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Figure 1: Fundamental paper of stochastic approximation by Herbert Robbins and Monro
(1951)

Stochastic gradient descent (SGD) is the workhorse of modern machine learning. Almost all
recent achievements (≥ 2010s) in computer vision, natural language processing are somehow
connected to the use of SGD (or one of its multiple generalization). Despite this modern
aspect, SGD takes its root in the seminal paper of Herbert Robbins and Monro (1951), more
than 70 years ago. The key insight of Robbins and Monro is that first orders method are
robust. What does it means? The gradient descent does not need an exact computation of
the gradient, it only need that in average the computation is correct up to some “stochastic”
errors. We will formalize this idea in this chapter. again inspired by the lecture notes of
Bach (2021). A key insight from the seminal paper by Bottou and Bousquet (2007) is that in
machine learning, high precision is not required since it is meaningless to optimize below the
statistical error. This paper considerably relaunched the interest towards SGD, especially for
empirical risk minimization.
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Stochastic approximation

Let (Ω, 𝒜, ℙ) a probability space. We consider the following stochastic approximation prob-
lem

𝑥⋆ ∈ argmin
𝑥∈ℝ𝑑

𝑓(𝑥) ∶= 𝔼𝜉∼ℙ[𝐹 (𝑥; 𝜉)]. (1)

Observe that Equation 1 encompasses two important problem of supervised machine learning:
expected risk minimization and empirical risk minimization. Let us recall basic fact on risk
minimization. Our goal is given observations1 (couple of features and responses) (𝑐𝑖, 𝑟𝑖) ∈
𝐶 × 𝑅, for 𝑖 = 1, … , 𝑁 , the goal is to predict a new response 𝑟 ∈ 𝑅 given a new feature 𝑓 ∈ 𝐶.
Consider now the test distribution ℙ on Ω = 𝐶 × 𝑅 and a loss function ℓ ∶ 𝑅 × 𝑅 → ℝ.

• Expected risk minimization. The expected risk (or simply risk) of a predictor 𝜙 ∶ 𝐶 → 𝑅
is the quantity

ℝ(𝜙) = 𝔼(𝑐,𝑟)∼ℙ [ℓ(𝑟, 𝜙(𝑐))] = ∫
𝐶×𝑅

ℓ(𝑟, 𝜙(𝑐))𝑑ℙ(𝑐, 𝑟).

This minimization problem fits the framework of Equation 1 with 𝑥 = (𝑐, 𝑟), 𝐹 = ℓ and
ℙ is the joint probability on 𝐹 × 𝑅.

• Empirical risk minimization. The practical counterpart of the expected risk is the em-
pirical risk defined as

ℝ̂(𝜙) = 1
𝑁

𝑁
∑
𝑖=1

ℓ(𝑟𝑖, 𝑓(𝑐𝑖)).

Again, this minimization problem fits the framework of Equation 1 with 𝑥 = (𝑐, 𝑟), 𝐹 = ℓ,
but now ℙ is the empirical distribution based on the test data (𝑐𝑖, 𝑟𝑖).

Stochastic gradient descent

We suppose that we have access to stochastic estimation 𝑔𝑡+1(𝑥𝑡) of the gradient ∇𝑓(𝑥(𝑡)),
i.e.,

𝑥(𝑡+1) = 𝑥(𝑡) − 𝜂(𝑡)𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)). (2)

The stochastic gradient algorithm is NOT a descent method in the sense of of the
oracle 𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)) is not necessarly a descent direction as defined for instance in our lecture
on the gradient descent.

Two situations:

• Stochastic approximation. Here we have access to an additive noisy version of the “true”
gradient:

𝑔(𝑡)(𝑥; 𝜉) = ∇𝑓(𝑥) + 𝜉.
1Variables 𝑐 and 𝑟 are typically denoted 𝑥 and 𝑦 in a ML courses, but we want to keep them free for the

optimization variable.
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• Learning from samples. On the contrary, here we have for instance ℙ that is a uniform
choice between 𝑖 ∈ 1, … , 𝑁 :

𝑔(𝑡)(𝑥; 𝜉) = ∇𝑓𝜉(𝑥),
where 𝜉 ∼ 𝒰(1, … , 𝑁).

