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Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter
Selection∗
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Abstract. Algorithms for solving variational regularization of ill-posed inverse problems usually involve op-
erators that depend on a collection of continuous parameters. When the operators enjoy some
(local) regularity, these parameters can be selected using the so-called Stein Unbiased Risk Estima-
tor (SURE). While this selection is usually performed by an exhaustive search, we address in this
work the problem of using the SURE to efficiently optimize for a collection of continuous parameters
of the model. When considering nonsmooth regularizers, such as the popular �1-norm corresponding
to soft-thresholding mapping, the SURE is a discontinuous function of the parameters preventing
the use of gradient descent optimization techniques. Instead, we focus on an approximation of the
SURE based on finite differences as proposed by Ramani and Unser for the Monte-Carlo SURE
approach. Under mild assumptions on the estimation mapping, we show that this approximation
is a weakly differentiable function of the parameters and its weak gradient, coined the Stein Un-
biased GrAdient estimator of the Risk (SUGAR), provides an asymptotically (with respect to the
data dimension) unbiased estimate of the gradient of the risk. Moreover, in the particular case of
soft-thresholding, it is proved to also be a consistent estimator. This gradient estimate can then
be used as a basis for performing a quasi-Newton optimization. The computation of the SUGAR
relies on the closed-form (weak) differentiation of the nonsmooth function. We provide its expression
for a large class of iterative methods including proximal splitting methods and apply our strategy
to regularizations involving nonsmooth convex structured penalties. Illustrations of various image
restoration and matrix completion problems are given.
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1. Introduction. In this paper, we consider the recovery problem of a signal x0 ∈ X
(where X = R

N or is a suitable finite-dimensional Hilbert space that can be identified to R
N )

from a realization y ∈ Y = R
P of the normal random vector

Y = μ0 +W with μ0 = Φx0,(1.1)

where W ∼ N (0, σ2IdP ) and the linear imaging operator Φ : X → Y entails some loss of
information. Typically, P = dim(Y) is smaller than N = dim(X ) or Φ is rank-deficient, and
the recovery problem is ill-posed.
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Let (y, θ) �→ x(y, θ) be some recovery mapping, possibly multivalued, which attempts
to approach x0 from a given realization y ∈ Y of Y and is parametrized by a collection of
continuous parameters θ ∈ Θ. Throughout, Θ is considered as a subset of a linear subspace
of dimension dim(Θ). We also denote μ(y, θ) = Φx(y, θ) ∈ Y and assume in the rest of the
paper that it is always a single-valued mapping, though x(y, θ) may not be.

Depending on the smoothness of the mapping y �→ μ(y, θ), the recovered estimate enjoys
different regularity properties. For instance, μ(y, θ) can be built by solving a variational
problem with some regularizing penalty parametrized by θ (see the example in (1.2), as well
as sections 4 and 5). This regularization is generally chosen so as to preserve/promote the
interesting structure underlying x0, e.g., singularities, textures, etc. Also, depending on its
choice and that of the data fidelity, the resulting mapping y �→ μ(y, θ) may be smooth or not.
To cover most of these situations, throughout the paper, we will assume that (y, θ) �→ μ(y, θ) is
weakly differentiable with respect to both the observation y and the collection of parameters θ.

Recall that for a locally integrable function f : a ∈ Ω �→ R, where Ω is an open subset of
R
N , its weak partial derivative with respect to ai in Ω is the locally integrable function gi on

Ω such that ∫
Ω
gi(a)ϕ(a)da = −

∫
Ω
f(a)

∂ϕ(a)

∂ai
da

holds for all functions ϕ ∈ C1
c (Ω), i.e., the space of continuously differentiable functions of

compact support. The weak partial derivative, if it exists, is uniquely defined Lebesgue-almost
everywhere (-a.e.). Thus we write

gi =
∂f

∂ai
,

and all such pointwise relations involving weak derivatives will accordingly be understood to
hold Lebesgue-a.e. A function is said to be weakly differentiable if all its weak partial deriva-
tives exist. Similarly, a vector-valued function h : a ∈ R

N �→ h(a) = (h1(a), . . . , hP (a)) ∈ R
P

is weakly differentiable if hk(a) is weakly differentiable for all k ∈ {1, . . . , P}, and we will
denote by ∂h(a) its weak Jacobian, and by ∇g(a) = ∂h(a)∗ its adjoint. Remark that weak
differentiation concepts boil down to the classical ones when the considered function is C1. A
comprehensive account on weak differentiability can be found in, e.g., [29, 31].

Getting back to the estimator x(y, θ), we now discuss some typical examples covered in
this paper.

• Given (y, θ), consider a minimizer of a convex variational problem of the form

x(y, θ) = Argmin
x∈X

{E(x, y, θ) = H(y,Φx) +R(x, θ)},(1.2)

where x(y, θ) is the set of minimizers of x �→ E(x, y, θ) which is considered nonempty
(the minimizer may not be unique but is assumed to exist). The data fidelity term
x �→ H(y,Φx) is defined using a strongly convex map μ �→ H(y, μ). The regularization
term x �→ R(x, θ) is assumed to be a closed proper and convex function, which accounts
for the prior structure of x0. Typical priors correspond to nonsmooth regularizers
such as sparsity in a suitable domain, e.g., Fourier, wavelet [46], or gradient [59]. Such
regularizers are usually parametrized with a collection of parameters θ. A typical
example is R(x, θ) = θR0(x), where θ ∈ R

+ is a scaling which controls the strength of
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the regularization. Of course, more complicated (multiparameter) regularizations are
often considered in the applications, and our methodology aims at dealing with these
higher-dimensional sets of parameters.
An important observation is that even though x(y, θ) may not be a singleton (the
minimizer of E(x, y, θ) may not be unique), strict convexity of H(y, ·) implies that
all minimizers share the same image under Φ; see, e.g., [66]. Hence (y, θ) �→ μ(y, θ)
is defined without ambiguity as a single-valued mapping. Moreover, strong convexity
of H(y, ·) implies that y �→ μ(y, θ) is nonexpansive (i.e., uniformly 1-Lipschitz) [67],
hence weakly differentiable [29, Theorem 5, section 4.2.3].

• Consider now the �th iterate, denoted by x(�)(y, θ), of an iterative algorithm converging
to a fixed point of an operator acting on X . In this case, θ can include the parameters
of the fixed point operator, as well as other continuous parameters inherent to the fixed
point iteration (e.g., step sizes). Section 4 is completely dedicated to this setting, and
appropriate sufficient conditions will be exhibited to ensure weak differentiability of
x(�)(y, θ) with respect to both its arguments.
This general setting encompasses the case of proximal splitting methods that have be-
come popular for solving large-scale optimization problems of the form (1.2), especially
with convex nonsmooth terms, e.g., those encountered in sparsity regularization. The
precise splitting algorithm to be used depends on the structure of the optimization
problem at hand. See, for instance, [3, 13] for an overview. Some of these algorithms
are considered in detail in section 4.

The choice of θ is generally a challenging task, especially as the dimension of Θ gets large.
Ideally, one would like to choose the parameters θ� that make μ(y, θ�) (or some appropriate
image of it) as faithful as possible to μ0 (or some appropriate image of it). Formally, this can
be cast as selecting θ� that minimizes the expected reconstruction error (also known as mean
squared error or quadratic risk), i.e.,

θ� ∈ Argmin
θ∈Θ

{RA{μ}(μ0, θ) = EW ‖A(μ(Y, θ)− μ0)‖2},(1.3)

where the matrix A ∈ RM×P is typically chosen to counterbalance the effect of Φ; see sec-
tion 2.1 for a precise discussion.

If θ �→ RA{μ}(μ0, θ) were sufficiently smooth, at least locally (e.g., Lipschitz), one could
expect to solve (1.3) using a (sub-)gradient descent scheme relying on the (weak) gradient
of the risk ∇2{RA{μ}}(μ0, θ), where the subscript 2 specifies that the (weak) gradient is
with respect to the second argument θ. However, this would apply only if μ0 were available.
In the context of our observation model (1.1), μ0 is, however, considered to be unknown.
Our motivation then is to build an estimator of ∇2{RA{μ}}(μ0, θ) that depends solely on y,
without prior knowledge of μ0.

Toward this goal, we adopt the framework of the (generalized) Stein Unbiased Risk Esti-
mator (SURE) [28, 48, 55, 62, 66]. For a fixed θ, the celebrated Stein lemma [62] allows us to
unbiasedly estimate RA{μ}(μ0, θ) through the weak Jacobian ∂1μ(y, θ), where the subscript 1
specifies that the (weak) Jacobian is with respect to the first argument y. This idea has been
exploited for years in several statistical and signal processing applications, typically for select-
ing thresholds in wavelet-based reconstruction algorithms; see, e.g., [4, 6, 11, 17, 23, 48, 52, 54].
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Given such an estimator R̂A{μ}(y, θ) (see section 2.1), the idea is to replace the optimization
problem (1.3) with

θ� ∈ Argmin
θ∈Θ

R̂A{μ}(y, θ).(1.4)

Provided that the variance of 1
P R̂

A{μ}(Y, θ) can be made arbitrarily small or even asymptot-
ically vanishing as P increases, so that it becomes a consistent estimator of 1

PR
A{μ}(μ0, θ),

one can expect that the minimizers of (1.4) become close to those of (1.3).

It remains to find an efficient way to solve the optimization (1.4). Again, a (sub-)gradient
descent algorithm could qualify as a good candidate if θ �→ R̂A{μ}(y, θ) were sufficiently
smooth. To the best of our knowledge, only the authors of [18] have performed such an
optimization with Newton’s method where (y, θ) �→ R̂A{μ}(y, θ) was C∞. Unfortunately,
being a function of ∂1μ(y, θ), θ �→ R̂A{μ}(y, θ) is in general not differentiable, not even
continuous (think of a simple soft-thresholding). This then precludes the use of standard
descent schemes.

The common practice has been to apply an exhaustive search by evaluating the risk
estimate R̂A{μ}(y, θ) at different values of θ. Even if in some particular cases this can be
done efficiently (see, for instance, [23]), the computational expense can become prohibitive in
general, especially as dim(Θ) increases.

Derivative-free optimization algorithms have also been investigated (see, for instance, [51]
for the case of two parameters). However, such approaches typically do not scale up to
problems where Θ has a linear vector space structure with dimension larger than 2. Their
performance is known to degrade exponentially with problem size, and they require computing
a lower and an upper bound on the optimal value over a given region.

Contributions. In this paper, we address the challenging problem of efficiently solving
(1.4), a main subject of interest for applications that has been barely investigated. Our
main contribution (section 3) is an effective strategy to automatically optimize a collection
of parameters θ independently of their dimension. While classical unbiased risk estimates
entail optimizing a noncontinuous function of the parameters, we show that the biased risk
estimator introduced in [51] is differentiable in the weak sense. This allows us, whenever the
derivatives exist, to perform a quasi-Newton optimization driven by a biased estimator of the
gradient of the risk based on the evaluation of ∂2μ(y, θ). Such an optimization technique can
be provably faster, thanks to first-order information, compared to derivative-free approaches.
We prove that, under mild assumptions, this estimator is asymptotically (with respect to P )
unbiased, hence the name Stein Unbiased GrAdient estimator of the Risk (SUGAR). Moreover,
in the particular case of soft-thresholding, we go a step further and show that it is actually a
consistent estimator of the gradient of the risk.

As a second contribution (section 4), we propose a versatile approach to computing the
derivatives ∂1μ(y, θ) and ∂2μ(y, θ), involved, respectively, in the computation of the SURE
and SUGAR, when μ(y, θ) is computed through an iterative algorithm, typically a proxi-
mal splitting method. We illustrate the versatility of our method by applying it to both
primal algorithms (forward-backward [14], Douglas–Rachford [12], and generalized foward-
backward [50]) and primal-dual algorithms [10] (see [41] for a recent review). The proposed
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methodology can, however, be adapted to any other proximal splitting method and more
generally to any algorithm whose iteration operator is weakly differentiable.

Numerical simulations involving multiparameter selection for image restoration and matrix
completion problems are reported in section 5. The proofs of our results are collected in the
appendices.

2. Overview on risk estimation. This section gives an overview of the literature on esti-
mating the risk via the SURE and its variants for ill-posed inverse problems contaminated by
additive white Gaussian noise.

2.1. SURE. Degrees of freedom (DOF) is often used to quantify the complexity of a
statistical modeling procedure; see, for instance, generalized cross-validation [34]. From [27,
66], the DOF of a function y �→ μ(y, θ) relative to a matrix A ∈ RM×P is given by

(2.1) dfA{μ}(μ0, θ) =
P∑
i=1

cov(AYi, (Aμ(Y, θ))i)

σ2

such that dfA{μ}(μ0, θ) is maximal when Aμ(Y, θ) is highly correlated with the random vector
AY . Taking A = Id leads to the standard definition of the DOF defined in the seminal work
of Efron [27]. But other choices of A allow one to counterbalance the undesirable effect of
the linear operator Φ (recall that μ0 = Φx0). For instance, setting A = (Φ∗Φ)−1Φ∗ when Φ
has full rank, or A = Φ∗(ΦΦ∗)+ when Φ is rank-deficient,1 provides a measure of the DOF
relative to the least-squares estimate of x0, i.e., xLS(y) = Ay [28, 48, 66].

