
J Math Imaging Vis
DOI 10.1007/s10851-017-0724-6

Accelerated Alternating Descent Methods for Dykstra-Like
Problems

Antonin Chambolle1 · Pauline Tan1 · Samuel Vaiter2

Received: 12 July 2016 / Accepted: 4 March 2017
© Springer Science+Business Media New York 2017

Abstract This paper extends recent results by the first
author and T. Pock (ICG, TU Graz, Austria) on the accel-
eration of alternating minimization techniques for quadratic
plus nonsmooth objectives depending on two variables.
We discuss here the strongly convex situation, and how
‘fast’ methods can be derived by adapting the overrelax-
ation strategy of Nesterov for projected gradient descent.
We also investigate slightly more general alternating descent
methods, where several descent steps in each variable are
alternatively performed.

Keywords Alternating minimizations · Block descent algo-
rithms · Accelerated methods · Total variation minimization

1 Introduction

This paper addresses the acceleration of alternating mini-
mizations or descentmethods for elementary problemswhich
involve two variables coupled by a quadratic penalization.
Such problems arise for instance in the computation of the
proximity operators of sums of simple functions, for which
in some setting (as we illustrate in an experimental section) it
might be beneficial to perform such a splitting which decom-
poses the problem into tiny parallel subproblems, rather

B Antonin Chambolle
antonin.chambolle@cmap.polytechnique.fr

Pauline Tan
pauline.tan@cmap.polytechnique.fr

Samuel Vaiter
samuel.vaiter@u-bourgogne.fr

1 CMAP, CNRS, Ecole Polytechnique, 91128 Palaiseau, France

2 IMB, CNRS, Université de Bourgogne, 9 Ave Alain Savary,
21000 Dijon, France

than tackle the global problem by an accelerated descent or
primal-dual algorithm such as [3,9,10,19].

The present paper is a follow-up of [11] where this issue
was already investigated, and a few contexts where accelera-
tion was possible were investigated. In this paper, we extend
these results in twodirections: first,we consider strongly con-
vex objectives and show how one can obtain nearly optimal
linear convergence rates (in the sense of the lower bounds
of [18,19]) in the framework of alternating minimizations or
descent. The case ofminimizations is particular, as it can also
be reduced into a forward–backward splittingmethod applied
to auxiliary functions, and we could just refer to [12,19]
where a rate analysis is performed; however, it is roughly
equivalent to perform an analysis adapted to the alternating
minimizations algorithm.

As far as alternating descent methods are concerned, on
the other hand, the problem does not boil down to a more
standard structure, and the analysis is quite tedious (except
if only one step of descent is performed at each step, as was
studied in [11]). We perform this analysis in details; it leads
however to algorithms which in theory would require to keep
in memory a lot of intermediate states. We check experimen-
tally that one can overlook these issues in implementations
and still obtain good convergence properties. This is some-
thing we are unable to explain at this time.

Let us introduce nowmore precisely our problem and how
it can be numerically tackled.

1.1 The Problem

We aim at solving convexminimization problems of the form

min
x∈X
y∈Y

E(x, y) := f (x) + g(y) + 1

2
‖Ax + By‖2 (1)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-017-0724-6&domain=pdf
http://orcid.org/0000-0002-9465-4659

J Math Imaging Vis

where f : X → R ∪ {+∞} and g : Y → R ∪ {+∞}
are two convex, proper, lower-semicontinuous (lsc) func-
tions, and A : X → Z , B : Y → Z two bounded linear
operators. In the whole paper, X ,Y,Z should be thought
as finite-dimensional Euclidean spaces, although the proofs
carry on easily to the Hilbertian setting. These problems nat-
urally arise in the computation of the ‘proximity operator’ of
functions of the form z �→ f (Kz):

min
z

f (Kz) + 1

2τ
‖z − z0‖2

(given a point z0 and τ > 0), when f can be in turn split
into two functions f1(K1z) + f2(K2z). Examples will be
provided in Sect. 7. The idea of Dykstra’s algorithm [5] (see
also [13, Ex 10.11]) is to perform alternating minimizations
on a dual problem: one writes (assuming formally that the
min/max can be exchanged, which is generally true under
quite mild assumptions)

min
z

f1(K1z) + f2(K2z) + 1

2τ
‖z − z0‖2

= min
z

sup
x1,x2

〈x1, K1z〉 + 〈x2, K2z〉

− f ∗
1 (x1) − f ∗

2 (x2) + 1

2τ
‖z − z0‖2

= max
x1,x2

inf
z

〈
K ∗
1 x1 + K ∗

2 x2, z
〉

+ 1

2τ
‖z − z0‖2 − f ∗

1 (x1) − f ∗
2 (x2)

= max
x1,x2

〈
K ∗
1 x1 + K ∗

2 x2, z0
〉

− f ∗
1 (x1) − f ∗

2 (x2) − τ

2

∥∥K ∗
1 x1 + K ∗

2 x2
∥∥2 ,

which leads to a problem in form (1). Then, one can simply
alternatively minimize the problem with respect to x1 and
then x2, provided the computations are tractable. Although
it can be found in some cases, and for some geometries, that
this method is efficient [16], in general its convergence rate
can be quite poor [2,4]. In [11], it is observed that alternat-
ing minimization schemes on (1) can be accelerated using a
FISTA-type overrelaxation [3] (see also [20] where a similar
observation has been recently made). It is observed as well
that this is still true that the exact minimizations are replaced
with one step of a proximal-type descent for each variable. Of
course, one should notice that such a problem is of the form
smooth+nonsmooth minimization (in the variable (x, y)),
so it is obvious that it can be tackled with an accelerated
first-order method as in [3,19], and the techniques studied
in [11] and in this note will certainly not improve the known
rates of accelerated methods by an order of magnitude, but
only the constants which appear in these rates. This was
explained already in [11] and is confirmed experimentally:
see in Table1 the comparison between the ‘FISTA’ imple-
mentation and the alternatingminimizations or descents. The

real speedup we can hope for lies mostly in the fact that, in
some applications, we can split our problems into subprob-
lems which are in turn split into many independent small
dimensional problems, which one can hope to solve (almost)
exactly, and in parallel.

In practice, it can be observed experimentally that per-
forming several steps of descent in each variable (before
turning to the other variable) improves the performances
(which is to be expected, as it gets closer to performing an
exact minimization). One of the goals of this paper is to try
to support this experimental observation, by showing that
acceleration is still possible in this setting and leads to com-
parable rates. Another goal is to extend the analysis in [11] to
strongly convex objectives, showing again that one can obtain
in these cases a descent rate similar to the rate of a standard
accelerated method [19]. As an application, we show how to
implement fast parallel solvers for the proximity operator of
the total variation, with or without regularization, for gray
and color images.

This paper is divided as follows: in the next section we
introduce thegeneral typeof updatesweare considering, con-
sisting in one or several minimization steps of the objective
with respect to one variable, the other being frozen.Wederive
various sufficient descent rules for this technique, depending
on the properties of the functions.

Then in Sect. 3 we discuss the acceleration of alternating
minimizations in the strongly convex case. Since alternating
minimizations are a variant of forward–backward splitting
methods, it is clear that one can expect good convergence
rates by adapting standard methods [3,12,19]. This is what
we establish in Theorem 1, extending a result of [11] in the
nonstrongly convex case.

In the following two sections, we extend this result to
alternating descent with several descent steps. We first dis-
cuss the nonstrongly convex case (Sect. 4.1) and then the
strongly convex situation (Sect. 5). However, except when
only one step of descent is performed in each variable (case
K = L = 1, already discussed in [11]), the algorithmswhich
are found are not very practical (as they require the introduc-
tion of too many auxiliary variable, while experiments seem
to show that this is not really needed to obtain good conver-
gence properties, cf Sect. 7.4.1).

Eventually, in Sect. 7, we discuss our application of these
results, as mentioned before, to the computation of the prox-
imity operator of a smoothed version of the total variation,
for both scalar and vectorial (color) images. This approxima-
tion is shown to be a correct approximation of the isotropic
total variation in an ‘Appendix’ (Theorem 4).

1.2 Main Assumptions

We will assume here that the functions f and g in (1) are
convex andpossibly strongly convex, in, respectively,metrics

123

J Math Imaging Vis

defined by positive semidefinite matrices F and G: for all
x, x ′ and y, y′, and for all p ∈ ∂ f (x ′), q ∈ ∂g(y′)

f (x) ≥ f (x ′) + 〈
p, x − x ′〉 + 1

2‖x − x ′‖2F ,

g(y) ≥ g(y′) + 〈
q, y − y′〉 + 1

2‖y − y′‖2G ,

where here F andG are (possibly vanishing) symmetric pos-
itive semidefinite operators.