The standard assumption when dealing with SGD is the access to an unbiased estimator of
the gradient.

Unbiasedness of the stochastic gradient estimate

𝔼𝜉 [𝑔𝑡+1(𝑥(𝑡); 𝜉)∣𝑥(𝑡)] = ∇𝑓(𝑥(𝑡)). (3)

Note that it is possible to deal with biased oracles, but this goes beyond the limit of this
course.

We are going to study the convergence of SGD in expectation, that is the main way to analyze
in the machine learning community the stochastic convergence. Nevertheless, the stochastic
approximation literature, starting from (H. Robbins and Siegmund 1971), are often concerned
with almost sure convergence based on martingale tools.

For convex function, we will assume that the noisy gradient 𝑔(𝑡) are bounded almost-surely.

Bounded gradient

∃𝐵 > 0, ∀𝑡 ∈ ℕ, ||𝑔(𝑡+1)(𝑥𝑡; 𝜉)||22 ≤ 𝐵2 ℙ-almost surely. (4)

The simplest strategy to choose the step size, as for the batch gradient descent, is to fix
some 𝜂(𝑡) = 𝜂 > 0. Unfortunately, this method does not converge towards a minimizers of
Equation 1! It is nevertheless, the most frequent use of SGD in practice. Why? Because,
despite the nonconvergence, it is possible to show that the iterations are “close enough” to the
true minimizer in the following sense (even if 𝑓 is not convex).

Theorem 0.1 (Convergence up to a ball of SGD). Assume that 𝑓 is 𝐿-smooth and Equation 3,
Equation 4 are satisfied. For an initial guess 𝑥(0), the SGD iterates 𝑥(𝑡) with constant step-size
𝜂(𝑡) = 𝜂 satisfy

1
𝑇 𝔼 [

𝑇 −1
∑
𝑡=0

||∇𝑓(𝑥(𝑡))||2] ≤ 𝑓(𝑥(0)) − 𝑓⋆

𝑇 𝜂 + 𝜂𝐿𝐵2

2 ,

where 𝑓⋆ is the optimal value of Equation 1.

A consequence is that when 𝑇 goes to +∞, the expected squared-norm of the gradient of a
point uniformly chosen from the trajectory of SGD lies in a ball of radius 𝜂𝐿𝐵2

2 ∝ 𝜂 centered
in 0. This is illustrated in the video below
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The situation is radically different from the batch mode where the asymptotic regime produce
a true solution.

Proof of Theorem Theorem 0.1. This is a slight adaptation of the descent lemma from the
batch gradient descent proof. We start from

𝑓(𝑥(𝑡+1)) ≤ 𝑓(𝑥(𝑡)) − 𝜂⟨𝑔(𝑡+1)(𝑥𝑡; 𝜉(𝑡)), ∇𝑓(𝑥(𝑡))⟩ + 𝜂2 𝐿
2 ||𝑔(𝑡+1)(𝑥𝑡; 𝜉(𝑡)||2.

In the light of Equation 3, Equation 4, we have thus taking the expectation

𝔼[𝑓(𝑥(𝑡+1))] ≤ 𝔼[𝑓(𝑥(𝑡))] − 𝜂𝔼[||∇𝑓(𝑥(𝑡))||2] + 𝜂2 𝐿𝐵2

2 .

Telescoping the difference between 𝑓(𝑥(𝑡+1)) and 𝑓(𝑥(𝑡)), we have

𝔼[𝑓(𝑥(𝑇 )) − 𝑓(𝑥(0))] ≤ 𝑇 𝜂2𝐿𝐵2

2 − 𝜂
𝑇 −1
∑
𝑡=0

||∇𝑓(𝑥(𝑡))||2.

We obtain the claimed result by dividing by 𝑇 𝜂 and observing that 𝑓(𝑥(𝑇 )) ≥ 𝑓⋆.