With the proviso that y �→ μ(y, θ) is weakly differentiable with essentially bounded weak
partial derivatives, an unbiased estimate of the DOF can be used to unbiasedly estimate the
risk in (1.3). This leads to the (generalized) SURE (also known as weighted SURE [53]) given
as

SUREA{μ}(y, θ) = ‖A(μ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f
A{μ}(y, θ)(2.2)

with d̂f
A{μ}(y, θ) = tr (A∂1μ(y, θ)A

∗) ,

where we recall that ∂1μ(y, θ) is the weak Jacobian of μ(y, θ) with respect to the first argument
y. It can be shown that (see, e.g., [28, 62, 66])

EW [d̂f
A{μ}(Y, θ)] = dfA{μ}(μ0, θ) and EW [SUREA{μ}(Y, θ)] = RA{μ}(μ0, θ).

Expression (2.2) is general enough to encompass unbiased estimates of the prediction risk
EW ‖μ(Y, θ)− μ0‖2 (i.e., A = Id), the projection risk EW ‖Π(x(Y, θ)− x0)‖2, where Π is the or-
thogonal projector on ker(Φ)⊥ (i.e., A = Φ∗(ΦΦ∗)+), and the estimation risk EW ‖x(Y, θ)− x0‖2
when Φ has full rank (i.e., A = (Φ∗Φ)−1Φ∗). This can prove useful when Φ is rank-deficient,
since, in this case, the minimizers of the prediction risk can be far away from the minimizers of
the estimation risk [56]. The projection risk restricts the estimate to the subspace where there
is a signal in addition to noise, and in this sense, is a good approximation of the estimation
risk [28].

1(·)+ stands for the Moore–Penrose pseudoinverse.
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Note that generalization of the SURE have been developed for other noise models, typically
within the multivariate canonical exponential family (see, e.g., [28, 37, 38, 55]).

Applications of the SURE emerged for choosing the smoothing parameters in families of
linear estimates [44], such as model selection, ridge regression, and smoothing splines. After
its introduction in the wavelet community with the SURE-Shrink algorithm [23], the SURE
has been widely used for various image restoration problems, e.g., with sparse regularizations
[4, 6, 7, 11, 17, 45, 48, 51, 52, 53, 54, 70] or with nonlocal filters [16, 25, 68, 69].

However, a major practical difficulty when using the SURE lies in the numerical compu-

tation of the DOF estimate, i.e., the quantity d̂f
A{μ}(y, θ) for a given realization y. We now

give a brief overview of some previous work to deal with this computation.

2.2. Closed-form SURE. The SURE is based on a DOF estimate d̂f
A{μ}(Y, θ) that can

be sampled from the observation y ∈ R
P by evaluating the Jacobian ∂1μ(y, θ) ∈ R

N×P . A
natural way to evaluate ∂1μ(y, θ) would be to derive its closed-form expression. This has been
studied for some classes of variational problems.

In quadratic regularization (e.g., ridge regression), where solutions are of the form x(y, θ) =
K(θ)y, where K(θ) is known as the hat or influence matrix, the Jacobian has a closed-form
∂1μ(y, θ) = ΦK(θ). In �1-synthesis regularization (also known as the lasso), the Jacobian
matrix depends on the support (set of nonzero coefficients) of any lasso solution x(y, θ).
An estimator of the DOF can then be retrieved from the number of nonzero entries of this
solution [24, 65, 73]. These results have in turn been extended to more general sparsity
promoting regularizations [21, 40, 61, 64, 65, 66, 72] and spectral regularizations (e.g., nuclear
norm) [9, 20].

This approach, however, has three major bottlenecks. First, deriving the closed-form ex-
pression of the Jacobian is, in general, challenging and has to be addressed on a case-by-case
basis. Second, in large-dimensional problems, evaluating this Jacobian numerically is barely
possible. Even if it were possible, it might be subject to serious numerical instabilities. Indeed,
solutions of variational problems are achieved via iterative schemes providing iterates x(�)(y, θ)
that eventually converge to the set of solutions as � → +∞. And yet, for instance, substi-
tuting the support of the true solution by the support of x(�)(y, θ), obtained at a prescribed
convergence accuracy, might be imprecise (all the more since the problem is ill-conditioned).

The next three sections review previous work to address one or more of these three points.

2.3. Monte-Carlo SURE. To deal with the large dimension of the Jacobian, the standard
approach is to exploit the fact that the DOF depends only on the trace of A∂1μ(y, θ)A

∗.
In denoising applications where A = Id and Φ = Id, this trace can generally be obtained
by closed-form computations of the P diagonal elements of ∂1μ(y, θ) (see, e.g., [23, 68]).
This can also be done for some particular inverse problems. For instance, the authors of [48]
provide an expression of this trace for the wavelet-vaguelette estimator when Φ is a convolution
matrix and A = Φ+. However, in more general settings, the complexity of the closed-form
computation of the trace is nonlinear; typically the number of operations is in O(P×P ) (think
of Φ as a mixing operator or μ as an iterative estimator). To avoid such a costly procedure,
the authors of [32, 51] suggest making use of the following trace equality:

d̂f
A{μ}(y, θ) = tr (A∂1μ(y, θ)A

∗) = EΔ 〈∂1μ(y, θ)[Δ], A∗AΔ〉 ,(2.3)
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where Δ ∼ N (0, IdP ) and ∂1μ(y, θ)[δ] ∈ R
P denotes the directional derivative of y �→ μ(y, θ)

at y in direction δ. Remark that Δ does not necessarily have to be Gaussian and higher
precisions can be reached in some specific cases; see, for instance, [2, 22, 39, 58]. As shown
in [58], the performance of this trace estimator is governed by the distribution of the singular
values of the operator A∂1μ(y, θ)A

∗. More specifically, the slower the decay, the better the
performance. While it is difficult to make a general claim, we observed numerically that for
the recovery problems we consider, it provide a very accurate estimator of the trace. Hence,
following [51, 70], an estimate of SUREA{μ}(y, θ) can be obtained by Monte-Carlo simulations
using

SUREA
MC{μ}(y, θ, δ) = ‖A(μ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f

A

MC{μ}(y, θ, δ)
with d̂f

A

MC{μ}(y, θ, δ) = 〈∂1μ(y, θ)[δ], A∗Aδ〉.(2.4)

The evaluation of (2.4) necessitates only computing the P entries of ∂1μ(y, θ)[δ].
It remains to find a stable and efficient way to evaluate for any vector δ ∈ R

P the direc-
tional derivative ∂1μ(y, θ)[δ] ∈ R

P .

2.4. Iterative differentiation for Monte-Carlo SURE. When considering solutions x(y, θ)
of a variational problem, the DOF cannot be robustly estimated if one knows only the iterates
μ(�)(y, θ) that eventually converge to some μ(y, θ) as � → +∞. It then appears natural
to estimate the DOF of μ(�)(Y, θ) directly and make the assumption that it will converge
to that of μ(y, θ). For a realization y ∈ R

P , one can sample an estimate of the DOF of
the iterate μ(�)(Y, θ) by evaluating its directional derivative ∂1μ

(�)(y, θ)[δ]. A practical way,
initiated by [70], to compute this quantity consists in recursively differentiating the sequence
of iterates. The authors of [70] have derived the closed-form expression of the directional
derivative for the forward-backward (FB) algorithm. The directional derivative at iteration

�+ 1, denoted by D(�+1)
μ = ∂1μ

(�+1)(y, θ)[δ], is obtained iteratively as a function of μ(�)(y, θ)

and D(�)
μ = ∂1μ

(�)(y, θ)[δ]. The Monte-Carlo DOF and the Monte-Carlo SURE can in turn be
iteratively estimated by plugging ∂1μ

(�)(y, θ)[δ] into (2.4), leading to

SUREA
MC{μ(�)}(y, θ, δ) =

∥∥∥A(μ(�)(y, θ)− y)∥∥∥2 − σ2 tr(A∗A) + 2σ2d̂f
A

MC{μ(�)}(y, θ, δ)

with d̂f
A

MC{μ(�)}(y, θ, δ) =
〈
D(�)

μ , A∗Aδ
〉
.

(2.5)

A similar approach is described in [33]. Pursuing this idea, the authors of [52, 53] recently
provided such closed-form expressions in the case of the split Bregman method. Concurrently,
in an early short version of this paper [19], we have also considered this approach for general
proximal splitting algorithms, an approach that we extend in section 4.

2.5. Finite-difference SURE. An alternative initiated in [60, 71] and rediscovered in [51]
consists in estimating tr (A∂1μ(y, θ)A

∗) via finite differences given, for ε > 0, by

tr (A∂1μ(y, θ)A
∗) ≈

P∑
i=1

[A∗A(μ(y + εei, θ)− μ(y, θ))]i
ε

,(2.6)
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where (ei)1�i�P is the canonical basis of RP . Plugging this expression into (2.4) yields the
finite-difference (FD) SUREA given by

SUREA
FD{μ}(y, θ, ε) = ‖A(μ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f

A

FD{μ}(y, θ, ε)

with d̂f
A

FD{μ}(y, θ, ε) =
1

ε

P∑
i=1

(A∗A(μ(y + εei, θ)− μ(y, θ)))i.(2.7)

The main advantage of this method is that (y, θ) �→ μ(y, θ) can be used as a black box,
i.e., without knowledge of the underlying algorithm that provides μ(y, θ), while, for ε small
enough, it performs as well as the approach described in section 2.4 that requires the knowledge
of the derivatives in closed form. In fact, if y �→ μ(y, θ) is Lipschitz-continuous, then it
is differentiable Lebesgue-a.e. (Rademacher’s theorem), and its derivative equals its weak
derivative Lebesgue-a.e. [29, Theorems 1–2, section 6.2], which in turn implies

lim
ε→0

SUREA
FD{μ}(y, θ, ε) = SUREA{μ}(y, θ) Lebesgue-a.e.(2.8)

The value of ε can thus be chosen as small as possible as soon as it does not rise to numerical
instabilities due to limited machine precision. To avoid numerical instabilities, ε should be
chosen in a reasonable range of values with respect to the amplitudes of the data. In practice,
we observe that for such choices of ε, accurate results can be reached, very close to the closed-
form derivation, hence yielding to a quasi-unbiased risk estimator (i.e., with a negligible bias).
It remains that when the data dimension P is large, the evaluation of P finite differences
along each axis might be numerically intractable. In that case, the Monte-Carlo approach
(see section 2.3) can also be used in conjunction with finite differences leading to the finite-
difference Monte-Carlo (FDMC) SUREA given by

SUREA
FDMC{μ}(y, θ, δ, ε) = ‖A(μ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2d̂f

A

FDMC{μ}(y, θ, δ, ε)

with d̂f
A

FDMC{μ}(y, θ, δ, ε) =
1

ε
〈μ(y + εδ, θ)− μ(y, θ), A∗Aδ〉.

(2.9)

The originality of our approach described in the next section is to devise a grounded choice
of ε > 0. This introduces a bias in the estimation of the risk. Nevertheless, as we will see,
using ε > 0 plays an important role in risk optimization since, unlike SUREA{μ}, SUREA

FD{μ}
is a smooth function of θ in the weak sense. This is the key point in optimizing the risk. By
choosing ε > 0 carefully, a smoother objective function can be used as a basis to perform a
quasi-Newton–like optimization at the expense of a controlled bias.

3. Risk estimate minimization. In this section, we investigate how risk estimates can be
used for optimizing a collection of continuous parameters.

3.1. SUGAR. The difficulty is that even if θ �→ RA{μ}(μ0, θ) is differentiable in the
weak sense, the function θ �→ SUREA{μ}(y, θ) might contain discontinuities. Typically,

d̂f
A{μ}(y, θ) has discontinuities where (y, θ) �→ μ(y, θ) is not differentiable.
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We start with a simple result showing that, unlike SUREA{μ}(y, θ), the finite-difference–
based mapping θ �→ SUREA

FD{μ}(y, θ, ε), for ε > 0, is weakly differentiable.
Proposition 1. Assume μ(y, θ) is weakly differentiable with respect to y and θ. Given ε > 0,

d̂f
A

FD{μ}(y, θ, ε) and SUREA
FD{μ}(y, θ, ε) are also weakly differentiable with respect to y and

θ, and their (weak) gradients with respect to θ are given, for almost all θ ∈ Θ, as

SUGARA
FD{μ}(y, θ, ε) = ∇2{SUREA

FD{μ}}(y, θ, ε)
= 2∂2μ(y, θ)

∗A∗A(μ(y, θ)− y) + 2σ2∇2{d̂fAFD{μ}}(y, θ, ε),

where ∇2{d̂fAFD{μ}}(y, θ, ε) =
1

ε

P∑
i=1

(∂2μ(y + εei, θ)− ∂2μ(y, θ))∗A∗Aei.

Thanks to Proposition 1, a quasi-Newton–like method can now be used to optimize
SUREA

FD{μ}(y, θ, ε) for the vector of continuous parameters θ by implementing the iteration

θn+1 = θn −BnSUGARA
FD{μ}(y, θn, ε),

where Bn ∈ R
dim(Θ)×dim(Θ) is a sequence of definite-positive matrices. Typically, if θ �→

SUREA
FD{μ}(y, θ, δ, ε) behaves locally as a C2 function, Bn should approach the inverse of the

corresponding Hessian at θn. Remark that in general there is no guarantee that the risk has
a unique global minimizer, though in the one-dimensional case it is generally the case. When
several parameters are involved, such an objective can have several local minima and specific
quasi-Newton–like methods might be developed to avoid being stuck in one of them.

In practice, the calculation of SUGARA
FD depends on the computation of the Jacobian

matrices with respect to the parameters θ. We will see in section 4 how this quantity can be
efficiently computed when μ results from an iterative algorithm.