2 Sufficient Descent Rules

2.1 General Updates

Wewill first consider the following general updates for x and
y: given (x̄, ȳ, ȳ′) ∈ X × Y2, the metrics M, N and integer
numbers K , L ≥ 1, we obtain (x̂, ŷ, x̂ ′, ŷ′) = TK ,L(x̄, ȳ, ȳ′)
by letting x̂0 = x̄ , ŷ0 = ȳ, and solving:

x̂k+1∈ arg min
x∈X

f (x) + 1
2‖Ax + B ȳ′‖2

+ 1
2‖x − x̂k‖2M , k = 0, . . . , K − 1, (2)

x̂ = x̂K , x̂ ′ = 1

K

K∑

k=1

x̂k, (3)

ŷl+1∈ argmin
y∈Y

g(y) + 1
2‖Ax̂ ′ + By‖2

+ 1
2‖y − ŷl‖2N , l = 0, . . . , L − 1, (4)

ŷ = ŷL , ŷ′ = 1

L

L∑

l=1

ŷl . (5)

A basic observation is that, using the strong convexity of
the norms and possibly of f , for all x ∈ X ,

f (x) + 1
2‖Ax + B ȳ′‖2 + 1

2‖x − x̂k‖2M
≥ f (x̂k+1) + 1

2‖Ax̂k+1 + B ȳ′‖2 + 1
2‖x̂k+1 − x̂k‖2M

+ 1
2‖x − x̂k+1‖2A∗A+M+F (6)

and

g(y) + 1
2‖Ax̂ ′ + By‖2 + 1

2‖y − ŷl‖2N
≥ g(ŷl+1) + 1

2‖Ax̂ ′ + B ŷl+1‖2
+ 1

2‖ŷl+1 − ŷl‖2N + 1
2‖y − ŷl+1‖2B∗B+N+G (7)

If we sum (6) from k = 0 to K − 1, we obtain (remember
x̄ = x̂0)

K f (x) + K
2 ‖Ax + B ȳ′‖2 + 1

2‖x − x̄‖2M

≥
K∑

k=1

(
f (x̂k) + 1

2‖Ax̂k + B ȳ′‖2 + 1
2‖x̂k − x̂k−1‖2M

+ 1
2‖x − x̂k‖2A∗A+F

)
+ 1

2‖x − x̂‖2M .

Dividing by K and using the convexity of f and the norms,
it follows:

f (x) + 1
2‖Ax + B ȳ′‖2 + 1

2K ‖x − x̄‖2M
≥ f (x̂ ′) + 1

2‖Ax̂ ′ + B ȳ′‖2
+ 1

2‖x − x̂ ′‖2A∗A+F + 1
2K ‖x − x̂‖2M . (8)

Remark It is maybe suboptimal to do so, as we do not exploit
the fact that letting x = x̂ k in (6) yields

f (x̂k) + 1
2‖Ax̂k + B ȳ′‖2 ≥ f (x̂k+1) + 1

2‖Ax̂k+1 + B ȳ′‖2
+ 1

2‖x̂k+1 − x̂k‖2A∗A+2M+F ,

which would allow to evaluate the first two terms in the
right-hand side of (8) at x̂ rather than x̂ ′, yielding a smaller
right-hand side. However, we need later on to exploit cancel-
lations between the terms involving the norm ‖·‖2A∗A, which
we cannot do anymore if we improve the inequality in this
way.

Similarly, one finds

g(y) + 1
2‖Ax̂ ′ + By‖2 + 1

2L ‖y − ȳ‖2N
≥ g(ŷ′) + 1

2‖Ax̂ ′ + B ŷ′‖2
+ 1

2‖y − ŷ′‖2B∗B+G + 1
2L ‖y − ŷ‖2N . (9)

We observe again that one also has, for l = 0, . . . , L − 1,

g(ŷl) + 1
2‖Ax̂ ′ + B ŷl‖2 ≥ g(ŷl+1) + 1

2‖Ax̂ ′ + B ŷl+1‖2
+ 1

2‖ŷl+1 − ŷl‖2B∗B+2N+G,

so that in particular, recalling ŷ = ŷL ,

1

L

L∑

l=1

g(ŷl) + 1
2‖Ax̂ ′ + B ŷl‖2 ≥ g(ŷ) + 1

2‖Ax̂ ′ + B ŷ‖2

(plus a term controlling the differences, which is hard to
exploit), so that one also can write

g(y) + 1
2‖Ax̂ ′ + By‖2 + 1

2L ‖y − ȳ‖2N
≥ g(ŷ) + 1

2‖Ax̂ ′ + B ŷ‖2
+ 1

2‖y − ŷ′‖2B∗B+G + 1
2L ‖y − ŷ‖2N . (10)

Summing (8) and (9), we obtain:

E(x, y) + 1
2K ‖x − x̄‖2M + 1

2L ‖y − ȳ‖2N
≥ E(x̂ ′, ŷ′) + 1

2K ‖x − x̂‖2M + 1
2L ‖y − ŷ‖2N

+ 1
2‖x − x̂ ′‖2A∗A+F + 1

2‖y − ŷ′‖2B∗B+G

123

J Math Imaging Vis

+ 1
2‖Ax + By‖2 − 1

2‖Ax + B ȳ′‖2
+ 1

2‖Ax̂ ′ + B ȳ′‖2 − 1
2‖Ax̂ ′ + By‖2.

Now we observe that

1
2‖Ax + By‖2 − 1

2‖Ax + B ȳ′‖2
+ 1

2‖Ax̂ ′ + B ȳ′‖2 − 1
2‖Ax̂ ′ + By‖2

= 〈
A(x − x̂ ′), B(y − ȳ′)

〉 ≥ − 1
2‖A(x − x̂ ′)‖2

− 1
2‖B(y − ȳ′)‖2,

and we deduce

E(x, y) + 1
2K ‖x − x̄‖2M + 1

2L ‖y − ȳ‖2N
+ 1

2‖y − ȳ′‖2B∗B

≥ E(x̂ ′, ŷ′) + 1
2K ‖x − x̂‖2M + 1

2L ‖y − ŷ‖2N
+ 1

2‖x − x̂ ′‖2F + 1
2‖y − ŷ′‖2B∗B+G .

Had we used (10) instead of (9), we would have rather
obtained, in the same way:

E(x, y) + 1
2K ‖x − x̄‖2M

+ 1
2L ‖y − ȳ‖2N + 1

2‖y − ȳ′‖2B∗B
≥ E(x̂ ′, ŷ) + 1

2K ‖x − x̂‖2M + 1
2L ‖y − ŷ‖2N

+ 1
2‖x − x̂ ′‖2F + 1

2‖y − ŷ′‖2B∗B+G .

In general, we will consider a new point (x̃, ỹ) such that
E(x̃, ỹ) ≤ E(x̂ ′, ŷ′) (so one could have x̃ = x̂ ′, ỹ = ŷ), and
use the general sufficient descent rule:

E(x, y) + 1
2K ‖x − x̄‖2M + 1

2L ‖y − ȳ‖2N
+ 1

2‖y − ȳ′‖2B∗B

≥ E(x̃, ỹ) + 1
2K ‖x − x̂‖2M + 1

2L ‖y − ŷ‖2N
+ 1

2‖x − x̂ ′‖2F + 1
2‖y − ŷ′‖2B∗B+G . (11)

2.2 The Case of Alternating Minimizations

The case of alternating minimizations, discussed in [11], is
substantially simpler. It corresponds to having M = N = 0,
K = L = 1; in particular the points x̄, ȳ are not used, and
(x̂ ′, ŷ′) = (x̂, ŷ). To simplify, in this case, we drop the prime
and denote ȳ the initial point ȳ′. Equation (11) becomes

E(x, y) + 1
2‖y − ȳ‖2B∗B ≥ E(x̃, ỹ)

+ 1
2‖x − x̂‖2F + 1

2‖y − ŷ‖2B∗B+G . (12)

In general, in that case, the most natural choice for (x̃, ỹ) is
of course the point (x̂, ŷ), as by construction it has the lowest
energy encountered so far.

2.3 A Further Improvement

Now, we use the ‘FISTA’ trick which consists, given (xk, yk)
a current iterate, in replacing (x, y) in (11) with points of
the form (x + (t − 1)xk)/t , (y + (t − 1)yk)/t , for t ≥ 1.
We let also (xk+1, yk+1) = (x̃, ỹ), (x̂ ′k+1, ŷ′k+1) = (x̂ ′, ŷ′),
(x̂ k+1, ŷk+1) = (x̂, ŷ), and, as well, (x̄ k, ȳk) = (x̄, ȳ), ȳ′k =
ȳ′. It follows, after a multiplication by t2

t (t − 1)
(
E
(
xk , yk

)
− E(x, y)

)
− t−1

2

(
‖x − xk‖2F + ‖y − yk‖2G

+‖A(x − xk) + B(y − yk)‖2
)

+ 1
2K ‖x + (t − 1)xk − t x̄ k‖2M

+ 1
2L ‖y + (t − 1)yk − t ȳk‖2N + 1

2‖y + (t − 1)yk − t ȳ′k‖2B∗B

≥ t2
(
E
(
xk+1, yk+1

)
− E(x, y)

)
+ 1

2K ‖x + (t − 1)xk − t x̂ k+1‖2M
+ 1

2L ‖y + (t − 1)yk − t ŷk+1‖2N + 1
2‖x + (t − 1)xk − t x̂ ′k+1‖2F

+ 1
2‖y + (t − 1)yk − t ŷ′k+1‖2B∗B+G . (13)

In the case of alternating minimizations, this simplifies a lot.
Assuming that (xk+1, yk+1) = (x̃, ỹ) = (x̂, ŷ), one deduces
from (12) that

t (t − 1)
(
E
(
xk, yk

)
− E(x, y)

)

− t−1
2

(
‖x − xk‖2F

+‖y − yk‖2G + ‖A(x − xk) + B(y − yk)‖2
)

+ 1
2‖y + (t − 1)yk − t ȳk‖2B∗B

≥ t2
(
E
(
xk+1, yk+1

)
− E(x, y)

)

+ 1
2‖x + (t − 1)xk − t xk+1‖2F

+ 1
2‖y + (t − 1)yk − t yk+1‖2B∗B+G . (14)

The convergence rates will be derived from these main
inequalities.

