

s\in \{  - 1,0,1\} p

\{ x\in \BbbR n : \langle Ds,x\rangle \leq 1\} .

Proof. First note that B1 has a nonempty interior (in particular 0\in B1), namely,
\{ x\in \BbbR n : \| D\ast x\| 1 < 1\} , which is equivalent for a convex set to be of full dimension.

Second denote A =
\bigcap 

s\in \{  - 1,0,1\} p\{ x : \langle Ds, x\rangle \leqslant 1\} . Let x \in B1. By Lemma 2.3,
\langle Ds,x\rangle = \langle s,D\ast x\rangle \leq \| D\ast x\| 1 \leq 1 for any s \in \{  - 1,0,1\} p so x \in A. Conversely, let
x\in A and s= sign(D\ast x). By Lemma 2.3, \| D\ast x\| 1 = \langle s,D\ast x\rangle = \langle Ds,x\rangle \leq 1 so x\in B1.
Then B1 =A is a convex polyhedron.

Note that this half-space representation is redundant, and if D= Id, then it is the
\ell 1-ball. The general question of the minimal representation of H-polyhedron is known
to be hard; we shall leave it to future work. However, we can use this proposition to
derive a way to construct exposed face of B1 as claimed in the following lemma.

Lemma 2.5. Let \=s\in \{  - 1,0,1\} p. Then

B1 \cap \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} = \partial B1 \cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} ;

it is either empty or an exposed face of B1.

Proof. Let x\in B1. Then by Lemma 2.3, \langle D\=s,x\rangle = 1 if and only if 1 = \langle \=s,D\ast x\rangle \leq 
\| D\ast x\| 1 \leq 1, if and only if \| D\ast x\| 1 = 1 and sign(D\ast x) \preceq \=s. If the intersection is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 847

nonempty, then \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} is a supporting hyperplane of B1 by Proposition
2.4, and thus its intersection with B1 is an exposed face of the polyhedron.

For a given \=s, the set \{ x \in \BbbR n : sign(D\ast x) \preceq \=s\} looks hard to describe. In fact,
there exists a linear representation as told in the following lemma.

Lemma 2.6. Let \=s\in \{  - 1,0,1\} p. Then

\{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} = \{ x\in \BbbR n :D\ast 
\=Jx= 0 and diag(\=s\=I)D

\ast 
\=Ix\geqslant 0\} ,

where \=J = cosupp(\=s) and \=I = supp(\=s).

Proof. It is a straightforward rewriting of sign(D\ast x)\preceq \=s. Indeed,

sign(D\ast x)\preceq \=s\leftrightarrow D\ast 
\=Jx= 0 and \=si(D

\ast x)i \geqslant 0 \forall i\in \=I

\leftrightarrow D\ast 
\=Jx= 0 and diag(\=s\=I)D

\ast 
\=Ix\geqslant 0.

Note that we can exchange the role of \=s and D\ast x, and we also obtain that

\{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} = \{ x\in \BbbR n :D\ast 
\=Jx= 0 and diag(D\ast 

\=Ix)\=sI \geqslant 0\} .

2.3. Convex components of the unit sphere. In this section we consider
nonempty convex subsets C \subset \partial B1. All the results will hold in particular for exposed
faces of B1.

We begin with a lemma on general convex sets.

Lemma 2.7. Let X be a nonempty convex set and C \subset X be a nonempty convex
subset. Suppose that there exists an exposed face G of X such that ri(C) \cap G \not = \emptyset .
Then C \subset G. Moreover, if G is exposed in aff(X), then G\subset rbd(X).

Proof. Recall that an exposed face of X is defined as G=X\cap \{ x : \langle \alpha ,x\rangle = \beta \} with
\{ x : \langle \alpha ,x\rangle = \beta \} a supporting hyperplane of X, i.e., such that X \subset \{ x : \langle \alpha ,x\rangle \leq \beta \} .
Suppose that C \not \subset G, and let x \in C \setminus G \subset X and \=x \in ri(C) \cap G (nonempty). Then
\langle \alpha ,x\rangle <\beta and \langle \alpha , \=x\rangle = \beta . Let d= \=x - x\in dir(C). Since \=x\in ri(C), \=x+ \varepsilon d\in C \subset X for
| \varepsilon | small. But \langle \alpha , \=x+ \varepsilon d\rangle = \beta + \varepsilon (\beta  - \langle \alpha ,x\rangle ) > \beta for \varepsilon > 0, which is a contradiction.
Then C \subset G.

It is a classical result that G \subset bd(X); see, e.g., [14, Part III, section 2.4]. If G
is exposed in aff(X), we get that G \subset rbd(X) by considering aff(X) as the ambient
space.

The following lemma is the first result of a long number of consequences which
study the direction and relative interior of the intersection of the unit ball with another
set.

Lemma 2.8. Let \=x\in \partial B1, \=s= sign(D\ast \=x), \=J = cosupp(D\ast \=x), and

\=F =B1 \cap \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} .

(i) \=F = \partial B1 \cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} and it is an exposed face;
(ii) C \subset \=F for any nonempty convex subset C \subset B1 such that \=x\in ri(C);
(iii) dir( \=F ) = (D\=s)\bot \cap KerD\ast 

\=J
;

(iv) ri(C)\subset ri( \=F ) for any nonempty convex subset C \subset B1 such that \=x\in ri(C);
(v) ri( \=F ) = \partial B1 \cap \{ x\in \BbbR n : sign(D\ast x) = \=s\} .
Proof. (i) The expression for \=F is given by Lemma 2.5. It follows that \=x\in \=F , and

thus \=F is an exposed face of B1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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848 XAVIER DUPUIS AND SAMUEL VAITER

(ii) Let C be a nonempty convex subset of B1 such that \=x\in ri(C). Then ri(C)\cap 
\=F \not = \emptyset , and by Lemma 2.7, C \subset \=F .

(iii) The inclusion dir( \=F )\subset (D\=s)\bot follows from the definition of \=F . Moreover, for
any x \in \=F , sign(D\ast x)\preceq \=s, which implies that \=J \subset cosupp(D\ast x), i.e., D\ast 

\=J
x= 0. Then

\=F \subset KerD\ast 
\=J
, and dir( \=F ) \subset KerD\ast 

\=J
. Conversely, let d \in (D\=s)\bot \cap KerD\ast 

\=J
. Since d \in 

KerD\ast 
\=J
and sign(D\ast \=x) = \=s, cosupp(D\ast \=x)\subset cosupp(D\ast d) and sign(D\ast (\=x+ \varepsilon d))\preceq \=s for

| \varepsilon | small. Then by Lemma 2.3, \| \=x+\varepsilon d\| 1 = \langle \=s,D\ast (\=x+\varepsilon d)\rangle = \langle D\=s, \=x+\varepsilon d\rangle = \langle D\=s, \=x\rangle = 1
since d\in (D\=s)\bot . Then \=x+ \varepsilon d\in \=F for | \varepsilon | small, and d\in dir( \=F ).

(iv)--(v) First, we prove that \partial B1 \cap \{ x \in \BbbR n : sign(D\ast x) = \=s\} \subset ri( \=F ) (thus in
particular \=x \in ri( \=F )). Let x \in \partial B1 be such that sign(D\ast x) = \=s. By (iii) and its
proof, for any d \in dir( \=F ), x + \varepsilon d \in \=F for | \varepsilon | small. Thus x \in ri( \=F ). Second, let C
be a nonempty convex subset of B1 such that \=x \in ri(C). By (ii), C \subset \=F \subset \partial B1. Let
\^x \in ri(C) and \^s = sign(D\ast \^x). Note that \^s \preceq \=s since \^x \in \=F . Let \^F = B1 \cap \{ x \in \BbbR n :
\langle D\^s,x\rangle = 1\} . Applying (ii) to \^x and C = \=F , we get that \=F \subset \^F , which implies that
\=s \preceq \^s. Thus sign(D\ast \^x) = \=s and ri(C) \subset \partial B1 \cap \{ x \in \BbbR n : sign(D\ast x) = \=s\} . This proves
(iv) as well as the missing inclusion of (v) by setting C = \=F (recall that \=x\in ri( \=F )).

The following proposition is a direct consequence of Lemma 2.8 which allows to
characterize faces of B1 by an arbitrary convex subset of it.

Proposition 2.9. Let C be a nonempty convex subset of \partial B1. Let \=x \in ri(C),
\=s= sign(D\ast \=x), and

\=F =B1 \cap \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} .

Then C \subset \=F and ri(C) \subset ri( \=F ). Moreover, \=F is the smallest face of B1 such that
ri(C)\cap \=F \not = \emptyset and the unique face of B1 such that ri(C)\cap ri( \=F ) \not = \emptyset .

Proof. By Lemma 2.8(i) and (iii), C \subset \=F and ri(C)\subset ri( \=F ). Let F be a face such
that ri(C)\cap F \not = \emptyset . If F =B1; then \=F \subset F ; otherwise F is an exposed face since B1 is
a polyhedron, and by Lemma 2.7, C \subset F . It follows that \emptyset \not = ri(C)\cap ri( \=F )\subset F \cap ri( \=F ),
and by Lemma 2.7 again, \=F \subset F . Suppose now that ri(C)\cap ri(F ) \not = \emptyset . Then permuting
F and \=F , we get that F \subset \=F , thus F = \=F .

