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Figure 1: Definition of concavity by Archimede

Despite the fact that many problems encountered in statistics and machine learning are not
convex, convexity is an important to study in order to understand what is the generic behaviour
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of an optimization procedure.

Convex set

A set 𝐶 ⊆ 𝒳 is convex if every segment of 𝐶 is contained in 𝐶. It can formalized as the
following definition and illustrated in TODO.

Figure 2: 𝐶 is a convex set, Ω is not.

Definition 0.1 (Convex set). A set 𝐶 ⊆ 𝒳 is convex if

∀(𝑥, 𝑦) ∈ 𝐶2, ∀𝜆 ∈ [0, 1], 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐶.

One can observe that it is possible to replace 𝜆 ∈ [0, 1] by 𝜆 ∈ (0, 1) without any difference
(prove it!) In most of these lecture notes, the set 𝒳 will the Euclidean space ℝ𝑝, but remark
that this notion only requires that 𝒳 is a vector space over the real numbers ℝ, possibly of
infinite dimension.

Example 0.1 (Basic convex sets).

• The convex sets of ℝ are exactly the intervals of ℝ.
• Any affine hyperplane 𝐻 = {𝑥 ∈ 𝒳 ∶ 𝜑(𝑥) = 𝛼} where 𝒳 is a real vector space, 𝜑 a

linear functional and 𝛼 ∈ ℝ is convex.
• Any half-space 𝐻− = {𝑥 ∈ 𝒳 ∶ 𝜑(𝑥) ≤ 𝛼} is also convex.
• The unit simplex of ℝ𝑑 defined as

Δ𝑑−1 = {𝑥 ∈ ℝ𝑑 ∶ 𝑥𝑖 ≥ 0 and ∑
𝑖

𝑥𝑖 = 1}

is convex.
• The nonnegative orthant ℝ𝑑

≥0 = {𝑥 ∈ ℝ𝑑 ∶ 𝑥𝑖 ≥ 0} is convex.

The following proposition reviews some important algebraic properties of convex sets.

Proposition 0.1 (Operations on convex sets).
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• Arbitrary intersection. Let (𝐶𝑖)𝑖∈𝐼 convex sets where 𝐼 is a set. Then ∩𝑖∈𝐼𝐶𝑖 is convex.
• Cartesian product. Let 𝐶1, … , 𝐶𝑛 be sets of ℝ𝑛1 , … , ℝ𝑛𝑛. Then 𝐶1 × ⋯ × 𝐶𝑛 is convex

if, and only if, every 𝐶𝑖 is convex.
• Sum. Let 𝐶1, 𝐶2 two convex sets. Then the (Minkowski) sum 𝐶1 + 𝐶2 is convex.
• Affine map. Let 𝐴 ∶ ℝ𝑛 → ℝ𝑚 be an affine map and 𝐶 ⊆ ℝ𝑛 a convex set. Then the

image 𝐴(𝐶) is convex.

Convex functions

Definition

The intuitive definition of a convex function is a function such that “the line joining 𝑓(𝑥) and
𝑓(𝑦) lies above the graph of 𝑓 between 𝑥 and 𝑦”. Formally, this definition makes sense using
the definition of the epigraph of 𝑓 .

Definition 0.2 (Epigraph). Let 𝑓 ∶ ℝ𝑛 → ℝ and 𝑓 ≠ +∞. The epigraph of 𝑓 is the subset
of ℝ𝑛 × ℝ defined by

epi 𝑓 ∶= {(𝑥, 𝑡) ∈ ℝ𝑛 × ℝ ∶ 𝑡 ≥ 𝑓(𝑥)} .

Figure 3: (Left) Epigraph of a concave function. (Right) Epigraph of a convex function

Equipped with this notion, we can define convex functions using the definition of convex sets
(Definition 0.1) applied to the epigraph (Definition 0.2).

Definition 0.3 (Convex function). A function 𝑓 ∶ ℝ𝑝 → ℝ such that 𝑓 ≠ +∞ is convex
function iff its epigraph epi𝑓 is convex.

