
UNBIASED RISK ESTIMATION FOR SPARSE ANALYSIS REGULARIZATION

Charles-Alban Deledalle, Samuel Vaiter, Gabriel Peyré
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ABSTRACT
In this paper, we propose a rigorous derivation of the expres-

sion of the projected Generalized Stein Unbiased Risk Es-

timator (GSURE) for the estimation of the (projected) risk

associated to regularized ill-posed linear inverse problems us-

ing sparsity-promoting �1 penalty. The projected GSURE is

an unbiased estimator of the recovery risk on the vector pro-

jected on the orthogonal of the degradation operator kernel.

Our framework can handle many well-known regularizations

including sparse synthesis- (e.g. wavelet) and analysis-type

priors (e.g. total variation). A distinctive novelty of this work

is that, unlike previously proposed �1 risk estimators, we have

a closed-form expression that can be implemented efficiently

once the solution of the inverse problem is computed. To

support our claims, numerical examples on ill-posed inverse

problems with analysis and synthesis regularizations are re-

ported where our GSURE estimates are used to tune the reg-

ularization parameter.

Index Terms— Sparsity, analysis regularization, inverse

problems, risk estimator, GSURE.

1. INTRODUCTION

Problem statement. Many problems in image processing

can be cast as recovering an image f0 ∈ R
N from the forward

observation model

y = Φ0f0 + w, (1)

where it is assumed throughout that w ∼ N (0, σ2IdP ), and

Φ0 : RN → R
P is a bounded linear operator which is typ-

ically ill-behaved since it models an acquisition process that

entails loss of information so that P � N . Typical cases cov-

ered by the above degradation model are entry-wise masking

(inpainting), convolution (acquisition blur), Radon transform

(tomography) or a random sensing matrix (compressed sens-

ing).

Linear inverse problems are among the most active fields

in signal and image processing. In order to regularize them

and reduce the space of candidate solutions, one has to incor-

porate some prior knowledge on the typical structure of the
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original signal or image f0. This prior information accounts

for the smoothness of the solution and can range from the

uniform smoothness assumption to more complex geometri-

cal priors. To capture the complexity of image structures, we

have witnessed a great deal of investigation where researchers

spanning a wide range of viewpoints have advocated the use

of sparsity in inverse problems.

Sparse regularization. Embarking from the degradation

model (1), a popular approach to find sparse solutions to

linear inverse problems, is to solve the following convex but

non-smooth problem

x� ∈ argmin
x∈RQ

1

2
||y − Φx||2 + λ||D∗x||1, (P(y))

where Φ = Φ0Ψ, Ψ : RQ �→ R
N is a redundant synthesis

dictionary, that maps coefficients x to images f = Ψx, D∗

is an analysis linear operator where A∗ denotes the adjoint

matrix of A and λ > 0 is the regularization parameter.

This formulation encompasses several well-known prob-

lems in sparse recovery:

• Synthesis-type regularization, e.g. [1, 2]: in which case

D∗ = IdQ, and we are seeking a sparse set of coeffi-

cients x� and the solution signal or image is synthesized

from these representation coefficients f� = Ψx�.

• Analysis-type regularization, e.g. [3, 4]: which seeks a

signal or image f whose coefficients D∗f are sparse,

with Ψ = IdN . Some problems are inherently of

analysis-type such as the total variation regularization

where D∗ = ∇ : RN �→ R
2N computes a discretized

gradient of the image (a 2-D vector field) [5]. Another

example of analysis regularization is the Fused Lasso

[6], where D is the concatenation of a 1-D discrete

derivative and the (weighted) identity.

(P(y)) is versatile enough to allow hybridization of analysis

and synthesis regularizations, e.g. to structure the synthesis

coefficients in Ψ in a way that their gradient is sparse.

Solving (P(y)). Although it is convex, solving (P(y)) is

rather challenging given its non-smoothness. Moreover, the

�1-norm is composed with D∗ and therefore the proximity
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operator is not computable in closed-form for general D.

This precludes the use of popular iterative soft-thresholding

(actually the forward-backward proximal splitting) without

sub-iterating. We therefore appeal to a more elaborate primal-

dual splitting algorithm originating from the non-smooth

optimization realm. For instance, we here use the relaxed

Arrow-Hurwicz algorithm as revitalized in [7]. This algo-

rithm achieves full splitting where all operators are applied

separately: proximity operators of 1
2 || · ||2 and λ|| · ||1, Φ, D

and their adjoints. See [4] for more details.

1.1. Previous work

Analysis vs synthesis regularization. It is known that in

general, analysis and synthesis prior formulations can differ

significantly, unless Ψ = IdN and D is orthogonal or vice

versa. Some insights can be found in [3] on the relation and

distinction between analysis and synthesis-based �1-sparsity

regularizations. Moreover, there has been a recent wave of

interest in the theoretical guarantees of analysis sparse recov-

ery, see e.g. [4] and references therein.