We now turn to the asymptotic unbiasedness of the proposed gradient estimator of the
risk as ε approaches 0. Toward this goal we need the following assumptions.
(A1) The mapping y �→ μ(y, θ) is uniformly Lipschitz continuous with Lipschitz constant

L1.
(A2) The mapping y �→ μ(y, θ) is such that μ(0, θ) = 0 for any θ.
(A3) The mapping θ �→ μ(y, θ) is uniformly Lipschitz continuous with Lipschitz constant

L2 independently of y.
Remark 1 (discussion of the assumptions).
1. Assumption (A1) is mild and is fulfilled in many situations of interest. In particular,

this is the case when y �→ μ(y, θ) = ProxθF (y), θ > 0, is the proximal operator of a
proper closed and convex function F , as considered in section 4 (see also section 3.2 for
soft-thresholding). Standard convex analysis arguments [36] show that the proximal
operator is indeed a uniformly Lipschitz mapping of its argument y with constant
L1 = 1, independently of θ.

2. Assumption (A2) is very natural and does not entail any loss of generality. It basically
states that, when the observations are zero, so is the estimator.

3. As far as assumption (A3) is concerned, it is verified under certain circumstances. This
is, for instance, the case when μ(y, θ) = ProxθG(y), θ > 0, where G is the gauge (see
Definition 2 in Appendix B) of any compact convex set containing the origin as an
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interior point;2 see Proposition 5 in Appendix B. By induction, this also holds when
μ(y, θ) = Proxθ1G1 ◦ · · · ◦ ProxθmGm(y), θ ∈ ]0,+∞[m, and for any i = 1, . . . ,m, Gi is
the gauge of any compact convex set containing the origin as an interior point; see
Corollary 5. Typical instances of these gauges are norms, e.g., �1, �1 − �2, or nuclear
norms now very popular in the signal and image processing community.

4. Assumption (A3) can be relaxed to cover the case where L2 depends on y. In such
a situation, additional assumptions on the function y �→ L2(y) are needed for steps
(S.3) and (S.4) in the proof of Theorem 1 to proceed. We omit this case for the sake
of clarity and to avoid further technicalities.

We are now ready to state our theorem.

Theorem 1 (asymptotic unbiasedness of SUGAR). Assume that assumptions (A1)–(A3) hold.
Then, RA{μ}(μ0, ·) and dfA{μ}(μ0, ·) are weakly differentiable, and for any Lebesgue point θ,

lim
ε→0

EW

[
SUGARA

FD{μ}(Y, θ, ε)
]
= ∇2{RA{μ}}(μ0, θ),

lim
ε→0

EW

[
∇2{d̂fAFD{μ}}(Y, θ, ε)

]
= ∇2{dfA{μ}}(μ0, θ).

Theorem 1 can be given the following interpretation. As ε gets close to 0, e.g., a decreasing
function of the dimension P ,3 the gradient of SUREA

FD{μ}(y, ·, ε) (normalized by P ) can be
used to estimate the gradient of the risk (also normalized by P ), provided that P is large
enough.

However, even if ε should decrease toward 0, it should not decrease too fast. In particular,
for a fixed dimension P , the step ε cannot be chosen arbitrarily small. This would not be
an issue if μ(y, ·) were differentiable, but, in general, there might be singularities. In fact,
for a finite dimension P , the limit when ε → 0 of the sample SUGARA

FD{μ}(y, θ, ε) may not
even exist, though that of its expectation does exist Lebesgue-a.e., as shown in the proof of
Theorem 1. As a consequence, the quantity 1

P SUGARA
FD{μ}(Y, θ, ε) can become very unstable

when ε decreases too quickly with the dimension P . The underlying statistical question is
whether one can control the variance of 1

P SUGARA
FD{μ}(Y, θ, ε) as P increases, and make it

arbitrarily small or even asymptotically vanishing, so that 1
P SUGARA

FD{μ}(Y, θ, ε) becomes a
consistent estimator. Unfortunately, consistency of our gradient estimator of the risk is very
intricate to get in the general case, as is the case for the consistency of the SURE. However,
when μ specializes to soft-thresholding, such a result can be achieved.

3.2. SUGAR for soft-tresholding. In this section, we show that the proposed gradient
estimator of the risk can be consistent in the case where μ is the soft-thresholding (ST) function
and A = IdP . The soft-thresholding is the proximal operator of the �1-norm. Understanding
the soft-thresholding is of chief interest since it is at the heart of any proximal splitting
algorithm solving a regularized inverse problem involving terms of the form ‖D∗x‖1, where D
is a linear operator.

Let us first recall the definition of soft-thresholding.

2Another case which is trivial corresponds to G being the indicator function of a nonempty closed convex
set, in which case L2 = 0.

3As we will see, the higher the dimension P is, the smaller ε can be.
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Definition 1 (soft-thresholding). The soft-thresholding (ST) is defined, for λ > 0 and for
all 1 � i � P , as

(3.1) ST(y, λ)i =

⎧⎨⎩
yi + λ if yi � −λ,
0 if − λ < yi < λ,
yi − λ otherwise.

Observe that as a proximal operator of a norm, soft-thresholding satisfies assumptions (A1)–
(A3) of Theorem 1; see the corresponding discussion. Hence, we already anticipate from
Theorem 1 that our gradient estimator of the soft-thresholding risk is asymptotically unbiased.

We start with following lemma which collects the statistics of the gradient of the finite-
difference DOF estimator.

Lemma 1 (statistics of the gradient of the finite-difference DOF estimator). Let 0 < ε < 2λ.
The weak gradient of λ �→ d̂fFD{ST}(Y, λ, ε) is such that

EW

[
∇2{d̂fFD{ST}}(Y, λ, ε)

]
=
−1
2

P∑
i=1

ϕ[(μ0)i, λ, ε]

ε
,

VW

[
∇2{d̂fFD{ST}}(Y, λ, ε)

]
=

1

2ε

P∑
i=1

ϕ[(μ0)i, λ, ε]

ε
− 1

4

P∑
i=1

[
ϕ[(μ0)i, λ, ε]

ε

]2
,

where for a ∈ R, ϕ[a, λ, ε] = erf(a+λ+ε√
2σ

)− erf( a+λ√
2σ
) + erf(a−λ+ε√

2σ
)− erf( a−λ√

2σ
).

We now turn to the asymptotic behavior of the proposed gradient estimator of the risk for
large P at a single realization of Y , i.e., our observation y. To this end, we first have to define
how the observation model evolves with the dimension P . Given z0 ∈ R

N , we consider the
sequence {ΨP }P�1, where, for all P ≥ 1, ΨP ∈ R

P×N is the submatrix obtained by deleting
one line of ΨP+1. We can then define a sequence of observation models as the sequence of
random vector {YP }P�1 defined as

YP = ΨP z0 +WP , where WP ∼ N (0, σ2IdP ).(3.2)

We also define the sequence {(μ0)P }P�1, where (μ0)P = ΨP z0. In the following, for the sake
of clarity, we omit the dependency of YP , WP , and (μ0)P on P .

We can now state our consistency result for soft-thresholding.
Theorem 2 (consistency of SUGAR). Take a function ε̂(P ) such that limP→∞ ε̂(P ) = 0 and

limP→∞ P−1ε̂(P )−1 = 0. Then for any Lebesgue point λ > 0 (i.e., such that, for all (i, P ), λ �=
|Yi| and λ �= |Yi + ε̂(P )ei|),

plim
P→∞

[
1

P
(SUGARFD{ST}(Y, λ, ε̂(P ))−∇2{R{ST}}(μ0, λ))

]
= 0,

plim
P→∞

[
1

P

(
∇2{d̂fFD{ST}}(Y, λ, ε̂(P )) −∇2{df{ST}}(μ0, λ)

)]
= 0.

In plain words, Theorem 2 asserts that for our gradient estimator of the soft-thresholding
risk to be consistent, ε̂(P ) should not decrease faster than the inverse of the dimension P . With



SUGAR FOR MULTIPLE PARAMETER SELECTION 2459

the proviso that ε̂(P ) fulfills the requirement, for P large enough, 1
P SUGARFD{ST}(y, λ, ε̂(P ))

is guaranteed to come close to 1
P∇2{R{ST}}(μ0, λ) with high probability.

Unfortunately, Theorem 2 does not dictate an explicit choice of ε̂(P ), and the practitioner
may wonder how to choose this value for a given P . It turns out that studying the mean
squared error (MSE) of the gradient of the finite-difference DOF estimator helps in unveiling
the link between P and ε through a bias-variance trade-off.

Proposition 2 (MSE of the gradient of the finite-difference DOF estimator). The weak gradi-
ent of λ �→ d̂f{ST}(Y, λ, ε) is such that

EW

[
1

P

(
∇2{d̂f{ST}}(Y, λ, ε) −∇2{df{ST}}(μ0, λ)

)]2
=

1

P 2

(
EW

[
∇2{d̂f{ST}}(Y, λ, ε)

]
−∇2{df{ST}}(μ0, λ)

)2
︸ ︷︷ ︸

Bias2

+
1

P 2
VW

[
∇2{d̂f{ST}}(Y, λ, ε)

]
,︸ ︷︷ ︸

V ariance

where the statistics of ∇2{d̂f{ST}}(Y, λ, ε) are given in Lemma 1 and

∇2{df{ST}}(μ0, λ) = −1√
2πσ

P∑
i=0

[
exp

(
−((μ0)i + λ)2

2σ2

)
+ exp

(
−((μ0)i − λ)2

2σ2

)]
.

Thus, if μ0 were given, the quantities in Proposition 2 could be computed in closed form.
The MSE can then be evaluated to select the optimal value of ε for a fixed dimension P and a
given threshold λ. The following numerical experiments, detailed hereafter and illustrated in
Figure 1, highlight this relationship. When μ0 is unknown, an a priori model can be imposed,
such as, for instance, belonging to some ball promoting sparsity, e.g., a weak �γ-ball for γ > 0.
For γ sufficiently small, this ball corresponds to compressible or nearly sparse vectors μ0 whose
entries |μi| sorted in descending order of magnitude behave as O(i−1/γ). With such a model at
hand, the MSE in Proposition 2 can be optimized for ε given P , σ, λ, and γ. This, however,
entails a highly nonlinear equation that cannot be solved in closed form. We defer such a
development to a future work.

Figure 1(a) shows the evolution of the bias and the variance as a function of the ratio
ε/σ for fixed values of σ, λ, and a compressible vector μ0, i.e., |(μ0)i| = O(i−1/γ), chosen as
illustrated in Figure 1(d). When ε → 0, for fixed P , the bias vanishes, while the variance,
and, in turn, the MSE, increase. However, for a step ε > 0, the MSE is finite and seems to
be optimal around the value 0.1σ. Figure 1(c) shows the evolution of the MSE as a function
of the dimension P and the ratio ε/σ for the same fixed values as before. The optimal step,
minimizing the MSE, seems to evolve as a power decay function (the scale is log-log) of the form
ε�(P ) = Cσ/Pα with C > 0 and 0 < α < 1. Of course the optimal constants C and α depend
on the choice of μ0, σ, and λ. However, for any C > 0 and 0 < α < 1, or, more generally, for
any admissible choice of ε̂ such that limP→∞ ε̂(P ) = 0 and limP→∞ P−1ε̂(P )−1 = 0, the MSE
vanishes with respect to P . Figure 1(b) shows indeed the evolution of the bias, the variance,
and the MSE as a function of the dimension P when ε̂ is chosen as a power decay function.
For α = 0 or α = 1, the MSE remains constant, while, for α > 1, the MSE diverges, which
suggests the necessity of limP→∞ P−1ε̂(P )−1 = 0.
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Figure 1. Bias-variance trade-off of the gradient estimator of the DOF of soft-thresholding, (a) with respect
to the step ε, and (b) with respect to the dimension P when using a power decay function P �→ ε̂(P ). (c) Its
MSE as a function of P and ε (in logarithmic scales). The solid line represents the pairs (ε̂�(P ), P ), where,
for a fixed dimension P , ε̂�(P ) minimizes the MSE. The function ε̂�(P ) looks like a power function of the
form Cσ/Pα with C > 0 and 0 < α < 1. The dashed lines represent the power functions ε̂inf(P ) = Cσ and
ε̂sup(P ) = Cσ/P outside of which the MSE diverges when P increases. (d) Description of the settings of the
experiments, i.e., the choice of σ, μ0, and λ.

4. Differentiation of an iterative scheme. We now turn to iterative algorithms that
involve linear and soft-thresholding operators. We observed empirically that for all the inverse
problems exposed in section 5, setting ε�(P ) = Cσ/Pα, as suggested by our study on the soft-
thresholding, resulted in a reliable way to parametrize our estimator. The effectiveness of this
heuristic might be explained by the fact that the singularities encountered in most imaging
problems are similar to absolute values, in order to encourage some sort of sparsity in the
solution.

In this section, we focus on iterates, defined unambiguously as single-valued mappings
(y, θ) �→ x(�)(y, θ), where � is the iteration counter of the iterative algorithm. In this context,
we propose to compute in closed form the derivatives of x(�)(y, θ) with respect to either y (in
a direction δ) or θ. This proves useful in estimating, respectively, the risk via SUREA

MC (see
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section 2) and its gradient via SUGARA
FDMC (see section 3).