Remark 2.10. The uniqueness actually holds with the same proof for a general
nonempty convex set X: given a nonempty convex subset C \subset rbd(X), there exists
at most one exposed face G of X such that ri(C) \cap ri(G) \not = \emptyset . The existence reduces
to the existence, for any x\in rbd(X), of an exposed face G of X such that x\in ri(G).

For a singleton C = \{ \=x\} , the previous proposition becomes the following.

Corollary 2.11. Let \=x \in \partial B1 and \=s = sign(D\ast \=x). Then \=F = B1 \cap \{ x \in \BbbR n :
\langle D\=s,x\rangle = 1\} is the smallest face of B1 such that \=x\in \=F and the unique face of B1 such
that \=x\in ri( \=F ).

We can also derive from Proposition 2.9 and Lemma 2.8 the following properties
about the mapping x \mapsto \rightarrow sign(D\ast x).

Corollary 2.12. Let C be a nonempty convex subset of the unit sphere \partial B1.
Then maxx\in C sign(D\ast x) is well defined, and this maximum is attained everywhere in
ri(C). In particular sign(D\ast \cdot ) is constant on ri(C).

For any x,x\prime \in C, [x,x\prime ] is a nonempty convex subset of \partial B1 and thus sign(D\ast \cdot )
is constant on ]x,x\prime [. Moreover, since s= sign(D\ast x) and s\prime = sign(D\ast x\prime ) are both \preceq 
maxx\in C sign(D\ast x), they are consistent (see Remark 2.2). It follows that the constant
value s\prime \prime of sign(D\ast \cdot ) on ]x,x\prime [ can be given explicitly:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 849

s\prime \prime i =

\left\{     
si if si \not = 0,

s\prime i if s\prime i \not = 0,

0, otherwise.

It is also the maximum of sign(D\ast \cdot ) over [x,x\prime ].
Finally we get a general sufficient condition of extremality.

Corollary 2.13. Let C be a nonempty convex subset of \partial B1. Let \=x \in C and
\=s= sign(D\ast \=x). If \=x is the unique x\in C such that sign(D\ast x)\preceq \=s, then \=x\in ext(C).

Proof. Let x1, x2 \in C such \=x= x1+x2

2 . Then [x1, x2] is a nonempty convex subset
of \partial B1. By Corollary 2.12, sign(D\ast x) = \=s for any x \in ]x1, x2[. By uniqueness of \=x,
]x1, x2[= \{ \=x\} , i.e., x1 = x2 = \=x, and thus \=x is an extreme point.

Observe that the uniqueness condition in the Corollary 2.13 can be written as
C\cap \=F = \{ \=x\} with \=F =B1\cap \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} the smallest face of B1 containing \=x.

2.4. Subpolyhedra of the unit ball. In this section we consider nonempty
convex polyhedra of the form \scrA \cap B1 with \scrA an affine subspace. The results on
convex components of the unit sphere apply to such sets if \scrA \cap B1 \subset \partial B1 and, in any
case, as we will see, to exposed faces of such polyhedra. Again, the results of this
section will hold in particular for exposed faces of B1.

We begin with a useful lemma.

Lemma 2.14. Let \scrA be an affine subspace and C be a nonempty convex set such
that \scrA \cap ri(C) \not = \emptyset . Then

ri(\scrA \cap C) =\scrA \cap ri(C) and dir(\scrA \cap C) = dir(\scrA )\cap dir(C).

Proof. Since ri(\scrA ) =\scrA , we have ri(\scrA )\cap ri(C) \not = \emptyset . Then by [14, Part III, Proposi-
tion 2.1.10], ri(\scrA \cap C) = ri(\scrA )\cap ri(C) =\scrA \cap ri(C). Let us now prove that dir(\scrA \cap C) =
dir(\scrA )\cap dir(C). Let d\in dir(\scrA \cap C) and \=x\in ri(\scrA \cap C) (nonempty). Then \=x+\varepsilon d\in \scrA \cap C
for | \varepsilon | small, and d \in dir(\scrA ) \cap dir(C). Similarly, let d \in dir(\scrA ) \cap dir(F ) and
\=x\in ri(\scrA )\cap ri(C) (nonempty). Then \=x+\varepsilon d\in \scrA \cap C for | \varepsilon | small, and d\in dir(\scrA \cap C).

The following lemma will be used in Theorem 2.16.

Lemma 2.15. Let \scrA be an affine subspace such that \emptyset \not = \scrA \cap B1 \subset \partial B1. Let
\=x\in \scrA \cap \partial B1, \=s= sign(D\ast \=x), and \=J = cosupp(D\ast \=x). Then

(i) dir(\scrA )\subset \bigcup 
s\succeq \=s\{ d\in \BbbR n : \langle Ds,d\rangle \geq 0\} ;

(ii) dir(\scrA )\bot \cap (
\sum 

s\succeq \=s\BbbR +Ds) \not = \{ 0\} ;
(iii) dir(\scrA )\cap KerD\ast 

\=J
\subset (D\=s)\bot , i.e., dir(\scrA )\cap (D\=s)\bot \cap KerD\ast 

\=J
=dir(\scrA )\cap KerD\ast 

\=J
.

(iv) \scrA \cap \{ x \in \BbbR n : sign(D\ast x) \preceq \=s\} \subset \partial B1, i.e., \scrA \cap \partial B1 \cap \{ x \in \BbbR n : sign(D\ast x) \preceq 
\=s\} =\scrA \cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} ;

(v) \scrA \cap \{ x \in \BbbR n : sign(D\ast x) = \=s\} \subset \partial B1, i.e., \scrA \cap \partial B1 \cap \{ x \in \BbbR n : sign(D\ast x) =
\=s\} =\scrA \cap \{ x\in \BbbR n : sign(D\ast x) = \=s\} .

Proof. (i) Suppose that the inclusion does not hold, and let d\in dir(\scrA ) such that
\langle Ds,d\rangle < 0 for all s\succeq \=s. Then \langle Ds, \=x+ \varepsilon d\rangle < 1 for all s and \varepsilon > 0 small. Indeed, by
Lemma 2.3, if s\succeq \=s, then \langle Ds, \=x+ \varepsilon d\rangle < 1 for \varepsilon > 0; otherwise, \langle Ds, \=x+ \varepsilon d\rangle < 1 for \varepsilon 
small. Still by Lemma 2.3, \| \=x+ \varepsilon d\| 1 < 1 for \varepsilon > 0 small; i.e., \=x+ \varepsilon d \in \scrA \cap \r B1, which
is in contradiction with \scrA \cap B1 \subset \partial B1.
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850 XAVIER DUPUIS AND SAMUEL VAITER

(ii) Suppose that the intersection is reduced to \{ 0\} and consider the dual cone
of both sides of the expression (we denote by C\ast = \{ y \in \BbbR n : \forall x \in C, \langle y,x\rangle \geq 0\} of a
subset C \subset \BbbR n). Since dir(\scrA )\bot and (

\sum 
s\succeq \=s\BbbR +Ds) \not = \{ 0\} are two polyhedral cones,

we get that

dir(\scrA )\bot \ast +
\Bigl( \sum 

s\succeq \=s

\BbbR +Ds
\Bigr) \ast 

=\BbbR n,

where dir(\scrA )\bot \ast = dir(\scrA ) and (
\sum 

s\succeq \=s\BbbR +Ds)\ast =
\bigcap 

s\succeq \=sDs\ast . It follows from (i) that

\BbbR n \subset \bigcup 
s\succeq \=sDs\ast , which is not true (note, e.g., that d= x - \=x with x\in \r B1 is such that

\langle Ds,d\rangle < 0) for all s\succeq \=s).
(iii) First note that for d \in KerD\ast 

\=J
, \langle Ds,d\rangle = \langle D\=s, d\rangle for all s \succeq \=s. Indeed,

(D\ast d)i = 0 if \=si = 0 and si = \=si if \=si \not = 0; thus si(D
\ast d)i = \=si(D

\ast d)i for all i and
\langle s,D\ast d\rangle = \langle \=s,D\ast d\rangle . Let now d\in dir(\scrA )\cap KerD\ast 

\=J
. Since by (i) there exists s\succeq \=s such

that \langle Ds,d\rangle \geq 0, it follows that \langle D\=s, d\rangle \geq 0. And since  - d \in dir(\scrA )\cap KerD\ast 
\=J
too, we

get that \langle D\=s, d\rangle = 0, which proves the inclusion and the equivalent equality.
(iv) Let x \in \scrA such that sign(D\ast x) \preceq \=s (in particular, \=J \subset cosupp(D\ast x)), and

let d = x - \=x. Then d \in dir(\scrA ) \cap KerD\ast 
\=J
(recall that \=x \in \scrA and \=J = cosupp(D\ast \=x)),

and by (ii), d \in (D\=s)\bot . By Lemma 2.3, \| D\ast x\| 1 = \langle \=s,D\ast x\rangle = \langle D\=s, \=x+ d\rangle = \langle D\=s, \=x\rangle =
\| D\ast \=x\| 1 = 1, which proves the inclusion and the equivalent equality.