3 Accelerated Alternating Minimization

In [11], it is shown (in case F = G = 0) how one
can derive an accelerated algorithm, in the spirit of the
‘FISTA’ [3] method, from inequality (14). In this section,
we extend these results to the strongly convex case, yielding
better (linear) rates. As alternating minimizations for two
variables are essentially equivalent to a forward–backward
algorithm [11,13], it is clear that an acceleration in the spirit
of [19, Thm. 2.2.2]will provide efficient convergence rates.A
derivation from an equality similar to (14) is provided in [12,
AppendixB].Weprovide here an adaption of that proof to our
particular situation (only the parameters are slightly differ-
ing, so that we will sketch most of the arguments). We make
the assumption that for some nonnegative parameters γ, δ,

123

J Math Imaging Vis

G ≥ γ B∗B, F ≥ δA∗A, (15)

and we assume γ +δ > 0. This assumption, which may look
strange at first glance, expresses that g and/or f are, respec-
tively, strongly convex with respect to the variables By and
Ax , which appear in the quadratic term. They are obviously
satisfied if g, f are strongly convex in the classical sense.
Observe that

‖x − xk‖2F + ‖y − yk‖2G + ‖A(x − xk) + B(y − yk)‖2
≥ (γ + 1)‖y − yk‖2B∗B

+ (δ + 1)‖x − xk‖2A∗A + 2
〈
A
(
x − xk

)
, B

(
y − yk

)〉

≥
(

γ + δ

1 + δ

)
‖y − yk‖2B∗B,

hence, denoting γ ′ = γ +δ/(1+δ) > 0, it follows from (14)
that

t (t − 1)
(
E
(
xk, yk

)
− E(x, y)

)
− γ ′ t−1

2 ‖y − yk‖2B∗B

+ 1
2‖y + (t − 1)yk − t ȳk‖2B∗B

≥ t2
(
E(xk+1, yk+1) − E(x, y)

)

+ 1+γ
2 ‖y + (t − 1)yk − t yk+1‖2B∗B . (16)

As in [12, Appendix B], we first collapse the two quadratic
terms in the left-hand side as follows (assuming (t − 1)γ ′ �=
1):

−γ ′ t−1
2 ‖y − yk‖2B∗B

+ 1
2‖y − yk + t (yk − ȳk)‖2B∗B

= 1−(t−1)γ ′
2 ‖y − yk‖2B∗B + t

〈
y − yk, yk − ȳk

〉

B∗B

+ t2
2 ‖yk − ȳk‖2B∗B

= 1−(t−1)γ ′
2 ‖y − yk + t

1−(t−1)γ ′ (yk − ȳk)‖2B∗B

+
(
t2
2 − t2

2(1−(t−1)γ ′)

)
‖yk − ȳk‖2B∗B

≤ 1−(t−1)γ ′
2

∥∥∥y − yk + t
1−(t−1)γ ′

(
yk − ȳk

)∥∥∥
2

B∗B

provided 0 < 1− (t −1)γ ′ ≤ 1, which we now assume (that
is, 1 ≤ t < 1 + 1/γ ′). Equation (16) becomes, assuming
t = tk+1 is now a variable parameter,

tk+1(tk+1 − 1)
(
E
(
xk, yk

)
− E(x, y)

)

+ 1−(tk+1−1)γ ′
2

∥∥∥y − yk + tk+1
1−(tk+1−1)γ ′ (yk − ȳk)

∥∥∥
2

B∗B

≥ t2k+1

(
E
(
xk+1, yk+1

)
− E(x, y)

)

+ 1+γ
2 ‖y + (tk+1 − 1)yk − tk+1y

k+1‖2B∗B .

Denoting ωk = (1− (tk+1 −1)γ ′)/(1+γ) ≤ 1, we find that
provided t2k+1 − tk+1 = ωk t2k , this inequality becomes

t2k+1

(
E(xk+1, yk+1) − E(x, y)

)

+ 1+γ
2 ‖y + (tk+1 − 1)yk − tk+1y

k+1‖2B∗B

≤ ωk

(
t2k

(
E(xk, yk) − E(x, y)

)

+ 1+γ
2 ‖y − yk + tk+1

1−(tk+1−1)γ ′ (yk − ȳk)‖2B∗B
)

.

Hence, provided one ensures

y− yk + tk+1
1−(tk+1−1)γ ′

(
yk − ȳk

)
= y+(tk − 1) yk−1− tk y

k,

(17)

it will follow

E(xk, yk) − E(x, y)

≤ 1

t2k

(
k−1∏

i=0

ωi

)(
t20

(
E
(
x0, y0

)
− E(x, y)

)

+ 1+γ
2 ‖y − y0‖2B∗B

)
. (18)

The update rules for tk, ωk, ȳk , ensuring in particular (17),
should be as follows:

tk+1 = 1

2

(

1− γ ′
1+γ

t2k +
√(

1− γ ′
1+γ

t2k

)2 + 41+γ ′
1+γ

t2k

)

, (19)

βk = (
1 − (tk+1 − 1) γ ′) tk − 1

tk+1
, (20)

ȳk = yk + βk

(
yk − yk−1

)
, (21)

ωk = 1 + γ ′ − tk+1γ
′

1 + γ
= 1 − tk+1

γ

1 + γ

− (tk+1 − 1)
δ

(1 + δ)(1 + γ)
. (22)

It remains to estimate the rates which these updates yield.
This is done in a similar way as in [19, Chap.2] and [12,
Appendix B]. A starting point is the update equation for tk+1,
which is chosen as the nonnegative root of:

t2k+1 − tk+1 = ωk t
2
k = 1 − (tk+1 − 1)γ ′

1 + γ
t2k (23)

which, letting q ′ := γ ′/(1 + γ ′), also reads

t2k+1 = tk+1 + 1 + γ ′

1 + γ

(
1 − q ′tk+1

)
t2k .

A first fact is that 1 ≤ tk+1 < 1/q ′. Indeed if q ′tk+1 ≥ 1 one
obtains that t2k+1 ≤ tk+1, hence tk+1 ≤ 1 and q ′tk+1 < 1,

123

J Math Imaging Vis

a contradiction. Hence, q ′tk+1 < 1, and t2k+1 ≥ tk+1 so
that tk+1 ≥ 1 (moreover, if tk = 0, which is possible only
for k = 0 one has tk+1 = 1, otherwise, tk+1 > 1). As a
consequence for any k ≥ 0,

0 < ωk ≤ 1

1 + γ
< 1. (24)

But we can prove better and actually show that the conver-
gence rate is linear.

For this,weobservefirst that thanks to (22), for anyq ′′ > 0
one has

q ′′t2k+1 = q ′′tk+1 +
(
1 − tk+1

γ
1+γ

−
(tk+1 − 1) δ

(1+δ)(1+γ)

)
q ′′t2k

and we deduce that q ′′t2k+1 is less than (or equal to) a convex
combination of 1 and q ′′t2k as soon as

q ′′tk+1 ≤ tk+1
γ

1+γ
+ (tk+1 − 1) δ

(1+δ)(1+γ)
,

which is as soon as

(
γ ′

1+γ
− q ′′) tk+1 ≥ δ

(1+δ)(1+γ)
. (25)

We choose q ′′ given by the equation

(
γ ′

1+γ
− q ′′) 1√

q ′′ = δ
(1+δ)(1+γ)

. (26)

Then, if q ′′t2k < 1, we find that in case tk+1 ≥ 1/
√
q ′′,

inequality (25) holds (thanks to (26)), so that q ′′t2k+1 is less
or equal to a convex combination of 1 and q ′′t2k , and it fol-
lows q ′′t2k+1 < 1 which is contradictory. In consequence,
q ′′t2k+1 < 1. Hence by induction, if we assume that

t0 ∈ [0, 1/√q ′′], (27)

we find that tk < 1/
√
q ′′ for all k ≥ 1. The value of

√
q ′′,

obtained by solving equation (26), is

√
q ′′ =

√
γ

1 + γ
+ δ

(1 + δ)(1 + γ)
+ δ2

4(1 + δ)2(1 + γ)2

− δ

2(1 + δ)(1 + γ)
. (28)

If δ = 0,q ′′ = γ /(1+γ) > 0. If not one can check that it is
larger (as the function t �→ √

a + 2t + t2− t , for 0 ≤ a < 1,
is concave and increasing).Using that

√
2a + 2b ≥ √

a+√
b

and δ/(1 + δ)(1 + γ) ≥ (δ/(1 + δ)(1 + γ))2, one can also
check that

q ′′ ≥ 1

2

γ

1 + γ
+ 3

8

δ

(1 + δ)(1 + γ)
.

In particular, it follows from (23) that t2k ωk/t2k+1 = 1 −
1/tk+1 ≤ 1 − √

q ′′ so that

θk : = 1

t2k

(
k−1∏

i=0

ωi

)

= ω0

t21

k−1∏

i=1

t2i ωi

t2i+1

≤ ω0

t21

(
1 − √

q ′′
)k−1 ≤

(
1 − √

q ′′
)k−1

,

where we have used (24) and t1 ≥ 1. In addition, if t0 > 0,
one also finds similarly the bound θk ≤ (1 − √

q ′′)k/t20 .
One deduces from (18) that if (27), (19), (20) and (21)

hold, then

E(xk, yk) − E(x, y) ≤
⎧
⎨

⎩

(1 − √
q ′′)k−1

(
t20 (E(x0, y0) − E(x, y)) + 1+γ

2 ‖y − y0‖2B∗B
)

(1 − √
q ′′)k

(
E(x0, y0) − E(x, y) + 1+γ

2t20
‖y − y0‖2B∗B

)
(if t0 �= 0).