The iterative schemes we consider can be cast in the same framework, which subsumes
proximal splitting algorithms designed to minimize a proper, closed, and convex objective
function x �→ E(x, y, θ), whose set of minimizers is supposed nonempty. All these algorithms
can be unified as an iterative scheme of the form

(4.1)

{
x(�) = γ(a(�)),

a(�+1) = ψ(a(�), y, θ),

where a(�) ∈ A is a sequence of auxiliary variables. ψ : A × Y × Θ → A is a fixed point
operator such that a(�) converge to a fixed point a�, and γ : A → X is nonexpansive (i.e,
‖γ(a1)− γ(a2)‖ � ‖a1 − a2‖ for any a1, a2 ∈ A), entailing that x(�) will converge to x� =
γ(a�). Note that for the sake of clarity, we have dropped the dependencies of a� and x� on y
and θ.

To make our ideas clear, consider the instructive example where x �→ E(x, y, θ) is convex
and C1(X ) with L-Lipschitz gradient, in which case A = X , a = x, and ψ(x, y, θ) = x −
τ∇1E(x, y, θ), where 0 < τ < 2/L.

4.1. Iterative weak differentiability. A practical way to get the weak directional deriva-
tive ∂1x(y, θ)[δ] and the weak Jacobian ∂2x(y, θ) is to compute them iteratively from the
sequences (4.1) by relying on the chain rule. However, two major issues have to be taken
care of. First, one has to ensure weak differentiability of the iterates (4.1) so that, for all �,
∂1x

(�)(y, θ)[δ] (or, resp., ∂2x
(�)(y, θ)) exists Lebesgue-a.e. Second, one may legitimately ask

whether the sequence of weak derivatives converges, and what the properties of its cluster
point are, if any, with respect to the weak derivatives at a minimizer x�.

Regarding weak differentiability of the iterates, this relies essentially on regularity condi-
tions to apply the chain rule (e.g., [29, section 4.2.2]), i.e., regularity properties of the iteration
mappings γ and ψ and of the initialization. For instance, for proximal splitting algorithms,
it turns out that γ is the composition of one or several nonexpansive operators, hence 1-
Lipschitz operators. In turn, γ is 1-Lipschitz. Furthermore, in all examples we consider, ψ
is also 1-Lipschitz with respect to its second and third arguments. Therefore, if one starts
at a Lipschitz continuous initialization, by induction, y �→ x(�)(y, θ) and θ �→ x(�)(y, θ) are
also Lipschitz. Using the chain rule for Lipschitz mappings (see [29, Theorem 4(ii) and the
subsequent Remark, section 4.2.2]), weak differentiability of x(�) follows with respect to both
arguments.

As far as convergence of the sequence of weak Jacobians is concerned, this remains an
open question in the general case, and we believe this would necessitate intricate arguments
from nonsmooth and variational analysis. This is left to future research.

From now on, we suppose that the Lipschitzian assumptions on γ, ψ, and the initial points
hold. The next two sections detail the computation of ∂1x

(�)(y, θ)[δ] and ∂2x
(�)(y, θ) in order

to get the estimates SUREA
MC and SUGARA

FDMC.

4.2. Computation of SUREA
MC for risk optimization. We describe here the iterative

computation of the directional derivative ∂1x
(�)(y, θ)[δ] following the idea introduced in [70]

(see section 2.4). Note that we focus on the directional derivative rather than the Jacobian
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matrix itself. There are two reasons for this. The first is that we only need to have access to
the trace of the Jacobian; the storage cost of the latter is, moreover, prohibitive. Second, it
turns out that the trace of the Jacobian can be efficiently estimated by evaluating the weak
directional derivatives at random directions δ (see section 2.3 for more details).

The next proposition summarizes a recursive scheme for computing the weak derivatives
∂1x

(�)(y, θ)[δ].

Proposition 3. For any vector δ ∈ X , the weak directional derivative D(�)
x = ∂1x

(�)(y, θ)[δ]
is given by

D(�)
x = Γ(�)

a (D(�)
a )

with D(�+1)
a = Ψ(�)

a (D(�)
a ) + Ψ(�)

y (δ),

where D(�)
a = ∂1a

(�)(y, θ)[δ] and we have defined the linear mappings

Γ(�)
a (·) = ∂1γ(a

(�))[·],
Ψ(�)

a (·) = ∂1ψ(a
(�), y, θ)[·],

Ψ(�)
y (·) = ∂2ψ(a

(�), y, θ)[·].

Plugging ∂2x
(�)(y, θ)[δ] into (2.4), and in turn into (2.2), gives iteratively an unbiased4

estimate of the risk at the current iterate x(�)(y, θ). The whole procedure is summarized
in Figure 2. It is worth pointing out that although estimating the risk entails additional
operations, the global complexity is the same as for the original iterative algorithm without
risk estimation.

4.3. Computation of SUGARA
FDMC for risk optimization. We now focus on the com-

putation of the weak Jacobian ∂2x
(�)(y, θ). Unlike for risk estimation that required only

weak directional derivatives, for risk optimization we need the full weak Jacobian matrix
∂2x(y, θ) ∈ R

dim(Θ)×N . The proposed strategy, known as the forward accumulation, is one
of the possible strategies for iteratively evaluating the derivatives by the use of the chain
rule. The reverse accumulation is another strategy that does not require computing the full
Jacobian matrix at the expense of a large memory load with respect to the number of it-
erations. Between these two extreme approaches, there are several hybrid strategies that
can also be considered, knowing that finding the optimal Jacobian accumulation strategy is
an NP-complete problem. Such strategies have been studied in the field of “automatic dif-
ferentiation,” and the reader is invited to see [35, 47] for a comprehensive account of these
approaches.

In our case, we consider that, unlike for ∂1x
(�)(y, θ), the matrix ∂2x(y, θ) is in practice quite

small since dim(Θ)� P , hence implying a memory load overhead of only a small fraction of
P . Thus following the forward accumulation strategy, we propose a practical way to compute
iteratively the full weak Jacobian matrix ∂2x(y, θ).

The next result describes an iterative scheme for computing ∂2x
(�)(y, θ).

4Expectation is to be taken here with respect to both the Gaussian measure of the noise W and the
direction Δ.
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Algorithm. Risk estimation of an iterative scheme.

Inputs: observation y ∈ Y = R
P , collection of parameters θ ∈ Θ

Parameters: noise variance σ2 > 0, linear operator Φ ∈ R
P×N ,

matrix A ∈ R
M×P , number L of iterations

Output: solution x(y, θ) ∈ X and its risk estimate R̂A{x}(y, θ)

Sample a vector δ from N (0, IdP )
Initialize a(0) ← 0 *
Initialize D(0)

a ← 0
for � from 0 to L − 1 do *

a(�+1) ← ψ(a(�), y, θ) *

D(�+1)
a ← Ψ

(�)
a (D(�)

a ) + Ψ
(�)
y (δ)

end for *
x(L) ← γ(a(L)) *

D(L)
x ← Γ

(L)
a (D(L)

a )

d̂f
A

MC ← 〈ΦD(L)
x A∗Aδ〉

SUREA
MC ←

∥∥A(y − Φx(L))
∥∥2 − σ2 tr(A∗A) + 2σ2d̂f

A

MC

return x(y, θ)← x(L) and R̂A{x}(y, θ)← SUREA
MC

Figure 2. Pseudoalgorithm for risk estimation of an iterative scheme. The * symbols indicate the lines
corresponding to the computation of x. The other lines are dedicated to the computation of the estimated risk
̂RA using Monte-Carlo simulation. Even if computing the risk requires more operations, the global complexity
of the algorithm is unchanged.

Proposition 4. The weak Jacobian J (�)
x = ∂2x

(�)(y, θ) is given by

J (�)
x = Γ(�)

a (J (�)
a )

with J (�+1)
a = Ψ(�)

a (J (�)
a ) + Ψ

(�)
θ ,

where J (�)
a = ∂2a

(�)(y, θ) and we have defined

Γ(�)
a (·) = ∂1γ(a

(�))[·],
Ψ(�)

a (·) = ∂1ψ(a
(�), y, θ)[·],

Ψ
(�)
θ = ∂3ψ(a

(�), y, θ).

Plugging ∂2x
(�)(y, θ) into the expression of SUGARA

FDMC given by Proposition 1 provides
iteratively an asymptotically (see Theorem 1) unbiased estimate of the gradient of the risk at
the current iterate x(�)(y, θ). The main steps of the procedure are summarized in Figure 3. The
estimation of the gradient of the risk entails only a small computational overhead compared to
the risk estimation approach of [51]. Their respective complexity remains the same, however.
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Algorithm. Risk and gradient risk estimation of an iterative scheme.

Inputs: observation y ∈ Y = R
P , collection of parameters θ ∈ Θ

Parameters: noise variance σ2 > 0, linear operator Φ ∈ R
P×N ,

matrix A ∈ R
M×P , number L of iterations,

decay parameters C > 0 and 0 < α < 1
Output: solution x(y, θ) ∈ X , its risk estimate R̂A{x}(y, θ),

and its gradient risk estimate ∇̂2R
A{x}(y, θ)

Sample a vector δ from N (0, IdP ) *
Choose ε = Cσ/Pα *
for y′ = y and y′ = y + εδ do *

Initialize a(0) ← 0 *
Initialize J (0)

a ← 0
for � from 0 to L − 1 do *

a(�+1) ← ψ(a(�), y′, θ) *

J (�+1)
a ← Ψ

(�)
a (J (�)

a ) + Ψ
(�)
θ

end for *
x(�)(y′)← γ(a(�)) *

J (�)
x (y′)← Γ

(�)
a (J (�)

a )
end for *
d̂fFDMC ← 1

ε

〈
Φ(x(L)(y + εδ) − x(L)(y)), A∗Aδ

〉
*

SUREA
FDMC ←

∥∥A(y − Φx(L))
∥∥2 − σ2 tr(A∗A) + 2σ2d̂fFDMC *

SUGARA
FDMC ← 2J (L)

x (y)∗Φ∗A∗A(Φx(L) − y) + 2σ2

ε (J (L)
x (y+εδ)−J (L)

x (y))∗Φ∗A∗Aδ
return x(y, θ)← x(L)(y), R̂A{x}(y, θ)← SUREA

FDMC and ∇̂2R
A{x}(y, θ)← SUGARA

FDMC

Figure 3. Pseudoalgorithm for risk and gradient risk estimation of an iterative scheme. The * symbols
indicate the lines corresponding to the computation of x and its estimated risk RA using approximated Monte-
Carlo simulation, i.e., as described in [51]. The other lines are dedicated to the computation of the estimated
gradient of the risk ∇̂RA. Even if computing the gradient of the risk requires more operations, the global
complexity of the algorithm is unchanged.

Finally, note that in both schemes, an initialization other than a(0) = 0 can be chosen, for
instance, one depending on y and θ, in which case the respective derivatives must be initialized
accordingly.

The following sections are devoted to instantiating this approach to more specific iterative
algorithms that are able to handle nonsmooth convex objective functions E.

4.4. Application to generalized forward-backward splitting. The generalized forward-
fackward (GFB) splitting [50] allows one to find one element belonging to the set x(y, θ)
solution of the structured convex optimization problem

(4.2) x(y, θ) = Argmin
x∈X

{
E(x, y, θ) = F (x, y, θ) +

Q∑
k=1

Gk(x, y, θ)

}
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under the assumptions that all functions are proper, closed, and convex, F is C1(X ) with L-
Lipschitz continuous gradient, and theGk functions are simple, in the sense that their proximal
operator can be computed in closed form (e.g., the �1-norm is simple since its proximal operator
is explicitly the soft-thresholding). Recall that the proximal mapping of a proper closed convex
function G is defined as

ProxG : x ∈ X �→ Argmin
z∈X

1

2
‖z − x‖2 +G(z).

This mapping is uniquely valued and nonexpansive (i.e., ‖ProxG(x1)− ProxG(x2)‖ � ‖x1 − x2‖
for any x1, x2 ∈ X ), in fact even firmly so.

The GFB splitting implements iteration (4.1) with a(�) = (ξ(�), z
(�)
1 , . . . , z

(�)
Q ) ∈ A = X 1+Q,

x(�) = γ(a(�)) = ξ(�), and a(�+1) = ψ(a(�), y, θ) chosen such that for all k = 1, . . . , Q,

x(�+1) = 1
Q

Q∑
k=1

z
(�+1)
k ,

z
(�+1)
k = z

(�)
k − x(�) +ProxνQGk

(Z(�)
k , y, θ)

with Z(�)
k = 2x(�) − z(�)k − ν∇1F (x

(�), y, θ).

With the parameter ν ∈ ]0, 2/L[ , the sequence of iterates x(�) is provably guaranteed to con-
verge to a minimizer x(y, θ) of (4.2). One recovers as special cases the FB splitting [14] when
Q = 1 and the Douglas–Rachford splitting [12] when F = 0.

Corollary 1. For any vector δ ∈ X , the GFB weak directional derivatives D(�)
x = Γ

(�)
a (D(�)

a )

and D(�+1)
a = Ψ

(�)
a (D(�)

a ) + Ψ
(�)
y (δ) are computed by evaluating iteratively

D(�+1)
x = 1

Q

Q∑
k=1

D(�+1)
zk ,

D(�+1)
zk = D(�)

zk −D(�)
x + G(�)k,x(D(�)

Zk
) + G(�)k,y(δ)

with D(�)
Zk

= 2D(�)
x −D(�)

zk − ν(F (�)
x (D(�)

x ) + F (�)
y (δ)),

where we have defined the following linear mappings:

G(�)k,x(·) = ∂1{ProxνQGk
}(Z(�)

k , y, θ)[·],
G(�)k,y(·) = ∂2{ProxνQGk

}(Z(�)
k , y, θ)[·],

F (�)
x (·) = ∂1{∇1F}(x(�), y, θ)[·],
F (�)
y (·) = ∂2{∇1F}(x(�), y, θ)[·].