(v) The proof is the same as for (iv).

The following theorem is similar to Lemma 2.8 when we replace convex subset by
subpolyhedra (here of the unit sphere).

Theorem 2.16. Let \scrA be an affine subspace intersecting \partial B1. Let \=x\in \scrA \cap \partial B1,
\=s= sign(D\ast \=x), \=J = cosupp(D\ast \=x), and \=F =B1 \cap \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} . Then

\=G=\scrA \cap \=F

(i) is the smallest face of \scrA \cap B1 such that \=x\in \=G and the unique face of \scrA \cap B1

such that \=x\in ri( \=G) ( \=G is possibly equal to \scrA \cap B1 itself);
(ii) satisfies the following:

\=G=\scrA \cap \partial B1 \cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} ,
ri( \=G) =\scrA \cap \partial B1 \cap \{ x\in \BbbR n : sign(D\ast x) = \=s\} ,

dir( \=G) = dir(\scrA )\cap (D\=s)\bot \cap KerD\ast 
\=J ;

(iii) satisfies the following, in the case where \scrA \cap B1 \subset \partial B1:

\=G=\scrA \cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} ,
ri( \=G) =\scrA \cap \{ x\in \BbbR n : sign(D\ast x) = \=s\} ,

dir( \=G) = dir(\scrA )\cap KerD\ast 
\=J .

Proof. (i) First note that \=G = (\scrA \cap B1) \cap \{ x : \langle D\=s,x\rangle = 1\} is an exposed face of
\scrA \cap B1 (in particular it is a convex subset of \scrA \cap B1) and is such that \=x \in ri( \=G) =
\scrA \cap ri( \=F ) by Lemma 2.14. Let G be a face of \scrA \cap B1 such that \=x\in G. If G=\scrA \cap B1,
then \=G\subset G; otherwise G is an exposed face since \scrA \cap B1 is a convex polyhedron, and
by Lemma 2.7, \=G \subset G. Suppose now that \=x \in ri(G). Then permuting G and \=G, we
get that G\subset \=G, thus G= \=G.

(ii) By definition, \=G=\scrA \cap \=F and \=x\in \scrA \cap ri( \=F ). By Lemma 2.14, ri( \=G) =\scrA \cap ri( \=F )
and dir( \=G) = dir(\scrA )\cap dir( \=F ). The expression of these sets follows from Lemma 2.8.

(iii) We proved the strengthened expression of the previous sets in Lemma 2.15.
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 851

We get the next result on \scrA \cap B1 itself in the case where it is a subset of \partial B1.

Proposition 2.17. Let \scrA be an affine subspace such that \emptyset \not = \scrA \cap B1 \subset \partial B1.
Then

\scrA \cap B1 =\scrA \cap \=F

with \=F = B1 \cap \{ x \in \BbbR n : \langle D\=s,x\rangle = 1\} and \=s = maxx\in \scrA \cap B1
sign(D\ast x) (or equivalently

\=s = sign(D\ast \=x) for some \=x \in ri(\scrA \cap B1)). In particular, the results of Theorem 2.16
(iii) hold for \scrA \cap B1.

Proof. Since \scrA \cap B1 is a nonempty convex subset of \partial B1, \=s is well defined by
Corollary 2.12. Let \=x\in ri(\scrA \cap B1)\subset \scrA \cap \partial B1. Then by Theorem 2.16(i), \scrA \cap \=F is the
unique face of \scrA \cap B1 containing \=x in its relative interior; it is thus equal to the face
\scrA \cap B1.

In the general case, we can describe all the exposed faces of \scrA \cap B1.

Proposition 2.18. Let \scrA be an affine subspace such that \emptyset \not =\scrA \cap B1 \not = aff(\scrA \cap 
B1). Let G be a face \scrA \cap B1 exposed in aff(\scrA \cap B1). Then

G=\scrA \cap \=F

with \=F = B1 \cap \{ x \in \BbbR n : \langle D\=s,x\rangle = 1\} and \=s = maxx\in G sign(D\ast x) (or equivalently
\=s= sign(D\ast \=x) for some \=x \in ri(G)). In particular, the results of Theorem 2.16(ii) (or
(iii) if \scrA \cap B1 \subset \partial B1) hold for G.

Proof. By Lemma 2.7, G\subset rbd(\scrA \cap B1). Let us show that rbd(\scrA \cap B1)\subset \scrA \cap \partial B1.
We distinguish two cases: if \scrA \cap B1 \subset \partial B1, there is nothing to prove; otherwise,
\scrA \cap \r B1 \not = \emptyset . By Lemma 2.14 applied the full-dimensional convex B1, ri(\scrA \cap B1) =
ri(\scrA )\cap ri(B1) =\scrA \cap \r B1. Then rbd(\scrA \cap B1) =\scrA \cap B1 \setminus \scrA \cap \r B1 =\scrA \cap \partial B1. In particular,
G is a nonempty convex subset of \partial B1, thus \=s is well defined by Corollary 2.12.

Let \=x \in ri(G) \subset \scrA \cap \partial B1. Then by Theorem 2.16(i), \scrA \cap \=F is the unique face of
\scrA \cap B1 containing \=x in its relative interior; it is thus equal to the face G.

In this setting, we get a necessary and sufficient condition of extremality. Note
that the notion of extremality can be related to the topology of the set; here our
condition only uses an algebraic characterization.

Proposition 2.19. Let \scrA be an affine subspace intersecting \partial B1. Let \=x \in \scrA \cap 
\partial B1, \=s= sign(D\ast \=x), and \=J = cosupp(D\ast \=x). Then

\=x\in ext(\scrA \cap B1)\leftrightarrow dir(\scrA )\cap (D\=s)\bot \cap KerD\ast 
\=J = \{ 0\} 

\leftrightarrow dir(\scrA )\cap KerD\ast 
\=J = \{ 0\} in the case where \scrA \cap B1 \subset \partial B1.

Moreover, \scrA \cap B1 admits extreme points (that necessarily belong to \scrA \cap \partial B1) if and
only if it is compact (i.e., is a convex polytope) if and only if dir(\scrA )\cap KerD\ast = \{ 0\} .

Proof. Since \scrA \cap B1 is a convex polyhedron, \=x \in ext(\scrA \cap B1) \leftrightarrow \{ \=x\} is a face
\scrA \cap B1 \leftrightarrow \{ \=x\} = \=G of Theorem 2.16 \leftrightarrow dir( \=G) = \{ 0\} .

Recall that extreme points belong to rbd(\scrA \cap B1) and that, as in Proposition 2.18,
rbd(\scrA \cap B1) \subset \scrA \cap \partial B1. Note also that we always have dir(\scrA ) \cap KerD\ast \subset dir(\scrA ) \cap 
(D\=s)\bot \cap KerD\ast 

\=J
. Thus if \scrA \cap B1 admits extreme points, then dir(\scrA )\cap KerD\ast = \{ 0\} by

the beginning of the corollary, which implies that \scrA \cap B1 is bounded and thus compact,
which in turn implies the existence of extreme points [14, Part III, Proposition 2.3.3].

Remark 2.20. It is possible to show directly (via Corollary 2.13) that the condition
above is sufficient. Indeed, assume that dir(\scrA ) \cap (D\=s)\bot \cap KerD\ast 

\=J
= \{ 0\} . Let x \in 
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852 XAVIER DUPUIS AND SAMUEL VAITER

\scrA \cap \partial B1 such that sign(D\ast x)\preceq \=s; let us show that x= \=x: x - \=x \in dir(\scrA ); by Lemma
2.3, \langle \=s,D\ast x\rangle = \| D\ast x\| 1 = \| D\ast \=x\| 1 = \langle \=s,D\ast \=x\rangle , thus x  - \=x \in (D\=s)\bot ; by Remark 2.2,
\=J \subset cosupp(D\ast x), thus x - \=x \in KerD\ast 

\=J
. Then \=s is minimal, and by Corollary 2.13,

\=x\in ext(\scrA \cap B1).

2.5. Consequence results on the unit ball. The previous results will be at
the core of our study of the solution set of (1.1) in section 3. Nevertheless, we can also
dive deeper into this analysis in order to fully characterize the faces of the unit-ball
as a byproduct.

A first consequence or reformulation of the previous results is that all the exposed
faces of B1 are of the form B1 \cap \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} .

Proposition 2.21. Let F be an exposed face of B1. Then

F =B1 \cap \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} 

with \=s = maxx\in F sign(D\ast x) (or equivalently \=s = sign(D\ast \=x) for some \=x \in ri(F )).
Moreover,

F = \partial B1 \cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} 
= \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} \cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} ,

ri(F ) = \partial B1 \cap \{ x\in \BbbR n : sign(D\ast x) = \=s\} 
= \{ x\in \BbbR n : \langle D\=s,x\rangle = 1\} \cap \{ x\in \BbbR n : sign(D\ast x) = \=s\} ,

dir(F ) = (D\=s)\bot \cap KerD\ast 
\=J (where \=J = cosupp(\=s)).