Degrees of freedom (DOF). Degrees of freedom (DOF) is

a familiar phrase in statistics. DOF is often used to quantify

the complexity of a statistical estimation procedure. How-

ever, there is no exact correspondence between the DOF and

the number of parameters in the model. The SURE theory [8]

gives a rigorous definition of DOF for any estimation proce-

dure including non-linear ones.

For synthesis �1 regularization, an unbiased estimate of

the DOF was established in the overdetermined case in [9],

and extended to the general setting in [10]. An unbiased esti-

mate of the DOF for analysis �1 regularization is given in [4],

see also [11].

Risk estimation. The DOF plays an important role in

model validation and selection, and its unbiased estimates

provide unbiased estimates of the risk on the prediction Φ0f
�

through the SURE [8]. These unbiased estimates of the

risk can serve as a basis for automatic ways to choose the

parameters of the reconstruction algorithm, e.g. λ in (P(y)).

For instance, the SURE has been extensively used in

sparse denoising and deconvolution, e.g. [12, 13]. Recently,

a generalization of the SURE (GSURE) [14] has been de-

veloped for noise models within the multivariate canonical

exponential family. This allows to estimate the risk on a

projected version of f�. Indeed, in the scenario where Φ0 is

rank-deficient or redundant, the GSURE can at best estimate

the risk in ker(Φ0)
⊥ = Im(Φ∗

0). The projected GSURE has

been applied to (non-iterative) wavelet-vaguelet deconvolu-

tion [15], and to sparse synthesis regularization [16, 17] with

the iterative soft-thresholding algorithm.

1.2. Contributions

The main contribution of this paper is a rigorous deriva-

tion of the exact expression of the projected GSURE associ-

ated to (P(y)). To this end, we capitalize on our recent work

on local affine parameterization of solutions to (P(y)) [4].

Unlike previously proposed projected GSURE computations

in [16, 17], we have a closed-form expression that can be im-

plemented efficiently once the solution of the inverse problem

is computed. Moreover, our framework elegantly covers in a

unified way synthesis and analysis sparse regularizations.

2. SPARSE ANALYSIS SENSITIVITY

Preliminaries. Analysis regularization enforces that sparse

solutions of (P(y)) belong to some co-space GJ = ker(D∗
J)

where J is the co-support of a solution x�

J = Ic where I = supp(D∗x�).

To be able to study the local sensitivity of the solution w.r.t. y,

it is important that the forward operator Φ = Φ0Ψ is well-

behaved over the sparsity enforcing space GJ . This is formal-

ized through the assumption

KerΦ ∩ GJ = {0}. (HJ )

When (HJ ) holds we define the following mapping

A[J] = U (U∗Φ∗ΦU)
−1

U∗.

where U is a matrix whose columns form a basis of GJ .

Local sensitivity. For λ > 0, there exists a finite union

of hyperplanes Hλ ⊂ R
Q, such that the following theorem

holds.

Theorem 1. Let y 	∈ Hλ and let x� be a solution of (P(y)).
Let I = Supp(D∗x�) and s = sign(D∗x�). Suppose that
(HJ ) holds. Define

∀ȳ ∈ R
Q, x̂(ȳ) = A[J]Φ∗ȳ − λA[J]DIsI .

There exists an open neighborhood B of y such that for every
ȳ ∈ B, x̂(ȳ) is a solution of (P(ȳ)).

The exact definition of Hλ is quite technical, and for ob-

vious space limitation, we refer to [4] for details and a proof.

3. SURE RISK ESTIMATOR

Projected GSURE. In the following, we denote Π the

orthogonal projector on ker(Φ0)
⊥ = Im(Φ∗

0), where it

is assumed that ker(Φ0) 	= {0}. This projector is Π =
Φ∗

0(Φ0Φ
∗
0)

+Φ0, where + stands for the Moore-Penrose

pseudo-inverse.
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We first notice that by strict convexity of the quadratic part

w.r.t. Φx, even if (P(y)) admits several solutions x� (that are

obviously function of y), all f� = Ψx� share the same image

under Π. We can thus define unambiguously μ(y) = Πf� as

a (single-valued) mapping of the observation y.

Denoting μ0(y) = Φ∗
0(Φ0Φ

∗
0)

+y the maximum likeli-

hood estimator, the projected GSURE is defined following

[15] as:

GSURE(y) =||μ0(y)− μ(y)||2 − σ2 tr((Φ0Φ
∗
0)

+)

+ 2σ2 divΦ∗
0y
(μ(y)),

where divΦ∗
0y
(μ(y)) is the divergence of μ(·) w.r.t. Φ∗

0y.