Eventually, it is straightforward to check that also [12, (B.10)]
holds, that is, θk ≤ 4/(k + 1)2. It follows the result:

Algorithm 1 Accelerated alternating minimizations
Input: Metrics F,G, parameters γ, δ satisfying (15).
Let then q := γ /(1 + γ) ∈ [0, 1), γ ′ := γ + δ/(1 + δ).
Choose (x0, y0), t0 ∈ [0, 1/√q ′′] and let ȳ0 = y0.
for all k ≥ 1 do
xk = argminx∈X E(x, ȳk−1),
yk = argminy∈Y E(xk , y),
then compute tk+1, βk , ȳk according to (19), (20), (21).

end for

Theorem 1 Let (xk, yk) be computed according to Algo-
rithm 1. Then for any k ≥ 1, one has

E(xk, yk) − min
x,y

E ≤ θk
(
t20 (E(x0, y0) − E(x, y))

+ 1+γ
2 ‖y − y0‖2B∗B

)
(29)

where

θk ≤ min

{
4

(k + 1)2
, (1 − √

q ′′)k−1,
(1 − √

q ′′)k

t20

}

.

123

J Math Imaging Vis

4 Accelerated Alternating Descent

Now, we show that this analysis can be adapted, in theory, to
yield also accelerated algorithms for the alternating descent
method. The idea is to adapt the previous proof to the more
complex inequality (13). We will do this in a slightly sub-
optimal way, considering only, in the strong convex case,
a constant overrelaxation, in order to make the paper more
readable.

4.1 The Nonstrongly Convex Case

We first consider the case F,G = 0, for which the computa-
tions are substantially simpler to read. In this case, (13) boils
down to

t (t − 1)(E(xk , yk) − E(x, y)) + 1
2K ‖x + (t − 1)xk − t x̄ k‖2M

+ 1
2L ‖y + (t − 1)yk − t ȳk‖2N + 1

2‖y + (t − 1)yk − t ȳ′k‖2B∗B

≥ t2
(
E
(
xk+1, yk+1

)
− E(x, y)

)
+ 1

2K ‖x + (t − 1)xk − t x̂ k+1‖2M
+ 1

2L ‖y + (t − 1)yk − t ŷk+1‖2N + 1
2‖y + (t−1)yk−t ŷ′k+1‖2B∗B .

(30)

The standard proof of ‘FISTA’ [3] consists then in letting

t0 = 0, and for k ≥ 0, tk+1 = (1 +
√
1 + 4t2k)/2 (so that

tk+1(tk+1 − 1) = t2k) (one can more generally choose, for
k ≥ 1, tk = 1+ (k−1)/a, a ≥ 2, so that tk+1(tk+1−1) ≤ t2k
for all k [8]: then the following inequalities will continue to
hold as long as we also assume that (x, y) is a minimizer of
the energy). It follows

t2k+1

(
E
(
xk+1, yk+1

)
− E(x, y)

)

+ 1
2K ‖x + (tk+1 − 1)xk − tk+1 x̂

k+1‖2M
+ 1

2L ‖y+(tk+1−1)yk−tk+1 ŷ
k+1‖2N + 1

2 ‖y+(tk+1−1)yk−tk+1 ŷ
′k+1‖2B∗B

≤ t2k

(
E
(
xk , yk

)
− E(x, y)

)
+ 1

2K ‖x + (tk+1 − 1)xk − tk+1 x̄
k‖2M

+ 1
2L ‖y+(tk+1−1)yk−tk+1 ȳ

k‖2N + 1
2 ‖y+(tk+1−1)y′k−tk+1 ȳ

′k‖2B∗B .

(31)

It remains to choose x̄ k , ȳk , ȳ′k , to ensure the following equal-
ities:

x + (tk+1 − 1)xk − tk+1 x̄
k = x + (tk − 1)xk−1 − tk x̂

k

y + (tk+1 − 1)yk − tk+1 ȳ
k = y + (tk − 1)yk−1 − tk ŷ

k

y + (tk+1 − 1)yk − tk+1 ȳ
′k = y + (tk − 1)yk−1 − tk ŷ

′k .

This is obtained by letting

x̄ k = xk + tk−1
tk+1

(
xk − xk−1

)
+ tk

tk+1

(
x̂ k − xk

)
(32)

ȳk = yk + tk−1
tk+1

(
yk − yk−1

)
+ tk

tk+1

(
ŷk − yk

)
(33)

ȳ′k = yk + tk−1
tk+1

(
yk − yk−1

)
+ tk

tk+1

(
ŷ′k − yk

)
(34)

With these choices, one can eventually sum (31) from n = 0
to k − 1 and it follows

E(xn, yn) − E(x, y) ≤ ‖x−x0‖2M/K + ‖y − y0‖2N/L+B∗B
2t2n

.

Using the fact that by construction, tk+1 ≥ tk + 1/2 and
t1 ≥ 1, and choosing for (x, y) a minimizer, we deduce the
following theorem:

Algorithm 2 Accelerated alternating descent method (gen-
eral case)
Input: Metrics M, N , number of inner loops K , L ≥ 1.
Choose (x0, y0) ∈ X × Y , t0 ≥ 0, let x̄0 = x0, ȳ0 = ȳ′0 = y0.
for all k ≥ 1 do
Find (x̂ k , ŷk , x̂ ′k , ŷ′k) = TK ,L (x̄ k−1, ȳk−1, ȳ′k−1) (cf Eq. (2–5)).
Choose a point (xk , yk) such that E(xk , yk) ≤ E(x̂ ′k , ŷ′k), for
instance (xk , yk) = (x̂ ′k , ŷk),
then compute tk+1 = (1 +

√
1 + 4t2k)/2, (x̄ k , ȳk , ȳ′k) according

to (32), (33), (34).
end for

Theorem 2 Let (xk, yk) be computed using Algorithm 2,
starting from initial points (x0, y0), and let (x∗, y∗) be a
minimizer of E . Then one has the global rate:

E(xk, yk) − E(x∗, y∗)

≤ 2
‖x∗ − x0‖2M/K + ‖y∗ − y0‖2N/L+B∗B

(k + 1)2
. (35)

5 The Strongly Convex Case

The case where F,G > 0 is a bit trickier, if one wants to
exploit it to gain a better (linear) convergence. The main
observation is that in (13), the (unknown) points x and y on
the left-hand side of the inequality are evaluated, respectively,
in the M/K and N/L + B∗B norms, while on the right-
hand side, they are evaluated in the M/K + t F and N/L +
B∗B + tG norms, respectively. (In fact, one should also, as
in Sect. 3, use the term involving Ax + By to transfer some
control from x to y or conversely, leading to more tedious
even calculations—this would be necessary for instance if
only one of themetrics F,G were positive, which to simplify
we do not assume here.) It follows that if one can choose t
such that, for some ω < 1,

1
K M + t F ≥ ω−1 1

K M, 1
L N + B∗B

+ tG ≥ ω−1(1
L N + B∗B

)
, t2 ≥ ω−1(t (t − 1)),

123

J Math Imaging Vis

then the energy can be reduced by a constant ratio at each
iteration. The last inequality suggests thatω should be simply
equal to 1− 1/t , and the optimal t ≥ 1 is the smallest value
such that

t (t − 1)F ≥ 1
K M, t (t − 1)G ≥ 1

L N + B∗B . (36)

In practice,M and N are often chosen of the form I/τ −A∗A
and I/σ − B∗B, respectively, so that the descent steps in
x, y can be computed explicitly. One needs τ ≤ ‖A∗A‖−1

and σ ≤ ‖B∗B‖−1 in order for M, N to be nonnega-
tive. The condition on G then boils down to t (t − 1)G ≥
I/(σ L) + (1 − 1/L)B∗B, which is ensured as soon as
t − 1 ≥ √‖G−1‖/σ , while the condition on F is ensured
if t − 1 ≥ √‖F−1‖/(K τ) (and is thus in general easier to
ensure). In any case, the geometric ratio involves the square
root of the condition number of the problems in x and y,
which indicates that the accelerated algorithm we can derive
should have good performances.

Let us now derive an implementable algorithm. We
assume now that (36) holds and denote ω = 1 − 1/t . A
more general derivation in the spirit of [12,19] with variable
t could be derived as in Sect. 3, but the calculations would be
much more tedious. Estimate (13) can be rewritten:

ωt2
(
E
(
xk , yk

)
− E(x, y)

)
+ 1

2K ‖x + (t − 1)xk − t x̄ k‖2M
+ 1

2L ‖y + (t − 1)yk − t ȳk‖2N + 1
2 ‖y + (t − 1)yk − t ȳ′k‖2B∗B

≥ t2
(
E
(
xk+1, yk+1

)
− E(x, y)

)
+ 1

2K ‖x + (t − 1)xk − t x̂ k+1‖2M
+ 1

2L ‖y + (t − 1)yk − t ŷk+1‖2N + 1
2 ‖x + (t − 1)xk − t x̂ ′k+1‖2F

+ 1
2 ‖y+(t−1)yk−t ŷ′k+1‖2B∗B+G+ t−1

2

(
‖x−xk‖2F +‖y − yk‖2G

)

(37)

First, one observes that using (36),

1
2K ‖x + (t − 1)xk − t x̂k+1‖2M

+ 1
2‖x + (t − 1)xk − t x̂ ′k+1‖2F + t−1

2 ‖x − xk‖2F
≥ 1

2K

(
‖x + (t − 1)xk − t x̂k+1‖2M

+ 1
t (t−1)‖x + (t − 1)xk − t x̂ ′k+1‖2M + 1

t ‖x − xk‖2M
)

= t
2K (t−1)

(
t−1
t ‖x + (t − 1)xk − t x̂k+1‖2M

+ 1
t2

‖x + (t − 1)xk − t x̂ ′k+1‖2M + t−1
t2

‖x − xk‖2M
)

≥ t
2K (t−1)

∥∥∥x + (t−1)2

t xk − (t − 1)x̂ k+1 − 1
t x̂

′k+1
∥∥∥
2

M
.