Proof. Since F is a nonempty convex subset of\setminus \partial B1, \=s is well defined by Corollary
2.12. The first statement is a consequence of Corollary 2.11. The next statements
follow from Lemma 2.8 and Proposition 2.17 with \scrA = \{ x \in \BbbR n : \langle D\=s,x\rangle = 1\} a
supporting hyperplane of B1 defining the face F (recall or note by Lemma 2.7 that
\scrA \cap B1 \subset \partial B1 for any \scrA supporting hyperplane of B1).

Remark 2.22. Any exposed face F of B1 satisfies KerD\ast \subset dir(F ) \subset (D\=s)\bot 

with equality if and only if (D\=s)\bot \cap KerD\ast 
\=J
= KerD\ast (for the left inclusion) and

(D\=s)\bot \subset KerD\ast 
\=J
(for the right inclusion).

Together with Lemma 2.6, the previous proposition gives the following half-space
representations of the exposed faces of B1.

Corollary 2.23. Let F be an exposed face of B1. Then

F = \{ x\in \BbbR n : \langle D\=s,x\rangle = 1,D\ast 
\=Jx= 0,diag(\=s\=I)D

\ast 
\=Ix\geq 0\} 

with \=s=maxx\in F sign(D\ast x), \=J = cosupp(\=s), and \=I = supp(\=s).

By Lemma 2.8 and Proposition 2.21, the mapping F \mapsto \rightarrow maxx\in F sign(D\ast x) is
a bijection between the set of exposed faces of B1 and the set of feasible signs
\{ sign(D\ast x) : x \in \partial B1\} . The next observation is that this bijection preserves the
partial orders (i.e., it is an order isomorphism).

Proposition 2.24. Let F1 and F2 be two exposed faces of B1 and

si =max
x\in Fi

sign(D\ast x), i= 1,2.

Then

F1 \subset F2 \leftrightarrow s1 \preceq s2.
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 853

In this case, denoting by J1 = cosupp(s1),

F1 = F2 \cap \{ x\in \BbbR n : J1 \subset cosupp(D\ast x)\} ,
ri(F1) = F2 \cap \{ x\in \BbbR n : J1 = cosupp(D\ast x)\} ,

dir(F1) = dir(F2)\cap KerD\ast 
J1
.

Proof. Suppose that F1 \subset F2, and let x \in ri(F1)\subset F2; then s1 = sign(D\ast x)\preceq s2.
Conversely, suppose that s1 \preceq s2, and let x \in F1; then sign(D\ast x) \preceq s1 \preceq s2; thus
x\in F2.

Assume now that these two conditions hold. Then, we have F1 \subset F2 \cap \{ x : J1 \subset 
cosupp(D\ast x)\} since F1 \subset \{ x : J1 \subset cosupp(D\ast x)\} (recall Remark 2.2: sign(D\ast x)\preceq s1
implies that J1 \subset cosupp(D\ast x)). Conversely, let x \in F2 \cap \{ x : J1 \subset cosupp(D\ast x)\} .
Since sign(D\ast x) and s1 are both \preceq s2, they are consistent and thus the converse
is true: J1 \subset cosupp(D\ast x) implies that sign(D\ast x) \preceq s1. And since x \in F2 \subset \partial B1,
x \in F1. The same proof holds for ri(F1) and \{ x : J1 = cosupp(D\ast x)\} . For dir(F1),
note that KerD\ast 

J1
\subset KerD\ast 

J2
(since J2 = cosupp(s2)\subset J1). Then dir(F2)\cap KerD\ast 

J1
=

(Ds2)
\bot \cap KerD\ast 

J1
(and dir(F1) = (Ds1)

\bot \cap KerD\ast 
J1
). By the proof of Lemma 2.15(ii),

for d \in KerD\ast 
J1
, \langle Ds,d\rangle = \langle Ds1, d\rangle for all s \succeq s1. In particular, (Ds1)

\bot \cap KerD\ast 
J1

=
(Ds2)

\bot \cap KerD\ast 
J1
, which concludes the proof.

In the spirit of [7], we consider the compact polyhedron (KerD\ast )\bot \cap B1, which
is isomorphic to the projection of B1 onto the quotient of the ambient space by the
lineality space KerD\ast . Proposition 2.19 gives the following necessary and sufficient
condition of extremality.

Corollary 2.25. The convex polyhedron (KerD\ast )\bot \cap B1 is compact (i.e., is a
convex polytope). It admits extreme points that belong to (KerD\ast )\bot \cap \partial B1. Given
\=x\in (KerD\ast )\bot \cap \partial B1, \=s= sign(D\ast \=x), and \=J = cosupp(D\ast \=x),

\=x\in ext((KerD\ast )\bot \cap B1)\leftrightarrow (KerD\ast )\bot \cap (D\=s)\bot \cap KerD\ast 
\=J = \{ 0\} .

Remark 2.26. In [7, section 4.1.3], the authors notice that since (KerD\ast )\bot \cap B1

and ImD\ast \cap B\ell 1 are in bijection through D\ast and its pseudo-inverse (D\ast )+, it holds
that

\=x\in ext((KerD\ast )\bot \cap B1)\leftrightarrow \=x= (D\ast )+\=\theta with \=\theta \in ext(Im D\ast \cap B\ell 1).

Thus we have two conditions of extremality, which are of different nature but of course
equivalent, as it can be shown directly. We have already derived in Remark 2.20 that
if (KerD\ast )\bot \cap (D\=s)\bot \cap KerD\ast 

\=J
= \{ 0\} , then \=x \in ext((KerD\ast )\bot \cap B1); it follows that

\=\theta =D\ast \=x\in ext(ImD\ast \cap B\ell 1) and is such that (D\ast )+\=\theta = \=x (recall that (D\ast )+D\ast is the
orthogonal projection onto ImD = (KerD\ast )\bot ). Conversely, let \=\theta \in ext(ImD\ast \cap B\ell 1)
and \=x= (D\ast )+\=\theta (note that D\ast \=x= \=\theta since D\ast (D\ast )+ is the orthogonal projection onto
ImD\ast ). Let d\in (KerD\ast )\bot \cap (D\=s)\bot \cap KerD\ast 

\=J
. Note that cosupp(\=\theta ) = \=J \subset cosupp(D\ast d).

Then sign(\=\theta +\varepsilon D\ast d) = \=s for | \varepsilon | small, and by Lemma 2.3, \| \=\theta +\varepsilon D\ast d\| 1 = \langle \=s, \=\theta +\varepsilon D\ast d\rangle =
\langle \=s, \=\theta \rangle + \varepsilon \langle D\=s, d\rangle = \| \=\theta \| 1, i.e., \=\theta + \varepsilon D\ast d\in B\ell 1 for | \varepsilon | small (and \=\theta + \varepsilon D\ast d\in ImD\ast ). By
extremality of \=\theta , D\ast d= 0, i.e., d\in KerD\ast \cap (KerD\ast )\bot = \{ 0\} , which ends the proof.

2.6. Testing the extremality. In this subsection, we aim to show that the
results of subsection 2.5 can be exploited to numerically test the extremality of a
point.

Our first definition formalizes the idea of feasible sign, i.e., signs which are attained
by some vector in the ambient space.
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D
ow

nl
oa

de
d 

02
/0

8/
24

 to
 8

1.
64

.1
00

.2
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



854 XAVIER DUPUIS AND SAMUEL VAITER

Definition 2.27. We say that a sign s\in \{  - 1,0,1\} p is feasible with respect to D
if there exists x\in \BbbR n such that s= sign(D\ast x).

Note that we can replace at no cost \BbbR n by B1 or \partial B1 thanks to the homogeneity of
the the \ell 1-norm. Testing if a sign is feasible has the complexity of a linear program
on n variables with p constraints.

Lemma 2.28. Let c \in \BbbR n, s \in \{  - 1,0,1\} p, J = cosupp(x), I+ = \{ i : \langle di, x\rangle > 0\} ,
and I - = \{ i : \langle di, x\rangle < 0\} . The sign s is feasible if, and only if, the solution set of

min
x\in \BbbR n

\langle c, x\rangle subject to

\left\{     
D\ast 

Jx = 0

D\ast 
I+x \geqslant +1

D\ast 
I - x \leqslant  - 1

(2.1)

is nonempty. Moreover, if s is feasible, then any solution x of (2.1) is such that
s= sign(D\ast x).

We defer to section 3 how the choice of c can leads to interesting properties. Here,
we wrote the problem as a linear program to put an emphasis that existing solvers
allow us to test this property. Note that finding all feasible signs is quite costly since
it needs an exponential (in p) number of linear programs.

Thanks to Corollary 2.25, we have the following definition.