Corollary 2. The GFB weak Jacobian J (�)
x = Γ

(�)
a (J (�)

a ), where J (�+1)
a = Ψ

(�)
a (J (�)

a ) + Ψ
(�)
θ ,
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is computed by evaluating iteratively

J (�+1)
x = 1

Q

Q∑
k=1

J (�+1)
zk ,

J (�+1)
zk = J (�)

zk − J (�)
x + G(�)k,x(J (�)

Zk
) + G(�)k,θ

with J (�)
Zk

= 2J (�)
x − J (�)

zk − ν(F (�)
x (J (�)

x ) + F (�)
θ ),

where we have defined

G(�)k,x(·) = ∂1{ProxνQGk
}(Z(�)

k , y, θ)[·],
G(�)k,θ = ∂3{ProxνQGk

}(Z(�)
k , y, θ),

F (�)
x (·) = ∂1{∇1F}(x(�), y, θ)[·],
F (�)
θ = ∂3{∇1F}(x(�), y, θ).

4.5. Application to primal-dual splitting. Proximal splitting schemes can be used to find
an element of the set x(y, θ) defined as the solution of the large class of variational problems

x(y, θ) = Argmin
x∈X

{E(x, y, θ) = H(x, y, θ) +G(K(x), y, θ)} ,(4.3)

where both x �→ H(x, y, θ) and u �→ G(u, y, θ) are proper closed convex and simple functions
and K : X → U is a bounded linear operator.

The primal-dual5 relaxed Arrow–Hurwicz algorithm, revitalized recently in [10] (which
we coin “CP”) to solve (4.3), implements (4.1) with a(�) = (ξ(�), x̃(�), u(�)) ∈ A = X 2 × U ,
x(�) = γ(a(�)) = ξ(�), and a(�+1) = ψ(a(�), y, θ) such that

u(�+1) = ProxτG∗(U (�), y, θ), where U (�) = u(�) + τK(x̃(�)),

x(�+1) = ProxξH(X(�), y, θ), where X(�) = x(�) − ξK∗(u(�+1)),

x̃(�+1) = x(�+1) + ζ(x(�+1) − x(�)),
(4.4)

where the Legendre–Fenchel conjugate of G is defined as G∗(u, y, τ) = maxz 〈z, u〉−G(z, y, τ)
and its proximal operator is given by Moreau’s identity as

ProxτG∗(u, y) = u− τ ProxG/τ (u/τ, y).

The parameters τ > 0, ξ > 0 are chosen such that τξ ‖K‖2 < 1, and ζ ∈ [0, 1] to ensure
provable convergence of x(�) toward an element in the set x(y, θ) of (4.3). ζ =0 corresponds
to the Arrow–Hurwitz algorithm, and for ζ =1, a sublinear O(1/�) convergence rate on the
partial duality gap was established in [10].

5We invite the interested reader to consult [41] for a detailed review on primal-dual algorithms.
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Corollary 3. For any vector δ ∈ X , the CP weak directional derivatives D(�)
x = Γ

(�)
a (D(�)

a )

and D(�+1)
a = Ψ

(�)
a (D(�)

a ) + Ψ
(�)
y (δ) are computed by evaluating iteratively

D(�+1)
u = G(�)u (D(�)

U ) + G(�)y (δ), where D(�)
U = D(�)

u + τK(D(�)
x̃ ),

D(�+1)
x = H(�)

x (D(�)
X ) +H(�)

y (δ), where D(�)
X = D(�)

x − ξK∗(D(�+1)
u ),

D(�+1)
x̃ = D(�+1)

x + ζ(D(�+1)
x −D(�)

x ),

where we have defined the following linear mappings:

H(�)
x (·) = ∂1{ProxξH}(X(�), y, θ)[·],
H(�)

y (·) = ∂2{ProxξH}(X(�), y, θ)[·],
G(�)u (·) = ∂1{ProxτG∗}(U (�), y, θ)[·],
G(�)y (·) = ∂2{ProxτG∗}(U (�), y, θ)[·].

Corollary 4. Similarly to Corollary 3, the CP weak Jacobians J (�)
x = Γ

(�)
a (J (�)

a ) and J (�+1)
a =

Ψ
(�)
a (J (�)

a ) + Ψ
(�)
θ are computed by evaluating iteratively

J (�+1)
u = G(�)u (J (�)

U ) + G(�)θ , where J (�)
U = J (�)

u + τK(J (�)
x̃ ),

J (�+1)
x = H(�)

x (J (�)
X ) +H(�)

θ , where J (�)
X = J (�)

x − ξK∗(J (�+1)
u ),

J (�+1)
x̃ = J (�+1)

x + ζ(J (�+1)
x − J (�)

x ),

where we have defined

H(�)
x (·) = ∂1{ProxξH}(X(�), y, θ)[·],
H(�)

θ = ∂3{ProxξH}(X(�), y, θ),

G(�)u (·) = ∂1{ProxτG∗}(U (�), y, θ)[·],
G(�)θ = ∂3{ProxτG∗}(U (�), y, θ).

Note that the two proximal splitting schemes described here were chosen for their flexibility
and the richness of the class of problems they can handle. Obviously, the methodology and
discussion extend easily to the reader’s favorite proximal splitting algorithm.

5. Examples and numerical results. In this section, we exemplify the use of the formal
differentiation of iterative proximal splitting algorithms for three popular variational problems:
nuclear norm regularization, total variation regularization, and the multiscale wavelet �1-
analysis sparsity prior. For each of these, the expressions of all quantities including the
proximal operators and their derivatives are given in closed form. For each problem, we
illustrate the usefulness of our gradient risk estimators for (multi-) continuous parameter
optimization.

5.1. Implementation details. All experiments reported below are based on the algorithms
detailed in Figures 2 and 3 in conjunction with proximal splitting algorithms presented in the
previous section. The step of the finite difference is chosen as ε = 2σ/P 0.3. Iterative proximal
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splitting algorithms will be used with L = 100 iterations. For quasi-Newton optimization,
we used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method with the implementation
of [42]. The use of BFGS is just given as an example to make the most of the proposed
gradient estimator of the risk and seems to be good enough for the cases considered in all of
the following experiment examples. Of course, other first-order optimization methods can be
considered just as well, essentially if the risk presents several local minima.

An important issue in using quasi-Newton optimization is the choice of the initialization,
the initial step, and the stopping criteria. For a variation regularization problem expressed as

Argmin
x

1

2
‖Φx− y‖2 +

K∑
k=1

λkRk(x),(5.1)

where λk > 0 for all k ∈ N, the initialization λk0 is chosen empirically as

λk0 =
Pσ2

4
∑K

k=1Rk(xLS(y))
,(5.2)

where xLS(y) is the least-squares estimator. At the first iteration, the approximate inverse
Hessian B1 should be chosen such that, for all k > 0, λk1 is of the same order as λk0 . To this
end, we suggest initializing B1 as a diagonal matrix with diagonal entries

Bk
1 =

∣∣∣∣ αλk0
SUGARA

FDMC{x}(y, λ0, δ, ε)k

∣∣∣∣(5.3)

such that, for all k, λk1 = (1 ± α)λk0 , where, in practice, we have chosen α = 0.9. Finally, the
BFGS method stops after the following criterion is reached:∥∥SUGARA

FDMC{x}(y, λn, δ, ε)
∥∥
∞∥∥SUGARA

FDMC{x}(y, λ0, δ, ε)
∥∥
∞

� τ,(5.4)

where we have chosen τ = 0.02, meaning that the algorithm stops if all (weak) partial deriva-
tives are at least 50 times lower than the maximal one at initialization.

For the sake of reproducibility, the MATLAB scripts implementing the SURE and the
SUGAR for the different problems described hereafter are available online at http://www.math.
u-bordeaux1.fr/∼cdeledal/sugar.php.

5.2. Nuclear norm regularization. We consider the recovery of a low-rank matrix x0 ∈
R
n1×n2 from an observation y ∈ R

P of Y = Φx0 +W , W ∼ N (0, σ2IdP ), where we have
identified the matrix space R

n1×n2 to the vector space R
N with N = n1n2. To this end, we

consider the following spectral regularization problem:

x�(y, λ) ∈ Argmin
x

1

2
‖Φx− y‖2 + λ ‖x‖∗ ,(5.5)

where λ > 0 and ‖·‖∗ is the nuclear norm (also known as trace for the symmetric semidefinite
positive case or Schatten 1-norm). This is a spectral function defined as the �1-norm of the
singular values Λx ∈ R

n=min(n1,n2), i.e.,

‖x‖∗ = ‖Λx‖1 .

http://www.math.u-bordeaux1.fr/~cdeledal/sugar.php
http://www.math.u-bordeaux1.fr/~cdeledal/sugar.php
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The nuclear norm is a particular case of spectral regularization that accounts for prior knowl-
edge of the spectrum of x, typically low-rank (see, e.g., [30]). It is the convex hull of the
rank function restricted to the unit spectral ball [8]. The parameter λ balances the sparsity
of the spectrum of the recovered matrix and the tolerated amount of noise. However, except
in the random measurements setting, there is no direct relation between λ and the rank of
x(y, λ). The optimal value of λ indeed depends on x0, Φ, and σ, confirming the importance
of automatic selection procedures.

Problem (5.5) is a special instance of (4.2) with the parameter λ = θ ∈ Θ = R
+, Q = 1,

and

F (x, y, λ) =
1

2
‖Φx− y‖2 ,

G1(x, y, λ) = λ ‖x‖∗ .
Hence the GFB algorithm6 can be used to solve (5.5) by setting

∇1F (x, y, λ) = Φ∗(Φx− y),
ProxτG1(x, y, λ) = Vx diag(ST(Λx, τλ))U

∗
x ,

where diag : Rn → R
n1×n2 maps the entries of a vector in R

n to the main diagonal of a
rectangular matrix in R

n1×n2 filled with 0 elsewhere, (Vx, Ux,Λx) ∈ R
n1×n1 × R

n2×n2 × R
n

is the singular value decomposition of x such that x = Vx diag(Λx)U
∗
x , and ST is the soft-

thresholding operator (3.1). Corollaries 1 and 2 can then be applied using, for any δx ∈ X
and δy ∈ Y, the relations

∂1{∇1F}(x, y, λ)[δx] = Φ∗Φδx,
∂2{∇1F}(x, y, λ)[δy ] = −Φ∗δy,
∂3{∇1F}(x, y, λ) = 0,

∂1{ProxτG1}(x, y, λ)[δx] = Vx(H(Λx)[δ̄x] + ΓS(Λx)[δ̄x] + ΓA(Λx)[δ̄x])U
∗
x ,

∂2{ProxτG1}(x, y, λ)[δy ] = 0,
∂3{ProxτG1}(x, y, λ) = Vx diag(∂2ST(Λx, τλ))U

∗
x ,

where δ̄x = V ∗
XδxUX ∈ R

n1×n2 , H(Λx) is defined as

H(Λx)[δ̄x] = diag(∂1ST(Λx, ρλ)[diag(δ̄x)]),

and ΓS(Λx) and ΓA(Λx) are defined, for all 1 � i � n1 and 1 � j � n2, as

ΓS(Λx)[δ̄x]i,j =
(δ̄x)i,j + (δ̄x)j,i

2
×

⎧⎪⎨⎪⎩
0 if i = j,
ST(Λx,ρλ)i−ST(Λx,ρλ)j

(Λx)i−(Λx)j
if (Λx)i �= (Λx)j ,

∂1ST(Λx, ρλ)i,i otherwise,

ΓA(Λx)[δ̄x]i,j =
(δ̄x)i,j − (δ̄x)j,i

2
×

⎧⎪⎨⎪⎩
0 if i = j,
ST(Λx,ρλ)i+ST(Λx,ρλ)j

(Λx)i+(Λx)j
if (Λx)i > 0 or (Λx)j > 0,

∂1ST(Λx, ρλ)i,i otherwise,

6In this case where Q = 1, this corresponds to the FB algorithm.
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where for i > n we have extended Λx and ST(Λx, ρλ) as (Λx)i = 0 and ST(Λx, ρλ)i = 0, and
for j > n1 or i > n2, δ̄x as (δ̄x)j,i = 0. Recall from (A.2) that the weak derivatives of the
soft-thresholding are defined, for t ∈ R

N , ρ > 0, δt ∈ R
N , 1 � i � N , by

∂1ST(t, ρ)i,i =

{
0 if |ti| � ρ,
1 otherwise,

(5.6)

∂1ST(t, ρ)[δt]i = ∂1ST(t, ρ)i,i × (δt)i,

∂2ST(t, ρ)i =

{
0 if |ti| � ρ,
− sign(ti) otherwise.

The closed-form expression we derived for ∂1{ProxτG1}(x, y, λ)[δx] is far from trivial. It
is essentially due to [26, 43, 63]; see [9] for an expression similar to ours. The generalization
of this result to other matrix-valued spectral functions has been studied in [20].

Application to matrix completion. We illustrate the nuclear norm regularization on a ma-
trix completion problem encountered in recommendation systems such as the popular Net-
flix problem [5]. We therefore consider y ∈ R

P with the forward model Y = Φx0 + W ,
W ∼ N (0, σ2IdP ), where x0 is a dense but low-rank (or approximately so) matrix and Φ is a
binary masking operator.