It is possible to make explicit this definition as follow:

∀𝑥, 𝑦 ∈ dom 𝑓, ∀𝜆 ∈ [0, 1], 𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦). (1)

Following the convention introduced in (Hiriart-Urruty and Lemarechal 1996), we will denote
the set of all convex functions of ℝ𝑝 as Conv ℝ𝑝, and the set of closed – that is, with closed
epigraph – convex functions of ℝ𝑝 as Convℝ𝑝.
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Local and global minima of a convex function

For a (un)constrained minimization problem on a convex set 𝐶 ⊆ dom 𝑓 with a function
𝑓 ∶ 𝐶 → ℝ,

min
𝑥∈𝐶

𝑓(𝑥), (2)

we say that 𝑥⋆ is

• a local solution of (Equation 2), if there exists a neighborhood 𝒪 of 𝑥⋆ such that for all
𝑥 ∈ 𝐶 ∩ 𝒪, 𝑓(𝑥) ≥ 𝑓(𝑥⋆) ;

• a (global) solution if for all 𝑥 ∈ 𝐶, 𝑓(𝑥) ≥ 𝑓(𝑥⋆).

A fundamental result is that, when 𝑓 is convex, every local solution of (Equation 2) is global
solution, and the set of (global) solutions is a convex set.

Theorem 0.1 (Local minima of convex functions are global). Assume that 𝑓 is a convex
function and 𝐶 is a convex closed set. Then,

• Any local solution of (Equation 2) is a global solution;

• The set of global solutions of (Equation 2) is convex.

Proof. Part 1. By contradiction. Consider a local solution 𝑥⋆ and assume that 𝑥⋆ is not a
global solution. In particular, there exists 𝑧 ∈ 𝐶 such that 𝑓(𝑧) < 𝑓(𝑥⋆). By convexity,

𝑓((1 − 𝑡)𝑥⋆ + 𝑡𝑧) ≤ (1 − 𝑡)𝑓(𝑥⋆) + 𝑡𝑓(𝑧) < 𝑓(𝑥⋆) ∀𝑡 ∈ [0, 1]

Given any open neighborhood 𝒪 of 𝑥⋆, there exists 𝑡 > 0 such that (1−𝑡)𝑓(𝑥⋆)+𝑡𝑓(𝑧) < 𝑓(𝑥⋆)
(contradiction).

Part 2. Take two global solutions, and study the segment joining it: let 𝑥⋆ and 𝑧 two solutions.
We have 𝑓(𝑥⋆) = 𝑓(𝑧), and in turn,

𝑓(𝑥⋆) ≤ 𝑓((1 − 𝑡)𝑥⋆ + 𝑡𝑧) ≤ (1 − 𝑡)𝑓(𝑥⋆) + 𝑡𝑓(𝑧) = 𝑓(𝑥⋆),

where the first inequality comes from the equality of the function at 𝑥⋆ and 𝑧, and the second
by convexity.
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Figure 4: A differentiable convex function and its tangent. The curve 𝑦 = 𝑓(𝑥) is always above
its tangent in red.

Differentiable properties of a convex function

A differentiable function is convex if, and only if, it is above all its tangents, see Figure 4

Proposition 0.2. Let 𝑓 be a differentiable function on an open set Ω ⊆ ℝ𝑝, and 𝐶 ⊆ Ω a
convex subset of Ω. Then 𝑓 is convex on 𝐶 if, and only if,

∀𝑥, ̄𝑥 ∈ 𝐶, 𝑓(𝑥) ≥ 𝑓( ̄𝑥) + ⟨∇𝑓( ̄𝑥), 𝑥 − ̄𝑥⟩. (3)

Proof. Assume 𝑓 is convex on 𝐶. Let 𝑥, ̄𝑥 ∈ 𝐶 and 𝜆 ∈ (0, 1). By Definition 0.3, we have

𝑓(𝜆𝑥 + (1 − 𝜆) ̄𝑥) − 𝑓( ̄𝑥) ≤ 𝜆(𝑓(𝑥) − 𝑓( ̄𝑥)).