Definition 2.29. We say that a sign s\in \{  - 1,0,1\} p is pre-extreme if it satisfies

(KerD\ast )\bot \cap (D\=s)\bot \cap KerD\ast 
\=J = \{ 0\} ,

where J = cosupp(s), and is extreme if it feasible and pre-extreme.

Checking if a sign is pre-extreme boils down to compute the null-space of the
matrix

B =
\bigl( 
U D\=s D \=J

\bigr) \ast 
,

where U is a basis of the null space of D. In order to find the dimension of KerB, one
can use either QR reduction or SVD (singular value decomposition). Here, we used
an SVD approach.

We now illustrate these definitions in low dimension (it is known that the study
of the number of faces is a very difficult task in general [20, 4]), when D corresponds
to the incidence matrix of a complete graph on n= 4 vertices and p= 6 edges. Among
3p = 729 possible signs, only 75 are feasible, and among them 14 are extreme. We
report in Figure 2.1 the pattern of such signs up to centrosymmetry of the unit ball;
i.e., we only show 7 of the 14 extreme signs.

3. The solution set of sparse analysis regularization. This section is an
application of the previous one towards the solution set of (1.1). Remark that a similar
analysis can be performed (in a less challenging way) for the noiseless problem (1.2).
In the first subsection 3.1, we show that the solution set can be seen as a particular
subpolyhedron of the unit ball. Using this result, we derive several structural results in
subsection 3.2 on the solution set thanks to section 2. Finally, we show that arbitrary
subpolyhedra of the unit ball can be seen as solution set of (1.1) with a specific choice
of parameters.

3.1. The solution set as a subpolyhedron of the unit ball. This section
studies the structure of the solution set of (1.1) that we denote by X:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 855

Fig. 2.1. Extreme signs of a complete graph on n= 4 vertices. Red edges correspond to positive
sign, blue edges to negative sign, and gray to 0.

X = argmin
x\in \BbbR n

\scrL (x) def.
=

1

2
\| y - \Phi x\| 22 + \lambda \| D\ast x\| 1,

where y \in \BbbR q, \Phi : \BbbR n \rightarrow \BbbR q, D : \BbbR p \rightarrow \BbbR n is linear and \lambda > 0.

Theorem 3.1. The solution set of (1.1) is a nonempty convex polyhedron of the
form

X =\scrA \cap Br

with r\geq 0 and \scrA an affine subspace such that \emptyset \not =\scrA \cap Br \subset \partial Br and dir(\scrA ) =Ker\Phi .
Namely, if x\in X, then r= \| D\ast x\| 1 and \scrA = x+Ker\Phi .

Proof. It is easy to see that the objective function x \mapsto \rightarrow \scrL (x) is a nonnegative,
convex, closed continuous function with full domain (in particular proper). However,
it is not coercive; hence the existence of minimizers and compactness of the solution
set are not straightforward. Following [22, Chapter 8], the recession cone R\scrL of \scrL is
given by

R\scrL 
def.
= \{ z \in \BbbR n : \scrL \infty (z)\leqslant 0\} ,

where \scrL \infty is the recession function of \scrL given by

\scrL \infty (z)
def.
= lim

t\rightarrow +\infty 
\scrL (tz)
t

\in \BbbR \cup \{ +\infty \} .

It is clear that R\scrL is nonnegative; hence the recession cone R\scrL is given by R\scrL =
\{ z \in \BbbR n : \scrL \infty (z) = 0\} . The lineality space L\scrL is the subspace of \BbbR n formed by
elements d such that d \in R\scrL and  - d \in R\scrL , i.e, L\scrL = R\scrL \cap ( - R\scrL ). The following
lemma characterizes the structure of R\scrL and L\scrL .

Lemma 3.2. The recession cone R\scrL and the lineality space L\scrL of \scrL are given by

R\scrL =L\scrL =KerD\ast \cap Ker\Phi .

Proof. Let t > 0 and z \in \BbbR n. We have

1

t
\scrL (tz) = 1

2t
\| y - \Phi tz\| 22 + \lambda \| D\ast z\| 1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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856 XAVIER DUPUIS AND SAMUEL VAITER

=
1

2t
\| y\| 22  - \langle y, \Phi z\rangle + t\| \Phi z\| 22 + \lambda \| D\ast z\| 1.

Hence,

\scrL \infty (z) = - \langle y, \Phi z\rangle + \lambda \| D\ast z\| 1 + \iota Ker\Phi (z).

In particular, \scrL \infty (z) = 0 if, and only if, z \in KerD\ast \cap Ker\Phi . Since KerD\ast \cap Ker\Phi is
a subspace, we have R\scrL =L\scrL .

The polyhedral structure of X, as we will see, relies on the following lemma.

Lemma 3.3. Let C \subset \BbbR n be a nonempty convex set. Then \scrL is constant on C if
and only if \Phi and \| D\ast \cdot \| 1 are constant on C.

Proof. Assume that \scrL is constant on C, and let x0 \in C. Suppose that there exists
x1 \in C such that \Phi x1 \not = \Phi x0, and let x = x0+x1

2 (note that x \in C). Then by strict
convexity of u \mapsto \rightarrow \| y - u\| 22,\bigm\| \bigm\| y - \Phi x

\bigm\| \bigm\| 2
2
=

\bigm\| \bigm\| \bigm\| \bigm\| y - \biggl( 
1

2
\Phi x0 +

1

2
\Phi x1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
2

<
1

2

\bigm\| \bigm\| y - \Phi x0

\bigm\| \bigm\| 2
2
+

1

2

\bigm\| \bigm\| y - \Phi x1

\bigm\| \bigm\| 2
2
.

Together with the convexity inequality of the \ell 1 norm\bigm\| \bigm\| D\ast x
\bigm\| \bigm\| 
1
\leq 1

2

\bigm\| \bigm\| D\ast x0

\bigm\| \bigm\| 
1
+

1

2

\bigm\| \bigm\| D\ast x1

\bigm\| \bigm\| 
1
,

we get that \scrL (x)< 1
2\scrL (x0)+

1
2\scrL (x1), which is in contradiction with \scrL constant on C.

Then \Phi is constant on C and thus \| D\ast \cdot \| 1 too. The converse is straightforward.

We add the following lemma that gives locally the directions where \| D\ast \cdot \| 1 is
constant.

Lemma 3.4. Let \scrA be an affine subspace and \=x \in \scrA . Then \| D\ast \cdot \| 1 is constant
in a neighborhood of \=x in \scrA if and only if

dir(\scrA )\subset (D\=s)\bot \cap KerD\ast 
\=J ,

where \=s= sign(D\ast \=x) and \=J = cosupp(D\ast \=x).

Proof. By definition, \| D\ast \cdot \| 1 is constant in a neighborhood of \=x in \scrA if and only
if there exists \varepsilon > 0 such that B(\=x, \varepsilon ) \cap \scrA \subset \partial Br with r = \| D\ast \=x\| 1. We denote by
C = B(\=x, \varepsilon ) \cap \scrA (note that \=x \in ri(C)). By Proposition 2.9, C \subset \partial Br if and only if
C \subset \=F with \=F = Br \cap \{ x \in \BbbR n : \langle D\=s,x\rangle = 1\} if r > 0 and \=F = KerD\ast if r = 0. Since
\=x \in ri( \=F ), C \subset \=F if and only if dir(C) \subset dir( \=F ). The result follows by noticing that
dir(C) = dir(\scrA ) (e.g., by Lemma 2.14) and dir( \=F ) = (D\=s)\bot \cap KerD\ast 

\=J
(by Lemma 2.8

in the case r > 0, which is obvious in the case r= 0).

Together, the previous two lemmas give the following.

Corollary 3.5. Let \scrA be an affine subspace and \=x \in \scrA . Then \scrL is constant in
a neighborhood of \=x in \scrA if and only if

dir(\scrA )\subset Ker\Phi \cap (D\=s)\bot \cap KerD\ast 
\=J ,

where \=s= sign(D\ast \=x) and \=J = cosupp(D\ast \=x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 857

We now go back to the proof of Theorem 3.1. By Lemma 3.2, the recession cone
and the lineality space of \scrL coincide. Then by [22, Theorem 27.1(a--b)], the solution
set X is nonempty. Since \scrL is convex (and closed), the solution set is also convex
(and closed). Moreover, \scrL is constant on X. Then by Lemma 3.3, \Phi and \| D\ast \cdot \| 1 are
constant on X, i.e.,

X \subset (x+Ker\Phi )\cap \partial Br

with x\in X and r= \| D\ast x\| 1. But since \scrL (x) is the minimum of \scrL ,

(x+Ker\Phi )\cap Br \subset X.

It follows that

X = (x+Ker\Phi )\cap Br

with (x+Ker\Phi )\cap Br \subset \partial Br, as it was to be proved.

3.2. Consequence results on the solution set. In this section, we apply the
results on subpolyhedra of the unit ball (subsection 2.4) to the solution set X of (1.1).