We have taken (n1, n2) = (1000, 100) and P = 25000 observed entries (i.e., 25%). The
underlying matrix x0 = Vx0 diag Λx0U

∗
x0

has been chosen with Vx0 and Ux0 , two realizations
of the uniform distribution of orthogonal matrices, and Λx0 = (k−1)1�k�n such that x0 is
approximately low-rank with a rapidly decaying spectrum. The binary masking operator
is such that for i = 1, . . . , P , (Φx)i = xΣ(i)1,Σ(i)2 , where Σ : [1, . . . , n1 × n2] → [1, . . . , n1] ×
[1, . . . , n2] is the realization of a random permutation of the n1×n2 entries of x. The standard
deviation σ has been set such that the resulting minimum least-squares estimate xLS(y) = Φ∗y
has a relative error ‖xLS(y)− x0‖F / ‖x0‖F = 0.9.

Figures 4(a) and 4(b) depict the risk, the prediction risk, and the SURE = SUREA

(with A = Id) estimates7 as functions of λ obtained from a single realization of y and δ. In
Figure 4(a), SUREMC{x}(y, λ, δ) has been evaluated for 12 values of λ chosen in a suitable
tested range using the algorithm given in Figure 2. Figure 4(b) shows the benefit of computing
SUREFDMC{x}(y, λ, δ, ε) and SUGARFDMC{x}(y, λ, δ, ε), as described in Figure 3, to realize
a quasi-Newton optimization. The sequence of iterates λn is represented, as well as the
sequence of the slopes of SUREFDMC{x}(y, λn, δ, ε) given by SUGARFDMC{x}(y, λn, δ, ε). The
BFGS algorithm reaches the optimal value in only five iterations. One can also notice that
SUREFDMC{x}(y, λ, δ, ε) and SUREMC{x}(y, λ, δ) are both good—and visually equivalent—
estimators of the prediction risk. At the optimum value λ� minimizing the SURE, the true
risk is not too far from its minimum, showing that, in this case, the prediction risk is indeed a
good objective in order to minimize the risk. In Figure 4(c) a zoom-in on the solution x(y, λ�)
is compared to x0 and xLS(y), and their respective spectra are shown in Figure 4(d). The
solution x(y, λ�) has a rank of 57 with a relative error of 0.45 (i.e., a gain of about a factor 2
with respect to the least-squares estimator).

7Without impacting the optimal choice of λ, the curves have been rescaled for visualization purposes.
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Figure 4. (a)–(b) Risk, prediction risk, and the SURE estimates7 as functions of the regularization pa-
rameter λ. (a) The 12 points where SUREMC{x}(y, λ, δ) has been evaluated by exhaustive search. (b) The
five evaluation points of SUREFDMC{x}(y, λ, δ, ε) and SUGARFDMC{x}(y, λ, δ, ε) required by BFGS to reach
the optimal λ. (c)–(d) Respectively, a zoom-in and the spectra of the underlying matrix x0, the least-squares
estimate xLS(y), and the solution x(y, λ) at the optimal λ.

5.3. Total variation regularization. We consider the recovery of a piecewise constant
two-dimensional image x0 ∈ R

n1×n2 from an observation y of Y = Φx0 + W ∈ R
P , W ∼

N (0, σ2IdP ), where we have identified the image space R
n1×n2 to the vector space R

N with
N = n1n2. To this end, we suggest using (isotropic) total variation regularization of the form

x�(y, λ) ∈ Argmin
x

1

2
‖Φx− y‖2 + λ‖∇̃x‖1,2,(5.7)

where λ > 0 and ∇̃ : RN → R
N×2 is the two-dimensional discrete gradient operator. The

�1-�2–norm of a vector field t = (ti)
N
i=1 ∈ R

N×2, with ti ∈ R
2, is defined as ‖t‖1,2 =

∑
i ‖ti‖.

Total variation promotes the sparsity of the gradient field, which turns out to be a prior that
enforces smoothing while preserving edges. The parameter λ controls the regularity of the
image. A large value of λ results in an image with large homogeneous areas, while a small value
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results in an image with several small disconnected regions. The optimal value of λ is image-
and degradation-dependent, revealing the importance of automatic selection procedures.

Problem (5.7) is a special instance of (4.2) using x = (f, u) ∈ X = R
N × R

N×2, the
parameter λ = θ ∈ Θ = R

+, Q = 2 simple functionals, and for x = (f, u)

F (x, y, λ) =
1

2
‖Φf − y‖2 ,

G1(x, y, λ) = λ ‖u‖1,2 ,
G2(x, y, λ) = ιC(x), where C =

{
x = (f, u) \ u = ∇̃f

}
.

Hence the GFB algorithm can be used to solve (5.7) using

∇1F (x, y, λ) = (Φ∗(Φf − y), 0),
ProxτG1(x, y, λ) = (f,ST1,2(u, τλ)),

ProxτG2(x, y, λ) = ((Id + Δ)−1(f + div u), ∇̃(Id +Δ)−1(f + div u)),

where Δ is the Laplacian operator and div is the discrete divergence operator such that
div = −∇̃∗. The operator ST1,2 is the componentwise �1-�2 soft-thresholding defined, for any
dimensions N and D, t ∈ R

N×D, and ρ > 0, by

ST1,2(t, ρ)i =

{
0 if ‖ti‖ � ρ
ti − ρ ti/ ‖ti‖ otherwise

for all 1 � i � N.(5.8)

For D = 1, the componentwise �1-�2 soft-thresholding reduces to (3.1). Corollaries 1 and 2
can then be applied, for any δx = (δf , δu) ∈ X and δy ∈ Y, using the relations

∂1{∇1F}(x, y, λ)[δx] = (Φ∗Φδf , 0),
∂2{∇1F}(x, y, λ)[δy ] = (−Φ∗δy, 0),
∂3{∇1F}(x, y, λ) = (0, 0),

∂1{ProxτG1}(x, y, λ)[δx] = (δf , ∂1ST1,2(u, τλ)[δu]),
∂2{ProxτG1}(x, y, λ)[δy ] = (0, 0),
∂3{ProxτG1}(x, y, λ) = (0, ∂2ST1,2(u, τλ)),

∂1{ProxτG2}(x, y, λ)[δx] = ((Id +Δ)−1(δf + div δu), ∇̃(Id + Δ)−1(δf + div δu)),
∂2{ProxτG2}(x, y, λ)[δy ] = (0, 0),
∂3{ProxτG2}(x, y, λ) = (0, 0),

where the weak derivatives of the componentwise �1-�2 soft-thresholding are defined, for any
dimensions N and D, t ∈ R

N×D, ρ > 0, and δt ∈ R
N×D, by

∂1ST1,2(t, ρ)[δt]i =

{
0 if ‖ti‖ � ρ,
δt,i − ρ

‖ti‖Pti(δt,i) otherwise,
(5.9)

∂2ST1,2(t, ρ)i =

{
0 if ‖ti‖ � ρ,
−ti/ ‖ti‖ otherwise,

where Pα is the orthogonal projector on α⊥ for α ∈ R
2.
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Figure 5. (a)–(b) Risk, projection risk, and the GSURE estimates7 as functions of the regularization
parameter λ. (a) The 12 points where GSUREMC{x}(y, λ, δ) has been evaluated by exhaustive search. (b) The
four evaluation points of GSUREFDMC{x}(y, λ, δ, ε) and GSUGARFDMC{x}(y, λ, δ, ε) required by BFGS to
reach the optimal λ. (c)–(e) Respectively, a zoom-in of the underlying image x0, the observation y, and the
solution x(y, λ) at the optimal λ.

Application to image deblurring. We illustrate the total variation regularization on an image
deblurring problem. We therefore consider the forward model Y = Φx0 +W ∈ R

P , W ∼
N (0, σ2IdP ), where x0 is a piecewise constant (or approximately so) image and Φ is a discrete
convolution matrix.

We have taken a cartoon-like image of size (n1, n2) = (512, 512) and P = 5122 observations
corresponding to noisy observations of a convolution product with a discrete Gaussian kernel
of radius 2 pixels. To ensure numerical stability of the pseudoinverse (typically for the least-
squares estimate and the computation of the projection risk and its estimate), the kernel
has been truncated in the Fourier domain such that too small contributions have been set
to 0. The consequence is that around 80% of (high) frequencies are masked. The standard
deviation of the noise has been set to σ = 10 (for an image x0 with a range [0, 255]) such that
the resulting minimum least-squares estimate xLS(y) = Φ+y has a peak signal-to-noise ratio
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(PSNR) equal to 10 log10(255
2/ ‖xLS(y)− x0‖2F ) = 21.02 dB.

Figures 5(a) and 5(b) display the risk, the projection risk, and the GSURE = SUREA

(with A = Π) estimates as a function of λ obtained from a single realization of y and δ. In
Figure 5(a), GSUREMC{x}(y, λ, δ) has been evaluated for 12 values of λ chosen in a suitable
tested range using the algorithm given in Figure 2. Figure 5(b) shows the benefit of comput-
ing GSUREFDMC{x}(y, λ, δ, ε) and GSUGARFDMC{x}(y, λ, δ, ε), as described in Figure 3, to
realize a quasi-Newton optimization. The sequence of iterates λn is represented, as well as the
sequence of the slopes of GSUREFDMC{x}(y, λn, δ, ε) given by GSUGARFDMC{x}(y, λn, δ, ε).
The BFGS algorithm reaches the optimal value in only four iterations. The deviation of
GSUREFDMC{x}(y, λ, δ, ε) from the projection risk is of the same order as the deviation of
GSUREMC{x}(y, λ, δ). At the optimum value λ� minimizing the GSURE, the true risk is
not too far from its minimum, showing that, relative to the range of variation of the risk,
in this case, the projection risk is indeed a good objective in order to minimize the risk. In
Figures 5(c)–5(e), the solution x(y, λ�) is compared to x0 and y. The solution x(y, λ�) has
a PSNR of 24.98 dB (i.e., a gain of about 3.94 dB). Remark that, given such a noise level
and convolution operator, masking 80% of (high) frequencies, the solution selected by min-
imizing the GSURE criterion is still a bit blurred and exhibits a staircasing effect. Using a
larger regularization parameter λ would result in a more “cartoon”-like result with less blur.
This would, however, entail a larger bias, which corresponds to a loss of contrast inherent to
the convexity of the TV prior. This larger bias subsequently would degrade the MSE, which
explains why it is not selected by the GSURE criterion.

5.4. Weighted �1-analysis wavelet regularization. We focus on the recovery of a piece-
wise regular image x0 ∈ R

n1×n2 from an observation y of Y = Φx0 + W ∈ R
P , W ∼

N (0, σ2IdP ), using a J-scale undecimated wavelet analysis regularization of the form

x�(y, λ) ∈ Argmin
x

1

2
‖Φx− y‖2 + ‖Ψx‖1,λ , where Ψ =

⎛⎜⎜⎜⎜⎜⎝
Ψh

1

Ψv
1
...

Ψh
J

Ψv
J

⎞⎟⎟⎟⎟⎟⎠(5.10)

and λ is a vector of R+J
and Ψ ∈ R

2JN×N is the analysis operator of a two-orientation wavelet
transform, where, for all scales 1 � j � J , Ψh

j , Ψ
v
j are defined such that, for x ∈ R

N , uhj = Ψh
jx

and uvj = Ψv
jx are the vectors of undecimated wavelet coefficients of x in the horizontal and

vertical directions, respectively, at the decomposition level j. The weighted �1-norm ‖.‖1,λ is

‖Ψx‖1,λ =

J∑
j=1

λj

(∥∥Ψh
jx
∥∥
1
+
∥∥Ψv

jx
∥∥
1

)
.

Multiscale wavelet analysis promotes piecewise regular images by enforcing smoothness while
preserving sharp discontinuities at different scales and orientations. Each parameter λj con-
trols the regularity at scale j. A large value of λj tends to oversmooth structures at scale j,
while a small value leads to undersmoothing. As noted in several papers (see, e.g., [11, 49]), the
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optimal values λj are also image- and degradation-dependent, revealing again the importance
of automatic selection procedures.

Problem (5.10) is a special instance of (4.3) where the parameter λ = θ ∈ Θ = R
+J

and

H(x, y, λ) = 1
2 ‖Φx− y‖2 ,

G(u, y, λ) = ‖u‖1,λ ,
K(x) = Ψx.

Hence the primal-dual CP splitting can be used to solve (5.10) using

ProxξH(x, y, λ) = x+ ξΦ∗y − ξΦ∗(Id + ξΦΦ∗)−1Φ(x+ ξΦ∗y),
ProxτG∗(u, y, λ) = u− τST(u/τ, λ/τ),

K∗(u, λ) =

J∑
j=1

(Ψh
j
∗
uhj +Ψv

j
∗uvj ),

where ST denotes in this section the multiscale extension of the soft-thresholding operator
(3.1) such that, for t ∈ R

2JN and ρ ∈ R
J , we have

ST(t, ρ)oj = ST(toj , ρj)

for all scales 1 � j � J and orientations o = v, h. Corollaries 1 and 2 can then be applied
using

∂1{ProxξH}(x, y, λ)[δx] = δx + ξΦ∗(Id + ξΦΦ∗)−1Φδx,
∂2{ProxξH}(x, y, λ)[δy ] = ξΦ∗δy − ξ2Φ∗(Id + ξΦΦ∗)−1ΦΦ∗δy,
∂3{ProxξH}(x, y, λ) = 0,

∂1{ProxτG∗}(u, y, λ)[δu] = δu − ∂1ST(u/τ, λ/τ)[δu],
∂2{ProxτG∗}(u, y, λ)[δy ] = 0,
∂3{ProxτG∗}(u, y, λ) = −∂2ST(u/τ, λ/τ),

where the derivatives of the multiscale soft-thresholding are defined, for any t ∈ R
2JN , ρ ∈ R

J ,
and δt ∈ R

2JN , by

∂1ST(t, ρ)[δt]
o
j = ∂1ST(t

o
j , ρj)[δt

o
j ] and ∂2ST(t, ρ)

o
j = ∂2ST(t

o
j , ρj)(5.11)

for all scales 1 � j � J and orientations o = v, h.