Dividing by 𝜆, and letting 𝜆 goes to 0, we obtain Equation 3.

Reciprocally, let 𝑥, 𝑦 ∈ 𝐶, 𝜆 ∈ (0, 1) and define 𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐶. Applying Equation 3
twice, we have

𝑓(𝑥) ≥ 𝑓(𝑧) + ⟨∇𝑓(𝑧), 𝑥 − 𝑧⟩
𝑓(𝑦) ≥ 𝑓(𝑧) + ⟨∇𝑓(𝑧), 𝑦 − 𝑧⟩.

Using a convex combination of these two lines, we get

𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) ≥ 𝑓(𝑧) + ⟨∇𝑓(𝑥), 𝛼𝑥 + (1 − 𝛼)𝑦 − 𝑧⟩,

which is exactly Equation 1.

A similar criterion can be derived for strictly convex function. Remark that Theorem 0.1 is a
direct consequence of Proposition 0.2 for the class of differentiable convex functions: a local
minima 𝑥⋆ satisfies ∇𝑓(𝑥⋆) = 0 and thus (Equation 3) gives 𝑓(𝑥) ≥ 𝑓(𝑥⋆) for all 𝑥 ∈ 𝐶.
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Strongly convex functions

Definition

A strongly convex function satisfies a stronger statement of the Jensen’s inequality.

Definition 0.4 (Strongly convex function). A function 𝑓 ∶ ℝ𝑛 → ℝ is strongly convex of
modulus 𝜇 > 0 if dom 𝑓 is convex and

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) − 1
2𝜇𝜆(1 − 𝜆)‖𝑥 − 𝑦‖2,

for all 𝑥, 𝑦 ∈ dom 𝑓 and 𝜆 ∈ [0, 1].

Another way to define strongly convex function is to say that 𝑓 is 𝜇-strongly convex if the
function

𝑥 ↦ 𝑓(𝑥) − 𝜇
2 ||𝑥||2

is a convex function.

A strongly convex function defined on the whole space ℝ𝑑 has a unique minimizer.

Differentiability, strong convexity and quadratic lower bound

A function 𝑓 is strongly convex if, and only if, it is strictly above its tangent, and you can
“fit” a quadratic form between the tangent and the function itself. This is a key property to
defined lower bounds on 𝑓 .

Figure 5: Strong convexity and differentiability. There is space for a quadratic form between
the curve 𝑦 = 𝑓(𝑥) and the tangent.
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Proposition 0.3. Let 𝑓 be a differentiable and 𝜇-strongly convex function. Then,

∀𝑥, ̄𝑥 ∈ dom 𝑓, 𝑓(𝑥) ≥ 𝑓( ̄𝑥) + ⟨∇𝑓( ̄𝑥), 𝑥 − ̄𝑥⟩ + 𝜇
2 ‖𝑥 − ̄𝑥‖2.

Note that if 𝑓 is 𝐶2, 𝑓 is 𝜇-strongly convex if, and only if, its Hessian ∇2𝑓 ≥ 𝜇 Id, i.e., is
definite positive.

An easy consequence is that it is possible to establish a lower bound on the values based on a
lower bound on the distance between points:

𝑓(𝑥) ≥ 𝑓(𝑥⋆) + 𝜇
2 ‖𝑥 − 𝑥⋆‖2, (4)

where 𝑥⋆ is the minimizer of 𝑓 .

Lipschitz continuity of the gradient

Definition

Definition 0.5 (𝐿-smoothness). A differentiable function 𝑓 ∶ ℝ𝑛 → ℝ is said to be 𝐿-smooth
if ∇𝑓 is 𝐿-Lipschitz, i.e.,

∀𝑥, 𝑦 ∈ dom 𝑓, ‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖∗ ≤ 𝐿‖𝑥 − 𝑦‖.