Proposition 3.6. Let \=x\in ri(X), \=s= sign(D\ast \=x), and \=F =Br\cap \{ x\in \BbbR n : \langle D\=s,x\rangle =
r\} with r= \| D\ast \=x\| 1. Then

X = (\=x+Ker\Phi )\cap \=F .

It follows that

X = (\=x+Ker\Phi )\cap \{ x\in \BbbR n : sign(D\ast x)\preceq \=s\} ,
ri(X) = (\=x+Ker\Phi )\cap \{ x\in \BbbR n : sign(D\ast x) = \=s\} ,

dir(X) =Ker\Phi \cap KerD\ast 
\=J (where \=J = cosupp(\=s)).

Moreover, the faces of X are exactly the sets of the form \{ x \in X : J \subset cosupp(D\ast x)\} 
with \=J \subset J ; their relative interior is given by \{ x \in X : J = cosupp(D\ast x)\} and their
direction by Ker\Phi \cap KerD\ast 

J .

Proof. First note that the results are trivial in the case r = 0, as \=s = 0 and
\=F = Br = KerD\ast . Therefore we consider the case r > 0. The first statement follows
from Theorem 3.1 and Proposition 2.17, and the second one from Theorem 2.16(iii).
For the last statement, note that G is a face of X if and only if G= (\=x+Ker\Phi ) \cap F
with F a face of Br such that F \subset \=F . Indeed, the direct implication holds for G= \emptyset 
with F = \emptyset , for G = X with F = \=F , and for G exposed in aff(X) by Proposition
2.18. Conversely, let F = \emptyset or Br \cap \scrH (with \scrH a supporting hyperplane) be a face of
Br. Then (\=x+Ker\Phi ) \cap F = \emptyset or X \cap \scrH is a face of X. The conclusion follows from
Proposition 2.24.

Thanks to Proposition 3.6, we can draw several conclusions. In particular the
role of \=s and \=J allows us to derive properties of the solution set.

The sign \=s is shared by all the interior solutions of (1.1), which are also maximal
solutions (\=s = maxx\in X sign(D\ast x)). Such a solution can be obtained numerically by
the algorithm described in [2]. Future work should include an analysis of the behavior
of more common algorithms such as first-order proximal methods.
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D
ow

nl
oa

de
d 

02
/0

8/
24

 to
 8

1.
64

.1
00

.2
18

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



858 XAVIER DUPUIS AND SAMUEL VAITER

The knowledge of \=s (or of \=J which is the minimal cosupport) gives the dimension
of the solution set (1.1) as dim(X) = dim(Ker\Phi \cap KerD\ast 

\=J
) (up to determining the

dimension of the null space of the matrix A =
\bigl( 
\Phi \ast D \=J

\bigr) \ast 
, which again can be done

by QR reduction or SVD). For instance, taking the example of [2, section 6.3],

D\ast =

\left(  1 1 0
1 0 1
2 1 1

\right)  , \Phi =

\left(  1 1 1
3 1 1\surd 
2 0 0

\right)  , y=

\left(  1
1
0

\right)  , and \lambda =
1

2
,(3.1)

we can prove that X = conv(0 1
2 0)\ast , (0 0 1

2 )
\ast . But running the interior-point

method described in [2] leads to the specific solution (up to numerical error) \=x =
(0 1

4
1
4 )

\ast . In this case, the matrix A reduces to A=\Phi since \=J = \emptyset . Thus, dim(X) =
dim(Ker\Phi ) = 1.

In the previous formula, dim(X) is decreasing w.r.t. \=J ; it somehow quantifies the
tautology according to which the less sparse solution, the fewer solutions.

Together with Lemma 2.6, the previous proposition gives the following half-space
representation of the solution set X of (1.1) (one could of course give similar repre-
sentations of its faces).

Corollary 3.7. Let \=x \in ri(X), \=s= sign(D\ast \=x), \=J = cosupp(\=s) and \=I = supp(\=s).
Then

X = \{ x\in \BbbR n : \Phi x=\Phi \=x,D\ast 
\=Jx= 0,diag(\=s\=I)D

\ast 
\=Ix\geq 0\} .

This result can be used numerically. Indeed, it provides a linear characterization
of the solution set up to the knowledge of a maximal solution. In the same spirit of
[32], we can derive bounds on the coefficients (both in the signal domain or in the
dictionary domain). For instance, finding the biggest i-coefficient boils down to solve
the linear program

max
x\in X

\langle x, ei\rangle ,

where ei the is the ith canonical vector. Thus, we can describe in a similar fashion
which component are dispensable following the vocabulary introduced in [32].

We can also apply Theorem 2.16 to an arbitrary solution (not necessarily interior).
This result is useful when obtaining a solution computed from any algorithm without
guarantees on its maximality.

Proposition 3.8. Let x \in X, s = sign(D\ast x), F = Br \cap \{ x \in \BbbR n : \langle Ds,x\rangle = r\} 
with r= \| D\ast x\| 1. Then

G= (x+Ker\Phi )\cap F

is the smallest face of X such that x\in G and the unique face of X such that x\in ri(X).
It satisfies

G= (x+Ker\Phi )\cap \{ x\in \BbbR n : sign(D\ast x)\preceq s\} ,
ri(G) = (x+Ker\Phi )\cap \{ x\in \BbbR n : sign(D\ast x) = s\} ,

dir(G) =Ker\Phi \cap KerD\ast 
J (where J = cosupp(s)).

Note in particular that dim(Ker\Phi \cap KerD\ast 
J) is always the dimension of a subset of

solutions. When D = Id, then Ker\Phi \cap KerD\ast 
J =Ker\Phi I (with I = [n]\setminus J the support

of x) the rank deficiency of \Phi I (the difference between the size of the support I and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE GEOMETRY OF SPARSE ANALYSIS REGULARIZATION 859

the rank of \Phi I) is a lower bound of the dimension of the solution set. See subsection
3.6 for an illustration on a real data set.

We end this section with a characterization of the compactness of X and of its
extreme points, as well as a sufficient condition for uniqueness knowing a solution.

Proposition 3.9. The solution set X of (1.1) admits extreme points if and only
if it is compact (i.e., is a convex polytope), if and only if

Ker\Phi \cap KerD\ast = \{ 0\} .

A solution x \in X is an extreme point (i.e., x \in ext(X)) if and only if, denoting by
J = cosupp(D\ast x),

Ker\Phi \cap KerD\ast 
J = \{ 0\} .

Proof. Recall that X = (\=x+Ker\Phi )\cap Br by Theorem 3.1. The result is trivial in
the case r= 0 and is the transcription of Proposition 2.19 in the case r > 0.

Corollary 3.10. Let x \in X and J = cosupp(D\ast x). If x is the unique solution
of (1.1) (i.e., X = \{ x\} ), then Ker\Phi \cap KerD\ast 

J = \{ 0\} .
The condition Ker\Phi \cap KerD\ast = \{ 0\} is equivalent to the recession cone R\scrL being

reduced to \{ 0\} , which is known to be equivalent to the compactness of the solution set
X of (1.1); see, e.g., [22, Theorem 27.1(d)]. Note that this is the condition denoted by
(H0) and assumed to hold all throughout [36] or [35]. This condition can be specified
to our examples:

\bullet When D is the identity D= Id, it is automatically satisfied;
\bullet When D = DTV , this condition is satisfied as soon as \Phi does not cancel on

constant vectors;
\bullet WhenD is the incidence matrix of a graph, observe that this condition reduces

to the fact that \Phi should not be constant on the set of constant vectors in
each connected component.

The condition Ker\Phi \cap KerD\ast 
J = \{ 0\} is the one denoted by (HJ) and required

in [35] at a given solution in order to undertake a sensitivity analysis. It turns out
from the present study that such solutions are precisely the extreme points of the
solution set. In [35, section A.3], an iterative procedure is proposed to construct such
an extreme point. Alternatively, if one has the knowledge that the maximal solution
is quite sparse, then an exhaustive test can be performed in a similar fashion than
subsection 2.6.