Convergence rate in the convex setting

We now dive away from the constant stepsize framework, and will study what happens when
𝜂(𝑡) varies accross iterations. The following theorem gives the 𝑂(1/

√
𝑡) rate of SGD in the

convex case.

Theorem 0.2 (Rate of Equation 2 for convex functions). Assume that 𝑓 is convex. For an
initial guess 𝑥(0), suppose that 𝑓 has a minimizer 𝑥⋆ satisfying

||𝑥⋆ − 𝑥(0)|| ≤ 𝐷,

for some 𝐷 > 0. Assume that Equation 3, Equation 4 are satisfied. Then, the SGD iterates
𝑥(𝑡) with step-size 𝜂(𝑡) = 𝐷

𝐵
√

𝑡 satisfy2

𝔼 [𝑓( ̄𝑥(𝑡)) − 𝑓(𝑥⋆)] ≤ 𝐷𝐵2 + log(𝑡)
2
√

𝑡 ,

where ̄𝑥(𝑡) is the averaged version of 𝑥(𝑡), i.e.,

̄𝑥(𝑡) = 1
∑𝑡

𝑘=1 𝜂(𝑘)

𝑡
∑
𝑘=1

𝜂(𝑘)𝑥(𝑘−1).

2Note that 𝑓 is not random, but �̄�(𝑡) is, so that 𝔼[�̄�(𝑡)] is meaningful.
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Proof. Let 𝑡 ≥ 1. We have the following decomposition

||𝑥(𝑡+1) − 𝑥⋆||2 = ||𝑥𝑡 − 𝜂(𝑡)𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)) − 𝑥⋆||2
= ||𝑥(𝑡) − 𝑥⋆||2 − 2𝜂(𝑡)⟨𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩

+ (𝜂(𝑡))2||𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡))||2.

Using the linearity of the expectation, we get

𝔼[||𝑥(𝑡+1) − 𝑥⋆||2] = 𝔼[||𝑥(𝑡) − 𝑥⋆||2] − 2𝜂(𝑡)𝔼[⟨𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩]
+ (𝜂(𝑡))2𝔼[||𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡))||2].

We keep the first term as it is, the last term is bounded by

(𝜂(𝑡))2𝔼[||𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡))||2] ≤ (𝜂(𝑡))2𝐵2 a.s. (bounded gradient)

To bound the middle term, we use the total law of conditional expectation

𝔼 [⟨𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩]
= 𝔼 [𝔼[⟨𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩|𝑥(𝑡)]] (total law)
= 𝔼 [⟨𝔼[𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡))|𝑥(𝑡)], 𝑥(𝑡) − 𝑥⋆⟩] (linearity of cond. expectation)
= 𝔼 [⟨∇𝑓(𝑥(𝑡)), 𝑥(𝑡) − 𝑥⋆⟩] (unbiasedness)
≤ 𝔼 [𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)] ,

where the last inequality comes from the differential characterization of a convex function.
Combining these three terms gives

𝔼[||𝑥(𝑡+1) − 𝑥⋆||2] ≤ 𝔼[||𝑥(𝑡) − 𝑥⋆||2] − 2𝜂(𝑡)𝔼[𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)] + (𝜂(𝑡))2𝐵2. (5)

Reorganizing the terms, we have

𝜂(𝑡)𝔼[𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)] ≤ 1
2 (𝔼[||𝑥(𝑡) − 𝑥⋆||2] − 𝔼[||𝑥(𝑡+1) − 𝑥⋆||2]) + 1

2(𝜂(𝑡))2𝐵2.

We observe that summing over the iterations 𝑡 = 0 … 𝑇 − 1 leads to a natural telescoping sum
on the first term of the right-hand side:

𝑇 −1
∑
𝑡=0

𝜂(𝑡)𝔼[𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)] ≤ 1
2 (𝔼[||𝑥(0) − 𝑥⋆||2] − 𝔼[||𝑥(𝑇 ) − 𝑥⋆||2]) + 1

2𝐵2
𝑇 −1
∑
𝑡=0

(𝜂(𝑡))2.