Note that this estimator is introduced in [15] in the context of

wavelet-vaguelet deconvolution, but it is easily seen to hold

for arbitrary inverse problems and regularizations as long as

the mapping μ is weakly differentiable in the sense of [8].

Note also that up to a constant, which does not depends on λ,

our definition of GSURE is equivalent to the one introduced

in [14, 16].

Theorem 1 immediately implies our main result, that al-

lows to compute the GSURE.

Theorem 2. Except on a subset of RN of measure zero, the
mapping y �→ μ(y) is C∞, and

divΦ∗
0y
(μ(y)) = tr

(
ΠΨA[J]Ψ∗

)
.

A direct consequence of this result is that the above ex-

pression of the GSURE is an unbiased estimate of the risk on

Im(Φ∗), i.e.

Ew(||Πf0 − μ(y)||2) = Ew(GSURE(y)) .

Numerical computation of the GSURE. The following

proposition gives a way to compute efficiently the divergence

term which boils down to solving a linear system.

Proposition 1. One has

tr
(
ΠΨA[J]Ψ∗

)
= EZ(〈Ψν(Z), μ0(Z)〉) (2)

where Z ∼ N (0, IdP ), and where for any z ∈ R
P , ν = ν(z)

solves the following linear system
(
Φ∗Φ DJ

D∗
J 0

)(
ν
ν̃

)
=

(
Φ∗z
0

)
. (3)

Proof. We have

tr
(
ΠΨA[J]Ψ∗

)
= tr

(
ΦA[J]Ψ∗Φ∗

0(Φ0Φ
∗
0)

+
)
.

Hence denoting ν(z) = A[J]Φ∗z, and using the fact that for

any matrix U , tr(U) = EZ(〈Z, UZ〉), we arrive at (2).

We then use the fact that A[J]Φ∗, the inverse of Φ on GJ ,

is the mapping that solves the following linearly constrained

least-squares problem

A[J]Φ∗z = argmin
h∈GJ

||Φh− z||2.

The closed-form solution to this problem is given by (3).

In practice, the empirical mean estimator is replaced for

the expectation in (2), hence giving

1

k

k∑
i=1

〈Ψν(zi), μ0(zi)〉 WLLN−→ tr
(
ΠΨA[J]Ψ∗

)
,

for k realizations zi of Z. The numerical computation of

ν(zi) is achieved by solving the symmetric linear system (3)

with a fast conjugate gradient solver.

4. NUMERICAL ILLUSTRATIONS

In this section, we exemplify the usefulness of our

GSURE estimator which can serve as a basis for automati-

cally tuning the value of λ. This is achieved by computing,

from a single realization of the noise w, the parameter that

minimizes the value of GSURE(y) for y = Φf0 + w.

Sparse Synthesis Regularization In this example, Φ0 is

the (circulant) convolution operator associated to a Gaussian

kernel of width 2 pixels where N = 512× 512, and the input

PSNR is set to 27.78 dB. The regularization is of synthesis-

type (D∗ = IdQ) in an orthogonal wavelet dictionary Ψ.

Fig. 1(a) depicts the projected risk and its GSURE estimate

with k = 5 as a function of λ. The curves appear indeed

unimodal and coincide even with k = 5 and a single noise

realization. Consequently, GSURE provides a high-quality

estimate of λ minimizing the risk. A close in on the central

area of the degraded and deconvolved (using the optimal λ)

images is shown in Fig. 1(b)-(c) for visual inspection of the

restoration quality.

Total Variation Regularization We consider a compressed

sensing setting where Φ0 is a random partial DCT measure-

ment matrix with an under-sampling ratio P/N = 0.5 where

N = 256 × 256, and the PSNR is set to 27.50 dB. The reg-

ularization is of analysis-type, anisotropic total variation reg-

ularization (D∗ = ∇, Ψ = IdN ). The GSURE is estimated

with k = 1. The results observed on the deconvolution exam-

ple are confirmed in this compressed sensing experiment both

visually and qualitatively, see Fig. 2.

5. CONCLUSION

We proposed a grounded and computationally efficient

framework to unbiasedly estimate the projected risk in �1-

regularized inverse problems handling both synthesis and
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Fig. 1. Deconvolution problem (with a Gaussian PSF) with wavelet

synthesis regularization, and σ = 10. (a) Projected risk and its

GSURE estimate1 using k = 5 random realizations. (b) y. (c)

μ(y) at the optimal λ.

analysis sparsity priors. Its usefulness has been illustrated on

automatic choice of the regularization parameter for several

inverse problem instances. The extension of this approach

to other sparsity-promoting penalties, e.g. mixed norms for

block structured sparsity, is currently under investigation.1
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