Going back to the setting proposed in (3.1), we observe that thanks to Proposition
3.9, we know that X is compact since Ker\Phi and KerD\ast intersect trivially, and we
can obtain the extreme points by observing that there is three feasible signs (1,0,1),
(0,1,1), and (1,1,1). Only the first two leads to a cosupport J such that Ker\Phi 
and KerD\ast 

J intersect trivially. Using Corollary 3.7, one can use any linear solver
from these two signs to obtain associated two extreme points of the solution set, i.e.,
ext(X) = \{ (0 1

2 0)\ast , (0 0 1
2 )

\ast \} .
3.3. Discussion of uniqueness conditions. We can derive from Proposition

3.6 a necessary and sufficient condition for uniqueness. Indeed (1.1) admits a unique
solution if and only if dirX = \{ 0\} . Therefore if one knows the minimal cosupport \=J
(that is the cosupport of a maximal solution \=x), then (1.1) admits a unique solution
if and only Ker\Phi \cap KerD\ast 

\=J
= \{ 0\} . Recall that a maximal solution can be obtained

numerically by the algorithm described in [2], so together with QR reduction or SVD,
uniqueness can be checked numerically.
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860 XAVIER DUPUIS AND SAMUEL VAITER

In the case of the Lasso problem (D= Id), this necessary and sufficient condition
becomes Ker\Phi \=I = \{ 0\} with \=I the maximal support. It is slightly weaker than the
first sufficient condition for uniqueness in the seminal paper of Tibshirani [32, Lemma
2]. Indeed, the latter is Ker\Phi \scrE = \{ 0\} with \scrE the so-called equicorrelation set, which
always contains the maximal support \=I and coincides with it for almost every y [32,
Lemma 13]. In this same paper, Tibshirani proves that his first sufficient condition
is satisfied if the columns of \Phi are in general position [32, Lemma 3], which is the
case with probability one if their entries are drawn from a continuous distribution
[32, Lemma 4]. Note that we make no such assumption in our paper. The fact
that nonuniqueness may arise when \Phi has discrete entries is confirmed by Ewald
and Schneider [12, Theorem 14]: there exists y for which the Lasso problem has a
nonunique solution if and only if Im(\Phi \ast ) intersects a face of [ - 1,1]n of dimension
strictly smaller than the dimension of Ker (\Phi ); it is in particular the case when \Phi has
a row with only \pm 1 entries and a nontrivial null space.

In the general case, the derivation of uniqueness conditions in the paper of Ali and
Tibshirani [1] is complicated by the fact that there is no (unique) equicorrelation set
but several boundary sets \scrB for which Ker\Phi \cap KerD\ast 

[n]\setminus \scrB = \{ 0\} needs to be satisfied.
The authors introduced a notion of D\ast -general position which, together with the
condition Ker\Phi \cap KerD\ast = \{ 0\} (equivalent to the compactness of the solution set by
Proposition 3.6), implies uniqueness for almost every y [1, Lemma 6]. These conditions
are satisfied with probability one when the entries of \Phi are drawn from a continuous
distribution and n \leq q or n > q and dim(KerD\ast ) \leq q [1, Lemmas 7 and 8] but are
not assumed in our work. Finally, the necessary and sufficient condition of Ewald
and Schneider for the uniqueness of the Lasso minimizer above has been generalized
by Schneider and Tardivel to regularizations by polyhedral norms [24] and then by
polyhedral gauges [29]. The latter framework includes the generalized Lasso for which
their condition is that there exists y such that (1.1) has a nonunique solution if and
only if Im(\Phi \ast ) intersects a face of D[ - 1,1]n (the image of the hypercube by D, which
is a polyhedron in \BbbR q) of dimension strictly smaller than the dimension of Ker (\Phi ).

3.4. Arbitrary subpolyhedra of the unit ball as solution sets. We have
the following converse of Theorem 3.1.

Theorem 3.11. Let r\geq 0 and \scrA be an affine subspace such that \emptyset \not =\scrA \cap Br \subset \partial Br.
Then there exist \Phi , y, and \lambda > 0 such that the solution set of (1.1) is X =\scrA \cap Br and
Ker\Phi = dir(\scrA ).

Proof. We first consider the case r > 0. Let \=x \in \scrA \cap \partial Br and \=s= sign(D\ast \=x). We
define \Phi , y and \lambda as follows: we consider a1, . . . , am a basis of dir(\scrA )\bot (with m the
dimension of this subspace) and set \Phi = (a1| \cdot \cdot \cdot | am)\ast ; then Im(\Phi \ast ) = dir(A)\bot and
Ker (\Phi ) = dir(\scrA ). It follows from Lemma 2.15(ii) that Im(\Phi \ast )\cap (

\sum 
s\succeq \=s\BbbR +Ds) \not = \{ 0\} .

Let \beta \in \BbbR q and \alpha s \geq 0 for all s\succeq \=s be such that

\Phi \ast \beta =
\sum 
s\succeq \=s

\alpha sDs \not = 0;

we can assume (by normalizing) that
\sum 

s\succeq \=s\alpha s = 1. We define u =
\sum 

s\succeq \=s\alpha ss, so

that Du = \Phi \ast \beta . Note also that u\=I = \=s\=I and \| u \=J\| \infty \leq 1 (with \=I = supp(D\ast \=x) and
\=J = cosupp(D\ast \=x)). We now fix any \lambda > 0 and set y =\Phi \=x+ \lambda \beta . We denote as always
by X the solution set of (1.1). By construction, we have

\Phi \ast (\Phi \=x - y) + \lambda Du= 0.
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It implies that 0\in \partial \scrL (\=x) since \partial (\| D\ast \cdot \| 1)(\=x) =D\partial (\| \cdot \| 1)(D\ast \=x) and u\in \partial (\| \cdot \| 1)(D\ast \=x)
(see, e.g., [14] or [35]), and thus \=x \in X. It follows from Theorem 3.1 that X =
(\=x + Ker\Phi ) \cap B\| D\ast \=x\| 1

. But \=x + Ker\Phi = \scrA since \=x \in \scrA and Ker\Phi = dir(\scrA ), and
\| D\ast \=x\| 1 = r since \=x\in \partial Br, which concludes the proof of the case r > 0.

We now treat the case r= 0 for which Br = \partial Br =KerD\ast . We define \Phi as in the
previous case, \lambda > 0 arbitrarily, and y = \Phi \=x for some \=x \in \scrA \cap KerD\ast . Then again,
\Phi \ast (\Phi \=x - y) + \lambda Du= 0, here with u= 0 (\| u\| \infty \leq 1). It follows that \=x \in X, and then
that X =\scrA \cap Br as before.

If we relax the condition Ker\Phi = dir(\scrA ), we can get rid of the assumption \emptyset \not =
\scrA \cap Br \subset \partial Br and at the same time choose the exposed face F so that \scrA \cap F is a
solution set (thus of arbitrary dimension). This is the object of the next proposition.

Proposition 3.12. Let r > 0, F be an exposed face of Br and \scrA be an affine
subspace intersecting F . Then there exist \Phi , y, and \lambda > 0 such that the solution set
of (1.1) is X =\scrA \cap F (and Ker\Phi \subset dir(\scrA )).

Proof. Let \=s = maxx\in F sign(D\ast x), so that F = Br \cap \{ x \in \BbbR n : \langle D\=s,x\rangle = r\} by
Proposition 2.21. Let \Phi = (D\=s| a1| \cdot \cdot \cdot | am)\ast with a1, . . . , am a basis of dir(\scrA )\bot , so that
ker\Phi = (D\=s)\bot \cap dir(\scrA ); let \lambda > 0, y = \Phi x+ \lambda e1 for some x \in \scrA \cap F , and X be the
associated solution set. Then \Phi \ast (\Phi x - y)+\lambda Du= 0 with u= \=s. Since sign(D\ast x)\preceq \=s,
uI = sign(D\ast x)I and \| uJ\| \infty \leq 1 (with I = supp(D\ast x) and J = cosupp(D\ast x)). Then
x\in X and X = (x+Ker\Phi )\cap Br = (x+dir(\scrA ))\cap (x+ (D\=s)\bot )\cap Br =\scrA \cap F .

We now illustrate Proposition 3.12 on nonperiodic total variation on 3 points in
order to give an intuition of the geometric construction; see Figure 3.1. Let D be a
forward discrete difference operator on 3 points, i.e.,

e1

e2

e3

ee

F

ee

A

X = A ∩ F

x∗
1

x∗
2

Fig. 3.1. Construction of a solution set for the total variation regularization on 3 points and
the associated \Phi and y.
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862 XAVIER DUPUIS AND SAMUEL VAITER

D\ast =

\biggl( 
 - 1 1 0
0  - 1 1

\biggr) 
.

Consider the facet F (in gray on the figure) determined by the sign \=s = ( - 1,1) and
an (affine) hyperplane \scrA (in red on the figure) with normal vector (0,1,0) and origin
(1,1,1). The intersection (in green on the figure) of F and \scrA is then the segment
defined by x\ast 

1 = (1,1,2) and x\ast 
2 = (2,1,1). The proof of Proposition 3.12 gives us how

to design a setting such that the solution set X is exactly X = conv\{ x\ast 
1, x

\ast 
2\} : let \lambda = 1,

\Phi =

\biggl( 
1  - 2 1
0 1 0

\biggr) 
and y=

\biggl( 
2
1

\biggr) 
.

Checking first-order condition of this setting is tedious, but doable, and leads to
X = conv\{ x\ast 

1, x
\ast 
2\} .

3.5. Illustration of the main results for 1D total variation. We now pro-
vide a full illustration of our results in higher dimension for the popular regularization
that is 1D total variation. Note that D\ast is a matrix of rank n - 1 whose null space is
formed by constant vectors KerD\ast =\BbbR e, where e=

\bigl( 
1 . . . 1

\bigr) \ast 
.