Application to compressed sensing. We illustrate the multiscale wavelet �1-analysis reg-
ularization on a compressed sensing problem. We therefore consider the forward model
Y = Φx0 + W ∈ R

P , W ∼ N (0, σ2IdP ), where x0 is a piecewise multiscale regular (or
approximately so) image and Φ is a random matrix. Here the multiscale transform W is
constructed from undecimated Daubechies 4 wavelets [15].

We have taken a uniformly randomized subsampling of a uniform random convolution,
where (P/N = 0.5). The standard deviation has been set to σ = 10 (for an image x0 with
a range [0, 255]) such that the resulting minimum least-squares estimate xLS(y) = Φ+y has a
PSNR given by 10 log10(255

2/ ‖xLS(y)− x0‖2F ) ≈ 16 dB.
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Table 1
Illustration of the minimization of SUREFDMC in multiscale regularization obtained for the three images

in Figure 6 with different numbers of scales from J = 1 to J = 3 using either one global parameter or one
parameter per scale. For each case, the obtained optimal parameters λ� are given. The associated value of
SURE and the PSNR are compared to neighbors of λ� located at 0.75λ� and 1.25λ�. Boldface numbers are used
to indicate for each criterion the best sets of parameters.

Input Optimal parameters SURE/PSNR

Image PSNR J dimΛ λ� 0.75λ� λ� 1.25λ�

Mandrill 17.37 1 1 (7.58) 7.53/24.84 7.39/24.90 7.43/24.94
2 1 (5.63) 7.60/24.85 7.45/24.88 7.58/24.89
3 1 (4.54) 7.87/24.04 7.71/24.10 7.83/24.10
2 2 (5.94, 4.24) 7.49/25.02 7.30/25.06 7.38/25.07
3 3 (7.51, 1.07, 0.99) 7.37/25.12 7.22/25.18 7.33/25.20

House 17.65 1 1 (18.38) 3.69/31.16 3.51/31.15 3.68/30.55
2 1 (11.11) 3.72/31.31 3.51/31.40 3.81/31.05
3 1 (8.73) 4.30/30.18 4.08/30.31 4.43/30.13
2 2 (14.47, 5.20) 3.53/31.51 3.34/31.57 3.55/31.05
3 3 (15.00, 2.50, 2.83) 3.52/31.55 3.27/31.63 3.44/31.14

Cameraman 15.13 1 1 (13.50) 5.29/28.61 5.09/28.73 5.35/28.64
2 1 (8.78) 5.34/28.75 5.09/28.83 5.38/28.72
3 1 (7.14) 5.84/28.03 5.60/28.06 5.88/27.99
2 2 (10.98, 3.74) 5.16/28.91 4.90/29.04 5.09/28.96
3 3 (11.56, 3.31, 0.97) 5.07/29.00 4.86/29.11 5.13/28.99

Table 1 and Figure 6 illustrate the multiscale regularization obtained by minimizing the
SURE = SUREA (with A = Id) for three different images x0, known as Mandrill, House, and
Cameraman, and a single realization of y and δ. Three levels of decomposition from J = 1 to
J = 3 are considered. We also consider using either one global regularization parameter or one
parameter per scale. Table 1 gives the selected optimal vector of parameters λ� for each level
of decomposition and their associated performance in terms of SURE and PSNR. We first
observe that, compared to the global approach, optimizing one parameter per scale indeed
adapts better to the regularity of the image. For instance, the image Mandrill contains fine
scales with more energy than House; then the obtained penalization of the first scale is smaller
for Mandrill than for House. Visual inspection of these results in Figure 6 illustrates this
automatic adaptation. In the same vein, with three levels of decomposition, the penalization
is less severe for Mandrill than for House and Cameraman. We next observe that increasing
the level of decomposition improves the PSNR when using one parameter per scale, while
this is not the case when a global parameter is used. The gap is more important between
J = 1 and J = 2. To assess the minimization of SUREFDMC, we have compared the SURE
and the PSNR values at 0.75λ� and 1.25λ�. At the optimal λ�, the SURE is, as expected,
minimal. Furthermore, at λ�, the PSNR is either maximal or not too far from its maximal
value, showing that, in this case, the prediction risk is indeed a good objective in order to
maximize the PSNR.

6. Conclusion. We have proposed a methodology for optimizing multiple continuous pa-
rameters of a weakly differentiable estimator that attempts to solve a linear ill-posed inverse
problem contaminated by additive white Gaussian noise. The proposed method selects the
parameters that minimize an estimate of the risk and is driven by an estimate of its gradi-
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(a) (b) (c) (d) (e)

Figure 6. From top to bottom, a close-up of Mandrill, House, and Cameraman. (a) Underlying image x0.
(b) Least-squares estimate xLS(y). (c) Result with λ� for one level of decomposition J = 1, (d) for three levels
of decomposition J = 3 using one global parameter, and (e) for three levels of decomposition J = 3 using one
parameter per scale.

ent. Classical unbiased estimators of the risk are generally noncontinuous functions of the
parameters, so that their local variations cannot be used to estimate the gradient of the risk.
These estimators require estimating the DOF by evaluating the variations of the estimator
with respect to the observations. We have shown that estimating the DOF by finite differences
leads to a weakly differentiable risk estimator. By carefully choosing the finite-difference step
and by computing explicitly the (weak) gradient of this estimate, an asymptotically unbi-
ased estimator of the gradient of the risk is obtained. This estimator is numerically smooth
enough to apply a quasi-Newton method. An explicit strategy for computing this (weak)
gradient is given for a large class of (iterative) weakly differentiable algorithms. We exempli-
fied our methodology on several popular proximal splitting methods. Numerical experiments
demonstrated the wide applicability and scope of the approach.

Our choice of the finite-difference step size was essentially guided by a careful analysis of
the soft-thresholding estimator. Choosing this step size with theoretical guarantees (such as
consistency or optimality) in more general cases remains an open question. Beyond consis-
tency and optimality, the question of quantifying the influence of the finite-difference step on
the smoothness of the risk gradient estimates and then on the performance of quasi-Newton
methods is still open. To deal with parameter space of higher dimensions, other Jacobian ac-
cumulation strategies could be explored following [35]. Improvements could also be achieved
on the settings of the quasi-Newton methods. In particular, a drawback of our approach is
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the sensitivity to local minima of the risk with respect to the collection of parameters. In
some settings, more elaborate optimization strategies could be employed. Future work could
also focus on the extensions to nonweakly differentiable estimators and/or inverse problems
with non-Gaussian noises.

Appendix A. Proofs of section 3.
Proof of Proposition 1. This is a consequence of the chain rule and linearity of the weak

derivative. Indeed, d̂f
A

FD{μ}(y, θ, ε) is just the sum of P weakly differentiable functions and
hence is weakly differentiable with the weak derivative with respect to θ as given. Moreover,
‖A(μ(y, θ)− y)‖2 =

∑P
i=1 ((A(μ(y, θ)− y))i)2. Each term i is the composition of a weakly

differentiable function (A(μ(y, ·)− y))i and (·)2, where the latter is obviously continuously
differentiable with bounded derivative and takes 0 at the origin. It then follows from the
chain rule [29, Theorem 4(ii), section 4.2.2] that (A(μ(y, ·) − y))i is weakly differentiable, and
the weak derivative of ‖A(μ(y, ·) − y)‖2 with respect to θ is indeed

2∂2μ(y, θ)
∗A∗A(μ(y, θ)− y).

Proof of Theorem 1. The proof strategy consists in commuting in an appropriate order
the different signs (limit, integration, and derivation) while checking that our assumptions
provide sufficient conditions for this to hold.

Let V be a compact subset of Θ, and choose ϕ ∈ C1
c (Θ) with support in V . We have∫

Θ
RA{μ}(μ0, θ)∂ϕ(θ)

∂θi
dθ =

∫
V
RA{μ}(μ0, θ)∂ϕ(θ)

∂θi
dθ

=

∫
V
EW

[
‖A(μ(Y, θ)− y)‖2

] ∂ϕ(θ)
∂θi

dθ

[Stein lemma]
(S.1)
=

∫
V
EW

[
SUREA{μ}(Y, θ)] ∂ϕ(θ)

∂θi
dθ

[(2.8)]
(S.2)
=

∫
V
EW

[
lim
ε→0

SUREA
FD{μ}(Y, θ, ε)

] ∂ϕ(θ)
∂θi

dθ

[dominated convergence]
(S.3)
= lim

ε→0

∫
V
EW

[
SUREA

FD{μ}(Y, θ, ε)
] ∂ϕ(θ)
∂θi

dθ

[Fubini]
(S.4)
= lim

ε→0
EW

[∫
V
SUREA

FD{μ}(Y, θ, ε)
∂ϕ(θ)

∂θi
dθ

]
[weak differentiability, Proposition 1]

(S.5)
= − lim

ε→0
EW

[∫
V

∂

∂θi
SUREA

FD{μ}(Y, θ, ε)ϕ(θ)dθ
]

[Proposition 1]
(S.6)
= − lim

ε→0
EW

[∫
V

(
SUGARA

FD{μ}(Y, θ, ε)
)
i
ϕ(θ)dθ

]
[Fubini]

(S.7)
= − lim

ε→0

∫
V
EW

[(
SUGARA

FD{μ}(Y, θ, ε)
)
i

]
ϕ(θ)dθ

[dominated convergence]
(S.8)
= −

∫
V

(
lim
ε→0

EW

[(
SUGARA

FD{μ}(Y, θ, ε)
)
i

])
ϕ(θ)dθ

= −
∫
Θ

(
lim
ε→0

EW

[(
SUGARA

FD{μ}(Y, θ, ε)
)
i

])
ϕ(θ)dθ.



SUGAR FOR MULTIPLE PARAMETER SELECTION 2479

From the definition of weak derivative, we get the claimed result on the asymptotic unbi-
asedness of SUGARA

FD. The asymptotic unbiasedness of the gradient of the finite-difference
DOF naturally follows with the same proof strategy by ignoring the two first terms in the

decomposition SUREA
FD{μ}(μ0, θ, ε) = ‖A(μ(y, θ)− y)‖2− σ2 tr(A∗A) + 2σ2d̂f

A

FD{μ}(μ0, θ, ε).
We now justify each of the above steps (S.1)–(S.8). We denote by g1,σ the Gaussian

probability density function of zero mean and variance σ2, and by gσ its P -dimensional version,
i.e., gσ = (g1,σ)

P .
(S.1) This is the Stein lemma, which applies owing to assumption (A1). Indeed, μ(·, θ) is

Lipschitz, and hence weakly differentiable, and its derivative equals its weak derivative
Lebesgue-a.e. [29, Theorems 1–2, section 6.2]. Moreover, we have for any θ

(A.1)
∥∥μ(y, θ)− μ(y′, θ)∥∥ � L1

∥∥y − y′∥∥⇒ ∣∣μi(y, θ)− μi(y′, θ)∣∣ � L1

∥∥y − y′∥∥ ,
and thus, whenever the derivatives of μi(·, θ) exist, they are bounded by L1. Conse-
quently,

EW

[∣∣∣∣∂μi(Y )

∂yi

∣∣∣∣] � L1;

i.e., the weak partial derivatives are essentially bounded.
(S.2) This step is just (2.8) with the arguments justifying it owing to assumption (A1).
(S.3) Let fε(y, θ) = SUREA

FD{μ}(y, θ, ε). From (2.8), limε→0 fε(y, θ) = SUREA{μ}(y, θ)
exists Lebesgue-a.e. Assumptions (A1)–(A2) give

‖μ(y, θ)− y‖ � ‖y‖+ ‖μ(y, θ)− μ(0, θ)‖ � (1 + L1) ‖y‖ .

Combining this with (A.1) leads to

|fε(y, θ)| =
∣∣∣∣∣‖A(μ(y, θ)− y)‖2 − σ2 tr(A∗A) + 2σ2

1

ε

P∑
i=1

(A∗A(μ(y + εei, θ)− μ(y, θ)))i
∣∣∣∣∣

� ‖A‖2 Pσ2
(
(1 + L1)

2 ‖y‖2
Pσ2

+ 1 + 2L1

)
.

Note that the bound is independent of θ. Thus

EW

[
‖A‖2 Pσ2

(
(1 + L1)

2 ‖y‖2
Pσ2

+ 1 + 2L1

)]

= ‖A‖2 Pσ2
(
(1 + L1)

2

(
‖μ0‖2
Pσ2

+ 1

)
+ 1 + 2L1

)
<∞.

This bound together with the fact that ϕ is continuously differentiable with compact
support in V means that fε

∂ϕ
∂θi

is dominated by an integrable function on Y ×V . The
dominated convergence then applies, which yields the claim.

(S.4) The Fubini theorem surely applies in view of the integrability just shown at the end
of (S.3).
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(S.5) This is a consequence of Proposition 1 and the definition of weak differentiability since
μ(y, ·) is Lipschitz continuous independently of y.

(S.6) This step holds by definition of SUGARA
FD{μ} in Proposition 1.

(S.7) Let fε(y, θ) = (SUGARA
FD{μ}(y, θ, ε))i and h(y, θ) = (2∂2μ(y, θ)

∗A∗A(μ(y, θ)− y))i.
By the translation invariance of the convolution product, we have

EW [fε(Y, θ)] = 2(gσ ∗ h(·, θ))(μ0) + 2σ2
P∑

j=1

gσ(·+ εei)− gσ
ε

∗ (∂2μ(·, θ)∗A∗Aej)i (μ0).