Since 𝔼[||𝑥(𝑇 ) − 𝑥⋆||2] is nonnegative, we have the cruder bound

𝑇 −1
∑
𝑡=0

𝜂(𝑡)𝔼[𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)] ≤ 1
2||𝑥(0) − 𝑥⋆||2 + 1

2𝐵2
𝑇 −1
∑
𝑡=0

(𝜂(𝑡))2.
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Dividing by ∑𝑇 −1
𝑡=0 𝜂(𝑡), we obtain

1
∑𝑇 −1

𝑡=0 𝜂(𝑡)

𝑇 −1
∑
𝑡=0

𝜂(𝑡)𝔼[𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)] ≤ ||𝑥(0) − 𝑥⋆||2
2 ∑𝑇 −1

𝑡=0 𝜂(𝑡)
+ 𝐵2 ∑𝑇 −1

𝑡=0 (𝜂(𝑡))2

2 ∑𝑇 −1
𝑡=0 𝜂(𝑡)

. (6)

The left-hand side of Equation 6 is an upper-bound of 𝔼[𝑓( ̄𝑥(𝑡)) − 𝑓(𝑥⋆)]. Indeed,

1
∑𝑇 −1

𝑡=0 𝜂(𝑡)

𝑇 −1
∑
𝑡=0

𝜂(𝑡)𝔼[𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)] = 𝔼 [ 1
∑𝑇 −1

𝑡=0 𝜂(𝑡)

𝑇 −1
∑
𝑡=0

𝜂(𝑡)(𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆))]

= 𝔼 [
𝑇 −1
∑
𝑡=0

𝜂(𝑡)

∑𝑇 −1
𝑡=0 𝜂(𝑡)

𝑓(𝑥(𝑡)) − 𝑓(𝑥⋆)]

≥ 𝔼 [𝑓 (
𝑇 −1
∑
𝑡=0

𝜂(𝑡)

∑𝑇 −1
𝑡=0 𝜂(𝑡)

𝑥(𝑡)) − 𝑓(𝑥⋆)]

= 𝔼[𝑓( ̄𝑥(𝑡)) − 𝑓(𝑥⋆)],
where the inequality comes from the Jensen’s inequality.

We now look at an upper-bound of the right-hand side. We need two things:

• The sum ∑𝑇 −1
𝑡=0 𝜂(𝑡) needs to diverge to +∞ so that the first term goes to 0.

• The sum ∑𝑇 −1
𝑡=0 𝜂(𝑡) needs to diverge to +∞ more “quickly” that the sum of squares

∑𝑇 −1
𝑡=0 (𝜂(𝑡))2 so that the second term goes also to 0.

A typical example of such a sequence is 𝜂(𝑡) = 𝛼(𝑡 + 1)−1/2 for some 𝛼 > 0. Indeed, we have

||𝑥(0) − 𝑥⋆||2
2 ∑𝑇 −1

𝑡=0 𝜂(𝑡)
+ 𝐵2 ∑𝑇 −1

𝑡=0 (𝜂(𝑡))2

2 ∑𝑇 −1
𝑡=0 𝜂(𝑡)

≤ 𝐷2 + 𝐵2𝛼2 ∑𝑇
𝑡=1 𝑡−1

2𝛼 ∑𝑇
𝑡=1 𝑡−1/2

.

Using the fact that
𝑇

∑
𝑡=1

𝑡−1/2 ≥
𝑇

∑
𝑡=1

𝑇 −1/2 = 𝑇√
𝑇

=
√

𝑇 ,

we have that
𝐷2 + 𝐵2𝛼2 ∑𝑇

𝑡=1 𝑡−1

2𝛼 ∑𝑇
𝑡=1 𝑡−1/2

≤ 1
2𝛼

√
𝑇

(𝐷2 + 𝐵2𝛼2
𝑇

∑
𝑡=1

𝑡−1) .

We bound the harmonic serie ∑𝑇
𝑡=1 𝑡−1 by 1 + log 𝑇 , hence

||𝑥(0) − 𝑥⋆||2
2 ∑𝑇 −1

𝑡=0 𝜂(𝑡)
+ 𝐵2 ∑𝑇 −1

𝑡=0 (𝜂(𝑡))2

2 ∑𝑇 −1
𝑡=0 𝜂(𝑡)

≤ 1
2𝛼

√
𝑇

(𝐷2 + 𝐵2𝛼2(1 + log 𝑇 )) .