(38)

Hence a good choice for x̄ k is a choice which ensures that

x + (t − 1)xk − t x̄k = x + (t−1)2

t xk−1 − (t − 1)x̂ k − 1
t x̂

′k,

yielding

x̄ k = xk +
(
t − 1

t

)2 (
xk − xk−1

)
+ t − 1

t

(
x̂ k − xk

)

+ 1

t2

(
x̂ ′k − xk

)
. (39)

The situation is slightly more complicated for the y
variable, but the computations are very similar. One has,
using (36),

1
2L ‖y + (t − 1)yk − t ŷk+1‖2N

+ 1
2‖y + (t − 1)yk − t ŷ′k+1‖2B∗B+G + t−1

2 ‖y − yk‖2G
≥ 1

2L

(
‖y + (t − 1)yk − t ŷk+1‖2N

+ 1
t (t−1)‖y + (t − 1)yk − t ŷ′k+1‖2N + 1

t ‖y − yk‖2N
)

+ 1
2

((
1 + 1

t (t−1)

)‖y + (t − 1)yk − t ŷ′k+1‖2B∗B

+ 1
t ‖y − yk‖2B∗B

)
.

As in (38) (replacing x with y and M with N),

1
2L

(
‖y + (t − 1)yk − t ŷk+1‖2N
+ 1

t (t−1)‖y + (t − 1)yk − t ŷ′k+1‖2N + 1
t ‖y − yk‖2N

)

≥ t
2L(t−1)‖y + (t−1)2

t yk − (t − 1)ŷk+1 − 1
t ŷ

′k+1‖2N ,

while the second expression is a bit simpler:

1
2

((
1 + 1

t (t−1)

)‖y + (t − 1)yk − t ŷ′k+1‖2B∗B

+ 1
t ‖y − yk‖2B∗B

)

≥ t
2(t−1)‖y + (t−1)2

t yk − (t − 1)ŷ′k+1 − 1
t ŷ

′k+1‖2B∗B

= t
2(t−1)‖y + (t−1)2

t yk − (
1 + (t−1)2

t

)
ŷ′k+1‖2B∗B .

We will therefore choose ȳk, ȳ′k to satisfy

y + (t−1)yk − t ȳk = y + (t−1)2

t yk−1 − (t − 1)ŷk − 1
t ŷ

′k,

y + (t − 1)yk − t ȳ′k = y+ (t−1)2

t

(
yk−1 − ŷ′k) − ŷ′k,

which is ensured provided

ȳk = yk +
(
t − 1

t

)2

(yk − yk−1)

+ t − 1

t

(
ŷk − yk

)
+ 1

t2
(ŷ′k − yk). (40)

ȳ′k = yk +
(
t − 1

t

)2 (
ŷ′k − yk−1

)
+ 1

t

(
ŷ′k − yk

)
. (41)

123

J Math Imaging Vis

With choices (39), (40), (41), inequality (37) becomes

ωt2
(
E
(
xk, yk

)
− E(x, y)

)

+ 1
2K ‖x + (t−1)2

t xk−1 − (t − 1)x̂ k − 1
t x̂

′k‖2M
+ 1

2L ‖y + (t−1)2

t yk−1 − (t − 1)ŷk − 1
t ŷ

′k‖2N
+ 1

2‖y + (t−1)2

t

(
yk−1 − ŷ′k) − ŷ′k‖2B∗B

≥ t2
(
E
(
xk+1, yk+1

)
− E(x, y)

)

+ 1
2Kω

‖x + (t−1)2

t xk − (t − 1)x̂ k+1 − 1
t x̂

′k+1‖2M
+ 1

2Lω
‖y + (t−1)2

t yk − (t − 1)ŷk+1 − 1
t ŷ

′k+1‖2N
+ 1

2ω‖y + (t−1)2

t yk − (
1 + (t−1)2

t

)
ŷ′k+1‖2B∗B,

so that one has (assuming x̄0 = x0, ȳ0 = ȳ′0 = y0)

E
(
xk, yk

)
− E(x, y) ≤ ωk

(
E(x0, y0) − E(x, y)

+ 1
t2ω

(1
2K ‖x − x0‖2M + 1

2‖y − y0‖2N/L+B∗B
))

.

Hence one has in this case a linear convergence rate.

Algorithm 3 Accelerated alternating descent method
(strongly convex case)
Input: Metrics M, N and F,G, number of inner loops K , L ≥ 1.
Choose (x0, y0) ∈ X × Y , t such that (36) holds. Let x̄0 = x0,
ȳ0 = ȳ′0 = y0.
for all k ≥ 1 do
Find (x̂ k , ŷk , x̂ ′k , ŷ′k) = TK ,L (x̄ k−1, ȳk−1, ȳ′k−1) (cf Eq. (2–5)).
Choose a point (xk , yk) such that E(xk , yk) ≤ E(x̂ ′k , ŷ′k), for
instance (xk , yk) = (x̂ ′k , ŷk),
then compute (x̄ k , ȳk , ȳ′k) according to (39), (40), (41).

end for

Theorem 3 Let (xk, yk) be computed using Algorithm 3,
starting from initial points (x0, y0), and let (x∗, y∗) be a
minimizer of E . Then the energy decays with the linear rate:

E(xk, yk) − E(x∗, y∗)
≤ ωk

(
E(x0, y0) − E(x∗, y∗)

+ 1
t2ω

(1
2K ‖x∗ − x0‖2M + 1

2‖y∗ − y0‖2N/L+B∗B)
))

(42)

where ω = 1 − 1/t .

6 Experiments: A Toy Model

Before implementing the methods discussed in this paper—
or variants—on relatively large-scale problems, we consider
as a toy model the minimization of the elementary signal
denoising energy:

min
x,y

N−1∑

i=1

(
λ|xi | + μ

2
|xi − (Dy)i |2

)
+ 1

2

N∑

i=1

(yi − gi)
2 .

(43)

here, g = (gi)Ni=1 is a noisy signal, y = (yi)Ni=1 its recon-
struction and x = (xi)

N−1
i=1 is an approximation of the discrete

derivative Dy. D is an operator from R
N to R

N−1, defined
by (Dy)i = (yi+1 − yi), i = 1, . . . , N − 1; it has norm
‖D‖ ≤ 2. If we eliminate x (by direct minimization) in (43),
we get the so-called Huber-TV regularization problem for
the signal y.

This setting corresponds to our general setting with A =√
μI , B = √

μD (of squared norm 4μ), F = 0, G = I .
Observe that here still, (36) will be satisfied if M = 0, that
is, if we minimize the problem exactly with respect to x at
each iteration, hence the analysis is valid even though the �1

norm is not strongly convex.
Figure1, left, shows the typical result of this minimization

for a given signal (here N = 10,000, μ = 150, λ = 300).
Energy (43) can be minimized by many techniques. The

most natural approach consists in eliminating the variable x
and implementing a (strongly convex) ‘FISTA’ [12], which
is basically the same as alternatively minimizing exactly the
problem with respect to x and then performing one descent
step (L = 1) with respect to y, with an appropriate acceler-
ation. This gives the solid curve in Fig. 1, right.

While this method is (as expected) very efficient, we find
that taking L = 3 (i.e., performing 3 successive steps of
descent in the y variable before updating it again) reduces
the total number of iterations (we observe however that the
outer iterations are significantly slower so that the overall
gain is negligible for this problem).

The dotted line tagged ‘L = 3, no averaging’ in Fig. 1 is
obtained by removing the averaging process in the algorithm.
We observe that (despite we have no theoretical explanation),
the behavior of the method is exactly the same as with aver-
aging (while the global execution time is decreased and less
memory is used). In any case, the performance of the accel-
erated methods is significantly better than the performance
of the nonaccelerated version (dashed line).

Eventually, the reason for which we do not plot the rate
of a basic ‘FISTA’ method applied to the variable (u, v) is
that we do not know of any result which deals with the case
where none of the smooth (μ‖x − Dy‖2/2) and nonsmooth
(λ‖x‖1 +‖y− g‖2/2) term is strongly convex (here only the
sum is), and shows linear convergence.A standard (O(1/k2))
FISTA method turns out to be much slower than the four
methods in Fig. 1, and even by tuning by hand the parameters
to take into account the strong convexity we could not obtain
competitive rates.

This experiment (and a few other we tried) shows that in
practice the averaging required by our algorithms does not

123

J Math Imaging Vis

-1.5

-1

-0.5

0

0.5

1

1.5

0 2000 4000 6000 8000 10000 0 50 100 150 200
100

101

102

103

104

Fig. 1 A signal denoising test

seem necessary to ensure fast convergence. Actually, this
is something we had observed before starting this theoreti-
cal study, which was aimed at proving it, however without
success. In practice, for the large-scale problemswewill con-
sider in the next section, we will replace the averaged point
by the current (last) iterate, hence saving a bit of time and
a lot of memory: experimentally, we will still observe a fast
convergence.

7 Application: Even/Odd Splitting of the Total
Variation

7.1 Description

We now consider the computation of the proximity opera-
tor of the total variation, using a splitting proposed in [11].
The idea (which we explain in dimension 2, but could be
extended to any dimension) is to consider separately the
pixels (i, j)+{0, 1}2 for (i, j) even and for (i, j) odd. Given
u = (ui, j)1≤i≤n,1≤ j≤m an image, We let for each (i, j)

T V 4
i, j (u) = √

2
√

(ui+1, j − ui, j)2 + (ui+1, j+1 − ui, j+1)2 + (ui+1, j+1 − ui+1, j)2 + (ui, j+1 − ui, j)2.