Let 2\leqslant t1 < t2 < t3 < t4 \leqslant n - 1 and consider the reference signal \=x \in \BbbR n and its
associated sign \=s= sign(D\ast \=x)\in \{  - 1,0,+1\} n - 1 defined by

\=xv =
1

6
\times 

\left\{               

 - 1 if 1\leqslant v\leqslant t1,

1 if t1 < v\leqslant t2,

0 if t2 < v\leqslant t3,

1 if t3 < v\leqslant t4,

 - 1 if t4 < v\leqslant n,

and \=se =

\left\{     
1 if e= t1 or e= t3,

 - 1 if e= t2 or e= t4,

0, otherwise.

Our objective is to build a problem (i.e, find \Phi , \lambda and y) such that
1. \=x is a maximal solution (i.e., \=x lives in the relative interior of X).
2. Every solutions share a common jump at t1.
3. The affine hull of X is of dimension 1.

The first step is to define a candidate extreme point of X which should be com-
patible with the sign \=s of \=x according to Corollary 2.12. Such vector \^x and sign \^s can
be chosen as

\^xv =
1

6
\times 

\left\{               

 - 1 if 1\leqslant v\leqslant t1,

1 if t1 < v\leqslant t2,

1 if t2 < v\leqslant t3,

1 if t3 < v\leqslant t4,

 - 3 if t4 < v\leqslant n,

and \^se =

\left\{     
1 if e= t1,

 - 1 if e= t4,

0, otherwise.

We are now following the proof of Proposition 3.12 to construct our sparse analysis
problem. We consider the direction d = z  - x and build a basis a1, . . . , an - 1 of d\bot .
This can be done either by hand or using an SVD. We then consider an arbitrary
\lambda > 0, \Phi = (D\=s| a1| \cdot \cdot \cdot | am)\ast and y=\Phi \=x+\lambda e1. By construction, \=x and \^x are solutions
of (1.1), and \=x is a maximal solution. Since \Phi has rank n - 1, the affine hull solution
set X as at most dimension 1 according to Proposition 3.6. It is indeed its dimension

using an SVD of

\biggl( 
\Phi 
D\ast 

\=J

\biggr) 
, where \=J = supp(D\ast \=x). To fully describe it, we have to find

its two extreme points.
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In order to do it, we are going to use Corollary 3.7. Let \=J = cosupp(\=s), \=I = \=Jc,

Aeq =

\biggl( 
\Phi 
D\ast 

\=J

\biggr) 
, beq =

\biggl( 
\Phi \=x
0

\biggr) 
, and Aineq = - diag(\=s\=I)D

\ast 
\=I .

Consider now the linear programs for 1\leqslant i\leqslant n - 1:

argmin
x\in \BbbR n

\langle x, di\rangle subject to Aeqx= beq and Aineqx\leqslant 0,(mLPi)

and

argmax
x\in \BbbR n

\langle x, di\rangle subject to Aeqx= beq and Aineqx\leqslant 0.(MLPi)

For a given 1\leqslant i\leqslant n - 1, three cases may occur
1. The value of a minimizer of (mLPi) and a maximizer (MLPi) is 0. It means

that every solution x\in X is zero at the index i: for every x\in X, \langle x, di\rangle = 0.
2a. The value of a minimizer m of (mLPi) is negative m < 0 and a maximizer

(MLPi) is 0. It means that some solution x \in X is zero at the index i; i.e.,
there exists x \in X, \langle x, di\rangle = 0. We may call the index i a dispensable index
to be consistent with the work [32].

2b. A symmetric situation is when the value of a minimizer of (mLPi) is 0 and
the value M of a maximizer (MLPi) is positive. It means also that some
solution x\in X is zero at the index i.

3a. The value of a minimizer m of (mLPi) is negative m< 0, and the value M of
a maximizer (MLPi) is also negative M < 0. It means that no solution x\in X
is sparse at the index i; i.e., for every x\in X, m\leqslant \langle x, di\rangle \leqslant M \not = 0. The index
is called indispensable.

3b. The value of a minimizer m of (mLPi) is positive m> 0 and the value M of
a maximizer (MLPi) is also positive M > 0. Then i is indispensable.

Note that, according to Corollary 2.12, the signs of every solution must be consistent;
hence it is impossible to have the situation where the value of a minimizerm of (mLPi)
is strictly negative m< 0 and the value M of a maximizer (MLPi) is strictly negative
M > 0.

Beyond the value of (mLPi) and (MLPi), the actual solution of the linear program
is itself a solution of (1.1). Thus, to find a second candidate to be the extreme point
of X, it is sufficient to run (mLPi) and (MLPi) for each 1 \leqslant i \leqslant n - 1 and consider
their nonzero value solutions. Doing so (using for instance scipy.optimize.linprog
[37]) let us consider

\~xv =
1

6
\times 

\left\{               

 - 1 if 1\leqslant v\leqslant t1,

1 if t1 < v\leqslant t2,

 - 1 if t2 < v\leqslant t3,

1 if t3 < v\leqslant t4,

1 if t4 < v\leqslant n,

and \~se =

\left\{     
1 if e= t1 or e= t3,

 - 1 if e= t2,

0, otherwise.

Now, using Proposition 3.9, it is sufficient to check if Ker\Phi \cap KerD\ast 
J intersect trivially

for J = \^J = supp(D\ast \^x) and J = \~J = supp(D\ast \~x), which can be done by hand or using

again an SVD of

\biggl( 
\Phi 
D\ast 

J

\biggr) 
. This leads to X = conv\{ \^x, \~x\} \ni \=x.

We illustrate in Figure 3.2 this construction when n= 256 and where the solution
are obtained by the Chambolle--Pock algorithm [9]; the SVD and linear programming
are computed with scipy [37].
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864 XAVIER DUPUIS AND SAMUEL VAITER

Fig. 3.2. The solution set X represented as the convex hull of \~x and \^x. (Blue) Proposed solution
\^x. (Orange) Candidate extreme point \^x. (Green) Computed extreme solution. (Red) Solution with
Chambolle--Pock initialized with a random vector. (Yellow) Representation of the convex hull.
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Fig. 3.3. Lasso regularization on the gisette data set for various values of \lambda . (a) First 100
lines (total 6000) and columns (total 5000) of the matrix \Phi in the data set. As observed on this
sample, around 12\% of the entries are positive. (b) Size of the support I with respect to the regular-
ization parameter. (c) Difference between the size of the support I and the rank of \Phi I . Red points
in (a) and (b) correspond to the value 0.

3.6. Illustration on a real data set. We now consider the Lasso case where
D= Id. We consider the data set gisette that is available as a libsvm data set.1 The
gisette data set was introduced in the NeurIPS 2003 feature selection challenge [13].
This data set has q = 5000 samples and n = 6000 features. Its main characteristic
is that most entries are \pm 1 leading to a rank deficiency. Figure 3.3 shows the rank
deficiency of a Lasso problem solved for various proportions \alpha of \lambda max = \| \Phi \ast y\| \infty .
This figure is generated with a FISTA solver [3] for 2 \cdot 104 iterations in order to have
a high accuracy solution (and starting from 0).2 Such a behavior is not observed for
generic data sets (e.g., it is not occurring for 20news, for instance).

Solving the Lasso problem for \lambda = 1
50\lambda max leads to a solution x \star having an active

set of size 134 but such that \Phi I has rank 130 (where I = supp(x \star )). It is then possible
to construct an extreme point using the procedure described in the Appendix A.3 in

1Or at the following url: https://www.csie.ntu.edu.tw/\sim cjlin/libsvmtools/datasets/binary/

gisette scale.bz2.
2The source code of this experiment is available as a gist: https://gist.github.com/svaiter/

e44ee3042a116580aaf33ca48bb4535b.
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[35]. For the sake of clarity, we recall this ``HJ -procedure"": if the support I of x \star is
such that \Phi I does not have full rank,

1. Take h\in Ker\Phi I ;
2. Consider the vectors xt = x \star + th for t > 0. There exists a supremum t0 such

that xt is a solution, and one can prove that I0 = supp(xt0)\subset I.
Iterating this procedure leads to solution with full-rank since the size of the support
decreases at least by one at each iteration.

4. Conclusion. In this work, we have refined the analysis of the solution set of
sparse \ell 1 analysis regularization to understand its geometry. To perform this analysis,
we have drawn an explicit relationship between the structure of the unit ball of the
regularizer and the set of feasible signs. Upon this work, we derived a necessary and
sufficient condition for a convex set to be the solution of sparse analysis regularization
problem. Extension of our results to nonconvex sparse analysis penalizations such as
\| \cdot \| p with 0< p< 1 is an interesting research direction, where face decomposition of
the polytope unit-ball needs to be replaced with stratification of semialgebraic sets.

From a practical point of view, this work adds another argument towards the
need for a good choice of regularizer/dictionary when a user seeks a robust and unique
solution to its optimization problem. This work is mainly of theoretical interest since
numerical applications should deal with exponential algorithms with respect to the
signal dimension. Note, however, that in the case of the expected sparsity level when
the maximal solution is logarithmic in the dimension, the enumeration problem is
in this case tractable. We believe that the results contained in this paper will help
other theoretical works around sparse analysis regularization, such as performing the
sensitivity analysis of (1.1) with respect to the dictionary used in the regularization.
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