We obtain the claimed bound by setting 𝛼 = 𝐷/𝐵.
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Several remarks needs to be stated:

• As claimed before, SGD is not a descent method. Moreover, we proved here the con-
vergence in expectation of the value function of the averaged iterates 𝑥(𝑡). Note that
almost-sure convergence can be proved, but with more involved arguments, see for in-
stance (Sebbouh, Gower, and Defazio 2021) and references therein.

• It is possible to replace the noisy gradient step by a projected noisy gradient step, i.e.,
using the algorithm defined by

𝑥(𝑡+1) = Π𝐵(𝑥(0),𝐷) (𝑥(𝑡) − 𝜂(𝑡)𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡))) .

The obtained results are exactly the same.

• It is also possible to remove the assumption that 𝑥(0) lives in a neighborhood of an
optimal solution 𝑥⋆ and requires instead that 𝐹 is 𝐵-smooth. Note that in this case, we
do not obtain better results (contrary to the nonstochastic setting).

• The bound can be shown to optimal (Agarwal et al. 2012, Theorem 1) (at least in the
Lipschitz setting).

Minibatch Stochastic Gradient Descent

The minibatch idea is to make a tradeoff between the fast rate of the gradient descent but
linear depency on 𝑁 , and the slow rate of SGD but dimension-free dependency: we reduce the
variance of the noise, but have a higher running time. Minibatching can also take advantage of
parallel architectures such as GPU or SIMD instructions on CPU. A minibatch is built upon
𝐵 call to the stochastic oracle, and its SGD step associated is written as

𝑥(𝑡+1) = 𝑥(𝑡) − 𝜂(𝑡)

𝑀
𝑀

∑
𝑚=1

𝑔(𝑡+1)(𝑥(𝑡); 𝜉(𝑡)
𝑏 ) where (𝜉(𝑡)

1 , … , 𝜉(𝑡)
𝑀 ) ∼ ℳ(𝑀, 𝑁).

Observing that ̃𝑔(𝑡+1)(𝑥,𝜉𝜉𝜉) = 1
𝑀 ∑𝑀

𝑚=1 𝑔(𝑡+1)(𝑥; 𝜉𝑚) is an unbiased estimator of the gradient
of 𝑓 , indeed

𝔼𝜉𝜉𝜉 [ ̃𝑔(𝑡+1)(𝑥(𝑡); 𝜉𝜉𝜉)∣𝑥(𝑡)] = 𝔼𝜉𝜉𝜉 [ 1
𝑀

𝑀
∑
𝑚=1

𝑔(𝑡+1)(𝑥(𝑡); 𝜉𝑚)∣𝑥(𝑡)]

= 1
𝑀

𝑀
∑
𝑚=1

𝔼𝜉𝜉𝜉 [𝑔(𝑡+1)(𝑥(𝑡); 𝜉𝑚)∣𝑥(𝑡)] by linearity

= 1
𝑀

𝑀
∑
𝑚=1

∇𝑓(𝑥(𝑡)) = ∇𝑓(𝑥(𝑡)) unbiasedness.
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The minibatch gradient is also bounded, indeed

|| ̃𝑔(𝑡+1)(𝑥(𝑡); 𝜉𝜉𝜉)||22 = || 1
𝑀

𝑀
∑
𝑚=1

𝑔(𝑡+1)(𝑥(𝑡); 𝜉𝑚)||22

≤ 1
𝑀2

𝑀
∑
𝑚=1

||𝑔(𝑡+1)(𝑥(𝑡); 𝜉𝑚)||22

≤ 𝐵2

𝑀 ℙ-almost surely.

We can hence apply Theorem 0.2. A lot of effort has been done in the last year to determine
what is the optimal minibatch size, see e.g., Gower et al. (2019), or to derive schedule policy
with increasing size of the minibatch.
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