Then (here [·] is the integer part)

J (u) =
[(n−1)/2]∑

i=1

[(m−1)/2]∑

j=1

T V 4
2i,2 j (u)

+
[n/2]−1∑

i=1

[m/2]−1∑

j=1

T V 4
2i+1,2 j+1(u). (44)

Wewill denote by J e(u) the first sumabove, and by Jo(u) the
second one. It is possible to show that this is an approxima-
tion of the isotropic total variation in a variational sense, see
‘Appendix’ for a sketch of proof. Given ε > 0 a smoothing
parameter, we will also consider the ‘Huber’ variant Jε(u) =
J eε (u) + Joε (u) defined similarly, but replacing T V 4

i, j with

T V 4,ε
i, j (u) =

⎧
⎨

⎩

T V 4
i, j (u) − ε if T V 4

i, j (u) ≥ 2ε

(T V 4
i, j (u))2

4ε else.

We will show how to compute, using the approach described
so far, the proximity operator of these functions J = J0 and
Jε, which is defined as the solution of the following problem:

min
u

Jε(u) + 1

2λ
‖u − u†‖2. (45)

Given i, j , we denote by Di+1/2, ju = ui+1, j − ui, j if
1 ≤ i ≤ n − 1, 1 ≤ j ≤ m, and Di, j+1/2u = ui, j+1 − ui, j
if 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1. Then, we call Dou the ‘odd’
part of Du and Deu the even part, that is

Dou = ((
Di+1/2, ju, Di, j+1/2u, Di+1/2, j+1u, Di+1, j+1/2u

))
i, j odd

and Deu is define in the same way but for even indices i, j .
It follows that

Joε (u) = sup
{〈

ξ, Dou
〉 − ε

2 |ξ |2 : || (ξi+1/2, j , ξi, j+1/2,

ξi+1/2, j+1, ξi+1, j+1/2
) ||2 ≤ 2 ∀(i, j) odd

}

123

J Math Imaging Vis

and the same holds for J e, replacing Do with De and ‘odd’
with ‘even.’ We will denote

ξo = ((
ξi+1/2, j , ξi, j+1/2, ξi+1/2, j+1, ξi+1, j+1/2

))
i, j odd ,

ξ e = ((
ξi+1/2, j , ξi, j+1/2, ξi+1/2, j+1, ξi+1, j+1/2

))
i, j even .

The dual of problem (45) reads

min
(ξ e,ξo)

‖Do,∗ξo + De,∗ξ e − u†‖2 + f (ξ e) + g(ξo), (46)

where D•,∗ is the adjoint of D•,

f (ξ e) =
{

ε
2λ |ξ e|2 if for all i, j even, ‖(ξi+1/2, j , ξi, j+1/2, ξi+1/2, j+1, ξi+1, j+1/2

)‖22 ≤ 2λ2,

+∞ else

and g(ξo) is defined similarly.
We find that (46) is a particular case of (1) (the extra term

u† in (46) does not change anything to the analysis, and could
in fact be transferred to the functions f, g). In that case, A and
B have the same norm (which is exactly 2, as these operators
can be thought as independent cyclic one-dimensional finite
differences over 4 points). Moreover, the functions f, g are
(ε/λ)-strongly convex.

7.2 Alternating Minimizations

For this problem, one may to implement an alternating mini-
mization scheme. An approach to do it is detailed in [11] and
consists in solving, for each odd or even square, a reduced
total variationminimization problem over a cycle of 4 points.
This can be done at the expense of a few Newton iterations
to find the Lagrange multiplier associated to the constraint
on ξ . It follows that one can use Algorithm 1, yielding a
O(1/k2) (for ε = 0) or a linear (for ε > 0) convergence
rate. As one has A∗A ≤ 4I and B∗B ≤ 4I , the parameters
are γ = δ = ε/(4λ). In particular,

q = γ

1 + γ
= ε

4λ + ε
, γ ′ = ε

4λ
+ ε

4λ + ε
,

which allow to implement the rules (19), (20), (21).

7.3 Alternating Descent

For alternating descent, one considers metrics M = I/τ −
A∗A and N = I/σ − B∗B which are nonnegative as soon
as τ ≤ 1/4, σ ≤ 1/4. In the nonstrongly convex case, one
could then use Algorithm 2.

On the other hand, if ε > 0, in order to ensure (36) it is
enough to have (for σ = τ = 1/4)

max

{
4

K
,
4

L
+
(
1 − 1

L

)
B∗B

}
≤ t (t − 1)

ε

λ

which is ensured as soon as t (t−1) ≥ 4λ/ε, hence one should
take t = (1+√

1 + 16λ/ε)/2.The linear convergence should
then follow with the rate

ω = 1 − 1

t
= 1 − ε

8λ

√

1 + 16
λ

ε
+ ε

8λ
≈ 1 − 1

2

√
ε

λ

when ε << λ. In practice, we implemented both the over-
relaxation rule with constant steps and the one in Sect. 7.2
(however for both ‘odd’ and ‘even’ variables) and found a
very slight advantage for the latter one.

7.4 Experiments

7.4.1 Comparison Between the Algorithms

A first round of experiments simply compares 4 different
methods for solving (45) with as input the image in Fig. 2,
left:

• The accelerated alternating minimization method
(AAMM) of Algorithm 1 where the subproblems are
solved almost exactly using an exact inversion with a
Lagrange multiplier computed by 4 iterations of a New-
ton method [11] (which we found was yielding the same
result as with more iterations);

• The alternating descent method (AADM) of Algo-
rithms 2–3 where, to simplify, we have used only the
points (x̂, ŷ) (and not the averages), andwe have used the
overrelaxation for both updates x, y, as in Algorithms 2
and 3;

• An inexact implementation of Algorithm 1 (AAMM-
inexact) where the (almost) exact minimizations of
(AAMM) are replaced with a fixed number of descent
steps, as in AADM. (The main difference with (AADM)
being that the overrelaxation is only implemented on the
second variable);

• The ‘FISTA’ method [3] (FISTA) (with parameter
updates which take into account the strong convexity
of the objective when ε > 0, as explained in [12,19]).
This corresponds to a proximal gradient descent on the

123

J Math Imaging Vis

Fig. 2 A
3602 = 129,600-pixel image
(with values in [0, 255]) and the
solution of (45) for λ = 30,
ε = 1

(partially smooth, and strongly convex for ε > 0) objec-
tive (46), jointly in the variables (ξ e, ξo), as classically
implemented to solve such problems.

The reasons for which we did not use the complete set
of variables (x̂, ŷ, x̂ ′, ŷ′) in our implementation of Algo-
rithms 2 and 3 are explained in Sect. 6, where we did not see
a different behavior between the original algorithms and the
inexact ones where we approximate the points (x̂ ′, ŷ′) with
the nonaveraged corresponding points (x̂, ŷ). Computing the
averages would be much more expensive in memory and
computational time per iteration—while with this approxi-
mation we only need a number of variable of the same order
as for the FISTA method, and slightly larger than (AAMM)
[(and (AAMM-inexact)] which overrelax only one of the two
variables (observe that for a single descent step, our imple-
mentation is the correct implementation of the algorithms).
In these alternating descent algorithms, we also found the
constant step update rule (36) (for ε > 0) slightly worse than
the variable rule (19) of Algorithm 1, so in the end we used
the latter rule for both methods.

These first experiments were conducted on a Dell Laptop
under Ubuntu Linux, with an Intel Core i7-3740QM CPU
(6Mb cache) with 4 cores and 8 threads, at 3.70GHz. The
programs were implemented in C with omp parallelization
over 8 threads, which roughly divides the running time by
8 as the operations which are run in parallel are truly inde-
pendent and take about the same time (they consist in a fixed
number of similar operations). For each experiment, our pro-
gramswere calling the optimization 10 times in a row andwe
then divided the total elapsed time by 10. There is still some
variability which depends on many factors (some which we
cannot really control, such as the temperature of the CPU,
other easier to understand and deal with such as the total
load of the system), we tried to run all the experiments in
the same conditions. The results are shown in Table1. The

number of iterations and time shown are to reach a gap G
such that

√
G/N ≤ 0.1, where N is the size of the prob-

lem (here N = 129,600). This implies in particular that the
RMSE between the computed solution and the exact one is
less than 0.1 (we use a standard a posteriori estimator for this
RMSE, see for instance [12, Example 3.1]).

The results are almost as expected. The exact minimiza-
tion works best, except, strangely, when ε = 0. Computing
one step of descent (with a complete overrelaxation in both
variables x and y) is quite efficient for this particular prob-
lem: even if one needs to performmuchmoremany iterations,
these are very fast (in these examples, about 1 versus 1.4ms
for (FISTA) and 1.6ms for the Newton iterations) which
makes the strategy competitive. We recall however that this
approach requires more memory. If, as expected, the method
(AAMM-inexact) gives terrible results when the number of
inner loops is too small (it is improperly overrelaxed in only
one of the two variables), for more than 5–6 iteration it starts
to compare with the exact (AAMM) method, which means
it probably also almost achieves the exact minimization in
each variable (consider that the dimension of each subprob-
lem is 4). Surprisingly, for ε = 0 (the nonsmoothed total
variation), it converges even faster than the exact minimiza-
tion approach, and we do not have a reasonable explanation
for this.1

1 Consider however that as our implementations are here the same c
program where depending on our choice either the descent step or the
exact minimization is called, this should not be a bug. This is confirmed
both by the fact that for ε > 0, when the subproblems are easier and
hence it is even more likely that the descent steps will converge to
the exact solution in few iterations, the exact and inexact method need
nearly the same number of iterations, and the fact that increasing the
number of descent steps yield eventually a number of outer iterations
equal to the (AAMM) algorithm.

