Automatic differentiation of nonsmooth iterative algorithms
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Summary Iterative algorithm

Iterative algorithm. Pair of a Lipschitz function F: RP x R” + IR? parameterized by

We characterize the attractor set of honsmooth
0 € R™, with Lipschitz initialization xg: 0 — x9(0) and

piggyback iterations as a set-valued fixed point
which remains in the conservative framework. Xe11(0) = F(x((0),0) = Fo(x((0)),

x(0) nonsmo.oth r Jy (0) where Fg := F(-,0), under the assumption that x,(0) converges to the unique fixed point of
J% autodiff = Fo: %(0) = fix(Fy).
|1 E Examples. gradient descent F(x,0) = x — OV h(x), deep equilibrium network.
2(0) NN N JPD
x(6) derivative? x (0) Piggyback differentiation of iterative algorithms

» Piggyback ti e., diff tiati |
ggyback propagation, I.¢., ditierentiation along Chain rule applied to smooth iterative algorithms (“Piggyback” recursion).

algorithms is well understood [1] in the smooth case . ; ;
We extend such results to nonsmooth problems. —x,2+1(0) = 01F (x¢(0),0) - —x,(0) + 3,F (xx(0), 9), (PB-S)
» Our main assumption is nonexpansivity conditions on 00 00
the algorithm studied. where a—aexk is the Jacobian of x, with respect to 0.
C tive | bi Assumption A (The conservative Jacobian of the iterations is a contraction).
onservative Jacobian F is locally Lipschitz, path differentiable, jointly in (x, ©), and Jr is a conservative Jacobian

for F. There exists 0 < p < 1, such that for any (x,0) € IRP x IR™ and any pair

Definition [2|. f :IR? — IR™ locally Lipschitz. The
A, Bl € Je(x,0), with A € RP*P and B € IRP*™, the operator norm of A is at most p.

set-valued J : IRP =2 IR™*P is a conservative Jacobian for the

path differentiable f if J is closed, locally bounded and J,, is a conservative Jacobian for the initialization function 0 — xp(0).

nowhere empty with Under Assumption A, Fg is a strict contraction: (x,(0))x converges linearly to x(0) = fix(Fg).
d - ) - . . 66 e 1 & e
th/(t)) — J(v())V(t) ae. Chain rule applied to nonsmooth iterative algorithms (“Piggyback” recursion).

for any v: [0, 1] — IRP absolutely continuous with respect to Jy.i(0) ={AJ+ B, [A, Bl € JF(x(9),0), J € J, (9)]. (PB-NS)

the Lebesgue measure.

Fixed point of affine iterations Main result: infinite chain rule

Set-valued (piggyback) map based on the fix operator from Theorem 1,
PP 9 =3 fix [Jr(%(0), 0)] = fix [Jr(fix(Fo), 0)] .

> J C RP*PTM). compact set of matrices such that
VIA Bl € 7, ||Allop < p-

> Action of J on matrices of size p X m Theorem 2 (Conservative mapping for the fixed point map) Under Assumption A,
J: X =3{AX + B, [A B] € J} JP* is a conservative Jacobian for the fixed point map X, and:
» (Extended) action of J on set of matrices for all @,  lim gap(J,(6), PP(9)) = 0;
J: X=3{AX+B, |A Bled, XeX}t kfooa O
» Recursive action of J on (X4)kenN for almost all 6, lemm @Xk(e) a %2(9),
Yii1 = J(X,) Yk € N. where gap(X,Y) = maxwex d(x,Y), and d(x,Y) = min,cy || x — y||.

» Limit-derivative exchange: Asymptotically, the gap between the differentiation of x;
and the derivative of the limit is zero. (can be shown to be linear under additional hypotheses,)

» Assuming that for every (A, B] € J(x(0), 0), the matrix /| — A is invertible, we have [3]

Theorem 1 (Set-valued affine contractions). There is

a unique nonempty compact set fix(J) satisfying fix(J) =

H(flx(ﬂ)), imp —1 v
N it £ _ o dist(Xo, 3(0)) S0 3 {(1—A)'B,[A Bl € Je(x(60),0)}
<N, dist{Xy fix(d)) < p 1—0p | is a conservative Jacobian for x (implicit differentiation). Under Assumption A, one has
MP(Q) < JP°(0). If F is not differentiable, the inclusion may be strict.
Consequence for automatic differentiation Applications to proximal methods
|nput: k € N, 0 c ]I{m, e - Rm, Wy € RP. Initialize: Xp = Xo(e) c RP. Ridge (FB) Lasso (FB) Sparse Inv. Covar. (DR) Trend Filtering (ADMM)
_ —107"- 10775 1071+ =y \
Forward mode (JVP): Reverse mode (VJP): 8, = 0. &104\ 104_\ o \ 10
x=J0,J e J, (0). fori=1,..., k do - 107
fori=1 ... k do x = F ( X1, 9) - 0 500 1000 0 500 1000 101_(') 500 1000 100_(“00
Xj — F(Xi—lr e) _ for i =k, ..., 1 do QT& 10711 \ . \ 101 - \\ 1()1
X;j = Ai—1xj—1 + Bi_10 Ok =0, +B Wi w_i=A,w | Jw= 1074 102
Ai_1, Bi_1l € Jr(x;_1,0) Ai_1,Bi_1l € Jr(x;—1,0) 0 500 k 1000 0 500 k 1000 0 500 k 1000 0 500 k 1000
- —_ —_ T — 1teration 1teration iteration iteration
Return: x Ok = Ok _I__J wo, J € JXo(e) lllustration of the linear convergence. (First line) Distance of the iterates to the fixed point.
Return: O, (Second line) Distance of the piggyback Jacobians to the Jacobian of the fixed point.

Theorem 3 (Convergence of JVP and VJP).
> (JVP). For almost all © € R™, x, — 3X0.

> (VJP). Assume that limy_.., wx = w (for example, wy, = V{(x,) for a - 1
C! loss £), then for almost all 6 € R™, 6] — v'ng—g. S 05- > . ————mmnfv\(\[\{\/\/\{v
B ~ 900- {

i

Failure of inertial methods
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