Thus

|(gσ ∗ h(·, θ))(μ0)| � 2

∫
Y
gσ(y − μ0) |(∂2μ(y, θ)∗A∗A(μ(y, θ)− y))i| dy

[assumption (A3)] � 2L2 ‖A‖2
∫
Y
gσ(y − μ0) ‖μ(y, θ)− y‖ dy

[assumptions (A1)–(A2)] � 2(1 + L1)L2 ‖A‖2
∫
Y
gσ(y − μ0) ‖y‖ dy

� 2(1 + L1)L2 ‖A‖2 EW [‖y‖]dy
[Jensen inequality] � 2(1 + L1)L2 ‖A‖2 EW [‖y‖2]1/2dy

� 2(1 + L1)L2 ‖A‖2
(
‖μ0‖2 + Pσ2

)1/2
<∞.

For the second term, we have∣∣∣∣gσ(·+ εei)− gσ
ε

∗ (∂2μ(·, θ)∗A∗Aej)i (μ0)
∣∣∣∣

�
∫
Y

∣∣∣∣gσ(y − μ0 + εei)− gσ(y − μ0)
ε

∣∣∣∣ ∣∣(∂2μ(y, θ)∗A∗Aej)i
∣∣ dy

[assumption (A3)] � L2 ‖A‖2
∫
Y

∣∣∣∣gσ(y − μ0 + εei)− gσ(y − μ0)
ε

∣∣∣∣ dy
� L2 ‖A‖2

∫
R

∣∣∣∣g1,σ(t− (μ0)i + ε)− g1,σ(t− (μ0)i)

ε

∣∣∣∣ dt
[Taylor] � L2 ‖A‖2

∫
R

∫ 1

0

∣∣g′1,σ(t− (μ0)i + τ)
∣∣ dtdτ

[Fubini] � L2 ‖A‖2
∫
R

∣∣g′1,σ(t)∣∣ dt <∞.
In view of these bounds, and since ϕ is compactly supported in V , integrability of fεϕ
on Y × V is ensured, whence the claimed result follows.

(S.8) Let fε be defined as in step (S.7). We have just shown that the integrand in θ, i.e.,
EW [fε(Y, ·))i]ϕ, is dominated by a function that is integrable on V . It remains to
check that its limit exists Lebesgue-a.e. But this is yet again an application of the
dominated convergence theorem to the sequence fε as an integrand with respect to the
Gaussian measure gσ(y)dy, which allows us to deduce that limε→0 EW [fε(Y, θ)ϕ(θ)] =
EW [limε→0 fε(Y, θ)ϕ(θ)].
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This completes the proof.
Proof of Proposition 1. For a fixed λ, it can be shown similarly to [29, Theorem 4(iii), sec-

tion 4.2.2] that ST(·, λ) is weakly differentiable and that its weak Jacobian h(y) = ∂2ST(y, λ)
is diagonal, with diagonal elements, for 1 � i � P ,

h(y)i =

⎧⎨⎩
+1 if yi � −λ,
0 if − λ < yi < λ,
−1 otherwise.

(A.2)

We next define, for a fixed λ, the quantity h′(y, ε) = ∇2{d̂fFD{ST}}(y, λ, ε). Using Proposi-
tion 1 and the fact that ε < 2λ gives

h′(y, ε) =
P∑
i=1

h(y + εei)i − h(y)i
ε

=
P∑
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if yi < −λ− ε,
−1/ε if − λ− ε < yi < −λ,
0 if − λ < yi < λ− ε,
−1/ε if λ− ε < yi < λ,
0 if λ < yi.

Computing the expectation and the variance of h′(Y, ε) in closed form with truncated Gaus-
sian statistics and using the fact that h is separable in its arguments give the proposed
formula.

Proof of Theorem 2. For P big enough, ε̂(P ) < 2λ since limP→∞ ε̂(P ) = 0. Using the
notation in the proof of Lemma 1 leads to

SUGARFD{ST}(y, λ, ε) = 2h(y)∗(ST(y, λ)− y) + 2σ2h′(y, ε̂(P )).

The Cauchy–Schwarz inequality implies that

VW

[
1

P
SUGARFD{ST}(Y, λ, ε)

]1/2
� 2VW

[
1

P
h(y)∗(ST(Y, λ)− Y )

]1/2
+ 2σ2VW

[
1

P
h′(Y, ε̂(P ))

]1/2
.

Since x �→ √π erf (x/a) is Lipschitz continuous with a constant of 2/a, Lemma 1 yields

VW

[
1

P
h′(Y, ε̂(P ))

]
�

√
2√

πσP ε̂(P )
.

By assumption, we have limP→∞ P−1ε̂(P )−1 = 0, and then the variance of 1
P h

′(Y, ε̂(P ))
vanishes to zero. Next, remark that

h(y)∗(ST(y, λ) − y) = λ#{|y| > λ},
where #{|y| > λ} denotes the number of entries of |y| greater than λ. We have #{|Yi| >
λ} ∼iid Bernoulli(pi) whose variance is pi(1− pi), where pi = 1

2(erf(
(μ0)i+λ√

2σ
)− erf( (μ0)i−λ√

2σ
)). It

follows that VW [#{|Y | > λ}] =∑P
i=1 pi(1− pi) � P , and hence

lim
P→∞

VW

[
1

P
h(Y )∗(ST(Y, λ) − Y )

]
= lim

P→∞
VW

[
1

P
λ#{|Y | > λ}

]
= 0.
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Consistency (i.e., convergence in probability) follows from traditional arguments by invok-
ing Chebyshev inequality and using asymptotic unbiasedness (Theorem 1) and vanishing
variance.

Proof of Proposition 2. Developing the MSE in terms of bias and variance gives the
first part of the proposition. Lemma 1 and the fact that limε→0 EW∇2{d̂f{ST}}(Y, λ, ε) =
∇2{df{ST}}(μ0, λ) conclude the second part.

Appendix B. Regularity of the proximal operator of a gauge. We first provide a glimpse
of gauges.

Definition 2 (gauge). Let C be a nonempty closed convex set containing the origin. The
gauge of C is the function γC defined by

γC(y) = inf {ω > 0 \ y ∈ ωC} .

As usual, γC(y) = +∞ if the infimum is not attained.

Definition 3 (polar set). Let C be a nonempty convex set. The set C◦ given by

C◦ = {z ∈ R
N \ 〈z, x〉 � 1 ∀x ∈ C}

is called the polar of C. C◦ is a nonempty closed convex set containing the origin, and if C is
closed and contains the origin as well, then C◦◦ = C.

We now summarize some key properties that will be needed in the main proof.

Lemma 2. Let C be a nonempty closed convex set containing the origin. The following
assertions hold.

(i) γC is a nonnegative closed convex and positively homogeneous function.
(ii) C is the unique closed convex set containing the origin such that

C = {y ∈ Y \ γC(y) � 1} .

(iii) γC is bounded and coercive if and only if C is compact and contains the origin as an
interior point.

(iv) The gauge of C and the support function σC◦(y) = maxz∈C◦ 〈y, z〉 coincide, i.e.,

γC = σC◦ .

Proof. Assertions (i)–(ii) follow from [36, Theorem V.1.2.5]. Assertion (iii) is a consequence
of [36, Theorem V.1.2.5(ii) and Corollary V.1.2.6]. Assertion (iv) follows from [36, Proposi-
tion V.3.2.4].

We are now equipped to prove our regularity result.

Proposition 5. Let C be a compact convex set containing the origin as an interior point,
i.e., a convex body, and let G = γC be its gauge. For any θ > 0, θ′ > 0, and any y ∈ Y, the
following holds:

‖ProxθG(y)− Proxθ′G(y)‖ � L2|θ − θ′|
for some constant L2 > 0 independent of y; i.e., for any y, θ �→ ProxθG(y) is Lipschitz
continuous on ]0,+∞[.
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Proof. From [1, Proposition 2.3(ii)], we have that for any y, the function θ �→ ProxθG(y)
is such that

(B.1) ‖ProxθG(y)− Proxθ′G(y)‖ � |θ − θ′| ‖y − ProxθG(y)‖ /θ.
Now, we have

(B.2) θG(y) = γC/θ(y) = σθC◦(y),

where the first equality follows from positive homogeneity (Lemma 2(i)) and Definition 2, and
the second equality is a consequence of Lemma 2(iv) and polarity.

Applying Moreau’s identity, we get that

y − ProxθG(y) = y − ProxσθC◦ (y) = ProjθC◦(y).

By virtue of Lemma 2(iii), there exists a constant L2 > 0, independent of y, such that8

‖y − ProxθG(y)‖ = ‖ProjθC◦(y)‖ � L2γC◦
(
ProjθC◦(y)

)
.

Applying (B.2) to γC◦ , we get

(B.3) ‖y − ProxθG(y)‖ � L2θγθC◦
(
ProjθC◦(y)

)
� L2θ,

where the last inequality follows from Lemma 2(ii) since obviously ProjθC◦(y) ∈ θC◦. Com-
bining (B.1) and (B.3), we get the desired result.

Corollary 5. Let Ci, i = 1, . . . ,m, be compact convex sets containing the origin as an
interior point, i.e., convex bodies, and let Gi = γCi be the associated gauges. For any θ, θ′ ∈
]0,+∞[m, and any y ∈ Y, the following holds:∥∥∥Proxθ1G1 ◦ · · · ◦ ProxθmGm(y)− Proxθ′1G1

◦ · · · ◦ Proxθ′mGm(y)
∥∥∥ �
√
mmax

i
L2,i

∥∥θ − θ′∥∥ ,
where L2,i > 0 is the same Lipschitz constant associated to Ci given in Proposition 5.

Proof. Using repeatedly the triangle inequality, Proposition 5, and the fact that the map-
ping y �→ ProxθiGi

(y) is 1-Lipschitz [57], we obtain∥∥∥Proxθ1G1 ◦ · · · ◦ ProxθmGm(y)− Proxθ′1G1
◦ · · · ◦ Proxθ′mGm(y)

∥∥∥
=
∥∥∥(Proxθ1G1 ◦Proxθ2G2 ◦ · · · ◦ ProxθmGm(y)− Proxθ′1G1

◦Proxθ2G2 ◦ · · · ◦ ProxθmGm(y)
)

+
(
Proxθ′1G1

◦Proxθ2G2 ◦ · · · ◦ ProxθmGm(y)− Proxθ′1G1
◦Proxθ′2G2

◦ · · · ◦ ProxθmGm(y)
) ∥∥∥

� L2,1|θ1 − θ′1|+
∥∥∥Proxθ2G2 ◦ · · · ◦ ProxθmGm(y)− Proxθ′2G2

◦ · · · ◦ Proxθ′mGm(y)
∥∥∥

�
∑
i

L2,i|θi − θ′i| � max
i
L2,i

∥∥θ − θ′∥∥
1
�
√
mmax

i
L2,i

∥∥θ − θ′∥∥
8The constant L2 can be given explicitly by bounding from below the support function of the inscribed

ellipsoid of maximal volume, the so-called John ellipsoid. For symmetric convex bodies, L2 can be made tightest
possible. For simplicity, we avoid delving into these technicalities here.
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as claimed.

Appendix C. Proofs of section 4.

Proof of Proposition 3. Since (4.1) is the composition of Lipschitz continuous mappings
of y by assumption, applying the chain rule [29, Theorem 4 and Remark, section 4.2.2] gives
the formula.

Proof of Proposition 4. The argument is exactly the same as that for Proposition 3,
replacing y by θ where the required Lipschitz continuity assumptions with respect to θ hold
true.

Proof of Corollary 1. We first notice that D(�)
a = (D(�)

ξ ,D(�)
z1 , . . . ,D(�)

zQ), where D(�)
ξ =

∂1ξ
(�)(y, θ)[δ] and D(�)

zk = ∂1z
(�)
k (y, θ)[δ]. Hence, applying again the chain rule [29, Theorem 4

and Remark, section 4.2.2] to the sequence of iterates and using the facts that all involved

mappings are Lipschitz and D(�)
x = Γ

(�)
a (D(�)

a ) = D(�)
ξ conclude the proof.

Proof of Corollary 2. Observe that J (�)
a = (J (�)

ξ ,J (�)
z1 , . . . ,J (�)

zQ ), where J (�)
ξ = ∂2ξ

(�)(y, θ)

and J (�)
zk = ∂2z

(�)
k (y, θ). Arguing as in the proof of Corollary 1, now using that J (�)

x =

Γ
(�)
a (J (�)

a ) = J (�)
ξ yields the formula.

Proof of Corollary 3. Argue as before, but now with D(�)
a = (D(�)

ξ ,D(�)
x̃ , . . . ,D(�)

u ), where

D(�)
ξ = ∂1ξ

(�)(y, θ)[δ], D(�)
x̃ = ∂1x̃

(�)(y, θ)[δ], D(�)
u = ∂1u

(�)(y, θ)[δ], and D(�)
x = Γ

(�)
a (D(�)

a ) = D(�)
ξ .

The chain rule completes the proof.

Proof of Corollary 4. Argue as before, but now with J (�)
a = (J (�)

ξ ,J (�)
x̃ , . . . ,J (�)

u ), where

J (�)
ξ = ∂1ξ

(�)(y, θ), J (�)
x̃ = ∂1x̃

(�)(y, θ), J (�)
u = ∂1u

(�)(y, θ), and J (�)
x = Γ

(�)
a (J (�)

a ) = J (�)
ξ . The

chain rule completes the proof.
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