123

J Math Imaging Vis

Table 1 Comparison of
different strategies

Method (FISTA) (AAMM) (AADM) (AAMM-inexact)

ε # descent steps # descent steps

1 3 5 1 3 5

0 #iter. 495 146 273 169 153 1654 271 130

t (ms) 681 232 251 228 281 1115 320 204

0.1 #iter. 142 57 89 62 59 513 100 58

t (ms) 203 91 89 91 108 333 130 104

1 #iter. 69 27 57 31 28 174 44 29

t (ms) 101 40 62 50 57 127 54 43

Fig. 3 Left influence of ε. Right influence of λ

7.4.2 GPU Implementation

Thanks to the good parallelization properties of the odd/even
splitting, it is easy to implement such a scheme on a GPU
architecture. The practitioner should download the source
code available at http://github.com/svaiter/ftvp to test against
its image database. This repository contains a C/CUDA
library together with a Python 3 binding. All the compu-
tation are performed on an Amazon EC2 g2.2xlarge instance
on Linux Ubuntu Server 14.04 LTS with CUDA 6.5.

If not specified otherwise, the parameter of all simulations
is as follows. We used a standard image of size 512 × 512
which a dynamic inside the range [0, 255]. Our stopping cri-
terion is as before by checking that the square root of the dual
over the size of the image is less than 0.1 which is an upper
bound of the root mean-square error (RMSE). The dual gap
is computed at each iteration. If such a bound is not obtained
after 10,000 iterations, we stop the alternating minimization.
In term of distributed computing, we choose to use thread
blocks of size 16 × 16.

The use ofHuber-TV induces better performances, in term
of execution time or raw number of iterations. We first study
the influence of ε in Fig. 3. We compare both the case where

the inner iterations are done with a Newton step and with a
simple descent, both with 5 steps. For every experience in the
following, we consider 20 repetitions of the experiment, and
average the time obtained. Moreover, all time benchmarked
are reported minus the memory initialization time.We fix the
value of λ = 30.0. Note that choosing ε too big is however
problematic in term of quality of approximation of the true
total variation regularization.

A similar study can be performed for the influence of λ,
see Fig. 3. Again, we compare both the case where the inner
iterations are done with a Newton step and with a descent,
both with 5 steps. We let vary λ over [1, 36] and fix the
value of ε = 0 (exact-TV) and also ε = 0.1. Note that
the execution time scales nicely with the dimension of the
image. For instance, running our algorithm for ε = 0.1 and
λ = 20.0 took 800 ms for a 2048 × 2048 image and 4s for
a 4096 × 4096 image.

7.4.3 Color TV

For color images, we can implement the same method. The
difficulty now is that the ‘exact’ minimization approach
of [11] becomes heavier to program and solve, as the sub-

123

http://github.com/svaiter/ftvp

J Math Imaging Vis

Fig. 4 A
3264 × 2448 = 7,990,272-pixel
image and a
360 × 360 = 129,600-pixel
crop (with RGB values in
[0, 255]), and (below) the
solutions of (45) for λ = 10,
ε = 0.1

problems are now in dimension 12, involving a ‘Laplacian’
matrix of rank 7. Table1 suggests that performing a suffi-
cient number of descent steps [method (AAMM-inexact)]
yields essentially the same results as an exact minimiza-
tion, in roughly the same time. We thus present the result
of such an implementation. We have just extended the pro-
gram implementing (AAMM-inexact) to work with RGB
images, and tested it first on a 360 × 360 crop and then
on the 3264 × 2448 = 7,990,272 pixels image of Fig. 4.2

The results, shown in Table2, show that the method is also
efficient with this inexact implementation (with 5 descent
steps). The left part of the table shows the execution time for
the small image, on the same computer as in Table1. The
time spent in each iteration is about 3–4 times longer than
for gray-level images.

On the right, we display typical execution times for the
large image (of almost 8 × 106 pixels), on a slightly faster
computer (with an Intel Xeon E5-2643 CPU (20Mb cache)
at 3.40 GHz, which has 12 threads).

8 Conclusion

In this paper, we have studied the acceleration of alternat-
ing minimization or descent schemes for problems with two

2 Image belongs to the authors.

Table 2 Color results

ε λ Small image Large image

1 10 50 1 10 50

0 #iter. 21 50 280 17 41 258

t (s) 0.165 0.243 1.050 3.5 6.3 32.0

0.1 #iter. 15 31 134 13 26 116

t (s) 0.154 0.210 0.526 3.0 4.5 14.7

1 #iter. 8 14 43 8 14 44

t (s) 0.124 0.150 0.206 2.4 3.1 6.1

variables with a quadratic coupling, as already considered
in [11]. We have extended some of these results to strongly
convex problems and have investigated the case of partial
descent steps, showing that (theoretically) acceleration is also
possible in this setting. A natural development would be to
analyze better the behavior of the inexact variant, which we
use in practice and which seems to be quite efficient in our
application. The correct framework for this analysis should
probably be the framework of inexact accelerated schemes,
as studied in [1,21]; however, for this we would need to bet-
ter estimate the errors which are introduced by the method
(AAMM-inexact) and which seem much smaller than one
could naturally expect.

123

J Math Imaging Vis

Acknowledgements This work is supported by the ANR via the
international project ‘EANOI’ (Efficient Algorithms for Nonsmooth
Optimization in Imaging), FWF No. I1148 / ANR-12-IS01-0003.
A. Chambolle also benefits from support of the ‘Programme Gaspard
Monge pour l’Optimisation et la Recherche Opérationnelle’ (PGMO),
through the ‘MAORI’ group, aswell as the ‘GdRMIA’ of the CNRS.He
also warmly thanks Churchill College and DAMTP, Centre for Math-
ematical Sciences, University of Cambridge, for their kind hospitality
during the completion of this work, thanks to a support of the French
Embassy in the UK and the Cantab Capital Institute for Mathematics
of Information.

Appendix: An Approximation Result

In this appendix, we show that although this is not totally
obvious at first glance, the discrete energy Jε(u) is an approx-
imation of the isotropic total variation. The result is more
precisely as follows. To simplify we work in the domain
� = (0, 1)2 (extension to more general regular domains is
not difficult) and we define, for N ≥ 1 an integer, the func-
tional, defined for u ∈ L1(�),

Fε,N (u) =
{

1
N J N ,N

ε/N (u) if u = (ui, j)1≤i, j≤N , u(x) = ∑N
i=1

∑N
j=1 ui, jχ(i−1

N ,
j
N)×(

j−1
N ,

j
N)

(x) a.e.,

+∞ else.

here, J N ,N
ε/N is a notation for the energy (44) in case m =

n = N (and with the smoothing parameter ε/N). We also
denote �ε(p) := |p|2/(2ε) if |p| ≤ ε, |p| − ε/2 else and
recall that for u ∈ BV (�) a function with bounded variation
|Du|(�) < +∞ [17,22],

∫
�

�ε(Du) = ∫
�

�ε(∇u)dx +
|Dsu| where Du = ∇udx + Dsu is the Radon-Nikodym
decomposition of Du as an absolutely continuous and sin-
gular part, see [15]. We introduce the functional

Fε(u) =
{

�ε(Du)(�) if u ∈ BV (�),

+∞ if u ∈ L1(�) \ BV (�).

Then, one can show that Fε can also be defined by duality,
as follows:

Fε(u) = sup

{∫

�

u(x)divϕ(x)dx − ε

2

∫

�

|ϕ(x)|2dx :

ϕ ∈ C∞
c (�;R2), |ϕ(x)| ≤ 1 ∀x ∈ �

}
(47)

One has the following result:

Theorem 4 As N → ∞, Fε,N �-converges to Fε. More-
over, if for some sequence (uN) ∈ L1(�)N, Fε,N (uN) ≤
C < +∞, then there exists u ∈ BV (�), a subsequence
(uNk)k and a sequence of constants (ak)k such that that
uNk − ak → u in L1(�).

For the proper definition and main properties of �-
convergence, see for instance [6,14]. The theoremestablishes
that images minimizing J N ,N

ε/N (+ other terms such as a
quadratic penalization) should be close if N is large to min-
imizers of the isotropic ‘Huber-total variation’ Fε, in the
continuum. The proof is easy, however not really found in
this form in the literature, as far as we know. The closest
results aremaybe the�-convergence theoremsofCai et al. [7]
in the context of wavelet-based approximations of the total
variation.

Proof It is enough to prove: (i) that if uN ∈ L1(�) is
such that � = lim infN Fε,N (uN) < ∞, then not only one
can extract uNk which converges to some u, but in addition
Fε(u) ≤ �; (ii) that given u with finite total variation, one
can build a sequence uN with lim supN Fε,N (uN) ≤ Fε(u).

For point (i), we first consider a subsequence (uNk) such
that � = limk Fε,Nk (u

Nk). Then, we see that since for all
k (large enough) Fε,Nk (u

Nk) < +∞, by definition uNk is
piecewise constant and can be written

uNk (x) =
Nk∑

i=1

N∑

j=1

uki, jχ
(
i−1
Nk

,
j
Nk

)
×
(

j−1
Nk

,
j
Nk

)(x)

for some matrix uk = (uki, j)1≤i, j≤Nk . Then we observe that
for some constant σ > 0,

Fε,Nk (u
Nk) + ε

2
≥ F0,Nk (u

Nk)

≥ σ
1

Nk

∑

i, j

(
|uki+1, j − uki, j | + |uki, j+1 − uki, j |

)

= σ |DuNk |(�).

Hence |DuNk |(�) is bounded, showing that (uNk − ak)k is
precompact in L1(�), where ak is the average of the function
uNk in �. Without loss of generality, we assume ak = 0
and we denote by u the limit of a subsequence (which for
convenience we do not relabel). We must now show that
Fε(u) ≤ �.

Let δ > 0, and let ϕ = (ϕ1, ϕ2) ∈ C∞
c (�;R2) be a

smooth vector field with |ϕ(x)|2 = ϕ1(x)2+ϕ2(x)2 ≤ 1−δ

for all x ∈ �. Observe that

∫

�

uNk (x)divϕ(x)dx =
∑

i, j

uki, j

∫
(
i−1
Nk

,
j

Nk

)
×
(

j−1
Nk

,
j

Nk

) divϕ(x)dx

=
∑

i, j

(
uki+1, j − uki, j

)
ϕ1
i+ 1

2 , j

123

J Math Imaging Vis

+
(
uki, j+1 − uki, j

)
ϕ2
i, j+ 1

2

where ϕ1
i+ 1

2 , j
is the flux of ϕ through the vertical segment

{ i
Nk

}×(
j−1
Nk

,
j
Nk

) andϕ2
i, j+ 1

2
is the flux through the horizontal

segment (i−1
Nk

,
j
Nk

) × { j
Nk

}.
Assume (i, j) are both odd or even. Denote by x̄ =

(i/Nk, j/Nk): asϕ is smooth, one clearly has that Nkϕ
1
i+1/2, j

= ϕ1(x̄) + O(1/Nk), etc., and, in fact,

N 2
kN 2

i, j :=
(
Nkϕ

1
i+ 1

2 , j

)2 +
(
Nkϕ

2
i, j+ 1

2

)2

+
(
Nkϕ

1
i+ 1

2 , j+1

)2 +
(
Nkϕ

2
i+1, j+ 1

2

)2

≤ 2(1 − δ) + O

(
1

N 2
k

)

≤ 2

if Nk is large enough. As a consequence

(
uki+1, j − uki, j

)
ϕ1
i+ 1

2 , j

+
(
uki, j+1 − uki, j

)
ϕ2
i, j+ 1

2

+
(
uki+1, j+1 − uki, j+1

)
ϕ1
i+ 1

2 , j+1

+
(
uki+1, j+1 − uki+1, j

)
ϕ2
i+1, j+ 1

2
− ε

2
N 2

i, j

≤ 1

Nk
T V 4,ε/Nk

i, j

(
uk
)

. (48)

Thanks to the smoothness of ϕ, one can check easily that

∑

(i, j) even

N 2
i, j +

∑

(i, j) odd

N 2
i, j →

∫

�

|ϕ(x)|2dx

as k → ∞, hence, summing (48) over all (i, j) both odd or
both even, we find (using also the fact that ϕ has compact
support) that

∫

�

uNk (x)divϕ(x)dx − ε

2

∫

�

|ϕ(x)|2dx

+ o(1) ≤ 1

Nk
J Nk ,Nk
ε/Nk

(
uk
)

= Fε,Nk

(
uNk

)
.

In the limit, we find that

∫

�

u(x)divϕ(x)dx − ε

2

∫

�

|ϕ(x)|2dx ≤ �.

Thanks to (47), we deduce that Fε(u) ≤ �.
We now must prove (ii). We only sketch the proof, which

is very simple: one first observes that as any u ∈ BV (�)

can be approximated by a sequence (un) with un ∈ C∞(�),
un → u in L1(�) and

∫
�

�ε(∇un(x))dx = Fε(u), it is

enough to show the result for a smooth function and use then
a diagonal argument.

But if u is smooth, letting simply for each N , uN
i, j =

u((i − 1/2)/N , (j − 1/2)/N), one first observes that

uN (x) :=
∑

i, j

uN
i, jχ

(
i−1
N ,

j
N

)
×
(

j−1
N ,

j
N

)(x) → u(x)

uniformly in �, and then thatFε,N (uN) is a finite-difference
approximation of

∫
�

�ε(u(x))dx , which converges to this
limit as N → ∞. ��

References

1. Aujol, J.-F., Dossal, C.: Stability of over-relaxations for the
forward-backward algorithm, application to FISTA. SIAM J.
Optim. 25(4), 2408–2433 (2015)

2. Beck, A.: On the convergence of alternating minimization for con-
vex programming with applications to iteratively reweighted least
squares and decomposition schemes. SIAM J. Optim. 25(1), 185–
209 (2015)

3. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding
algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1),
183–202 (2009)

4. Beck, A., Tetruashvili, L.: On the convergence of block coordinate
descent type methods. SIAM J. Optim. 23(4), 2037–2060 (2013)

5. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto
the intersection of convex sets in Hilbert spaces. In: Dykstra, R.,
Robertson, T., Wright, F.T. (eds) Advances in Order Restricted
Statistical Inference (Iowa City, Iowa, 1985), vol. 37 of Lecture
Notes in Statistics, pp. 28–47. Springer, Berlin (1986)

6. Braides, A.: Gamma-Convergence for Beginners. Number 22 in
OxfordLecture Series inMathematics and ItsApplications. Oxford
University Press, Oxford (2002)

7. Cai, J.-F., Dong, B., Osher, S., Shen, Z.: Image restoration: total
variation, wavelet frames, and beyond. J. Am. Math. Soc. 25(4),
1033–1089 (2012)

8. Chambolle, A., Dossal, C.: On the convergence of the iterates of the
“fast iterative shrinkage/thresholding algorithm”. J. Optim. Theory
Appl. 166(3), 968–982 (2015)

9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for
convex problems with applications to imaging. J. Math. Imaging
Vis. 40(1), 120–145 (2011)

10. Chambolle, A., Pock, T.: On the ergodic convergence rates of a
first-order primal-dual algorithm. Math. Program. 159, 253–287
(2016)

11. Chambolle, A., Pock, T.: A remark on accelerated block coordinate
descent for computing the proximity operators of a sum of convex
functions. SMAI J. Comput. Math. 1, 29–54 (2015)

12. Chambolle, A., Pock, T.: An introduction to continuous optimiza-
tion for imaging. Acta Numer. 25, 161–319, 5 (2016)

13. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in sig-
nal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L.,
Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algo-
rithms for Inverse Problems in Science and Engineering, vol. 49
of Springer Optimization and Applications, pp. 185–212. Springer,
New York (2011)

14. Dal Maso, G.: An Introduction to �-Convergence. Birkhäuser,
Boston (1993)

15. Demengel, F., Temam, R.: Convex functions of a measure and
applications. Indiana Univ. Math. J. 33(5), 673–709 (1984)

123

J Math Imaging Vis

16. Deutsch, F.,Hundal,H.: The rate of convergence ofDykstra’s cyclic
projections algorithm: the polyhedral case. Numer. Funct. Anal.
Optim. 15(5–6), 537–565 (1994)

17. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of
Functions. CRC Press, Boca Raton (1992)

18. Nemirovski, A.S., Yudin, D.: Informational complexity of mathe-
matical programming. Izv. Akad. Nauk SSSR Tekhn. Kibernet. 1,
88–117 (1983)

19. Nesterov, Y.: Introductory Lectures on Convex Optimization: A
Basic Course, vol. 87 of Applied Optimization. Kluwer, Boston
(2004)

20. Shefi, R., Teboulle, M.: On the rate of convergence of the proximal
alternating linearizedminimization algorithm for convex problems.
EURO J. Comput. Optim. 4(1), 27–46 (2016)

21. Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and
inexact forward–backward algorithms. SIAM J. Optim. 23(3),
1607–1633 (2013)

22. Ziemer, W.P.: Weakly Differentiable Functions. Sobolev Spaces
and Functions of Bounded Variation. Springer, New York (1989)

Antonin Chambolle has stud-
ied at Ecole Normale Supérieure
in Paris and obtained a Ph.D.
in 1993 in Applied Mathemat-
ics with Jean-Michel Morel at
Université Paris-Dauphine. He
has then worked as a CNRS
researcher, a postdoc (in SISSA,
Trieste, Italy), and is a cur-
rently a CNRS research direc-
tor in Applied Mathematics at
Ecole Polytechnique, Palaiseau.
His research interests focus on
calculus of variations and opti-
mization for free boundary prob-

lems which arise in mathematics, mechanics or image processing.

Pauline Tan has been a student
of the Ecole Normale Supérieure
de Cachan, France. She has
obtained a Ph.D. in Applied
Mathematics in 2016, fromEcole
Polytechnique in Paris, where
shewasworking under the super-
vision of Antonin Chambolle
and Pascal Monasse. She is cur-
rently a postdoc at ONERA (The
French Aerospace Lab). Her
interests are in Applied Math-
ematics for imaging and image
analysis.

Samuel Vaiter has studied App-
lied Mathematics and Theoreti-
cal Computer Science in Lyon
and Paris. He has obtained in
2014 a Ph.D. in Applied Math-
ematics from Université Paris-
Dauphine, where he was a
student of Gabriel Peyré. He
has then worked as a postdoc
in CMAP, Ecole Polytechnique,
Palaiseau, and has now a CNRS
research position at the Institut
deMathématiques de Bourgogne
in Dijon, France. His current
research interests focus on varia-

tional regularization in signal and image processing, convex analysis,
sparsity and risk estimation.

123

	Accelerated Alternating Descent Methods for Dykstra-Like Problems
	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Main Assumptions

	2 Sufficient Descent Rules
	2.1 General Updates
	2.2 The Case of Alternating Minimizations
	2.3 A Further Improvement

	3 Accelerated Alternating Minimization
	4 Accelerated Alternating Descent
	4.1 The Nonstrongly Convex Case

	5 The Strongly Convex Case
	6 Experiments: A Toy Model
	7 Application: Even/Odd Splitting of the Total Variation
	7.1 Description
	7.2 Alternating Minimizations
	7.3 Alternating Descent
	7.4 Experiments
	7.4.1 Comparison Between the Algorithms
	7.4.2 GPU Implementation
	7.4.3 Color TV

	8 Conclusion
	Acknowledgements
	Appendix: An Approximation Result
	References