\end{definition} Here ‖ ⋅ ‖∗ is the dual norm of ‖ ⋅ ‖.

Quadratic upper bound

𝐿-smoothness is important in optimization because it ensures a quadratic upper bound of the
function.

Proposition 0.4. Let 𝑓 a 𝐿-smooth function. Then, for all 𝑥, 𝑦 ∈ dom𝑓,

⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≤ 𝐿‖𝑥 − 𝑦‖2. (5)

Moreover, if dom𝑓 is convex, then Equation 5 is equivalent to

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ + 𝐿
2 ‖𝑥 − 𝑦‖2, ∀𝑥, 𝑦 ∈ dom𝑓. (6)
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Proof. The fact that 𝐿-smoothness implies (Equation 5) is a direct application of the (gener-
alized) Cauchy-Schwarz inequality.

For the equivalence of (Equation 5) and (Equation 6), let’s prove the two direction. Given
𝑥, 𝑦 ∈ dom𝑓 , define the real function 𝑔(𝑡) = 𝑓(𝑥 + 𝑡(𝑦 − 𝑥)).
Assuming Equation 5 holds, then

𝑔′(𝑡) − 𝑔′(0) = ⟨∇𝑓(𝑥 + 𝑡(𝑦 − 𝑥)) − ∇𝑓(𝑥), 𝑦 − 𝑥⟩ ≤ 𝑡𝐿‖𝑥 − 𝑦‖2.
Now,

𝑓(𝑦) = 𝑔(1) = 𝑔(0) + ∫
1

0
𝑔′(𝑡) ≤ 𝑔(0) + 𝑔′(0) + 𝐿

2 ‖𝑥 − 𝑦‖2

= 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ + 𝐿
2 ‖𝑥 − 𝑦‖2.

Reciprocally, if (Equation 5) holds, it is sufficient to apply it twice (to 𝑥, 𝑦 and 𝑦, 𝑥) and
combine the two equations.

This result has a strong implication on the minima of 𝑓 .

Proposition 0.5. Let 𝑓 be a 𝐿-smooth function with full domain, and assume 𝑥⋆ is a minimizer
of 𝑓. Then,

1
2𝐿‖∇𝑓(𝑧)‖2

∗ ≤ 𝑓(𝑧) − 𝑓(𝑥⋆) ≤ 𝐿
2 ‖𝑧 − 𝑥⋆‖2 ∀𝑧 ∈ ℝ𝑛.

Proof. The two side are proved separately.

rhs: Apply Equation 5 applied to ((x^{�}, z)).

lhs: Minimize the quadratic upper bound for 𝑥 = 𝑧:

𝑓(𝑥⋆) = min
𝑦∈ℝ𝑛

𝑓(𝑦) ≤ inf
𝑦

(𝑓(𝑧) + ⟨∇𝑓(𝑧), 𝑦 − 𝑧⟩ + 𝐿
2 ‖𝑦 − 𝑧‖2)

= inf
‖𝑣‖=1

inf
𝑡

(𝑓(𝑧) + 𝑡⟨∇𝑓(𝑧), 𝑣⟩ + 𝐿𝑡2

2 ) ,

where the last inequality is obtained by the change of variable 𝑣 = 𝑤
‖𝑤‖ , 𝑡 = ‖𝑤‖ and 𝑤 = 𝑦 − 𝑧.

Factorizing the trinom in 𝑡 leads to:

𝑓(𝑧) + 𝑡⟨∇𝑓(𝑧), 𝑣⟩ + 𝐿𝑡2

2 = 𝐿
2 (𝑡 + 1

𝐿⟨∇𝑓(𝑧), 𝑣⟩)
2

− 1
2𝐿⟨∇𝑓(𝑧), 𝑣⟩2 + 𝑓(𝑧).

Hence,
min
𝑦∈ℝ𝑛

𝑓(𝑦) ≤ inf
‖𝑣‖=1

(𝑓(𝑧) − 1
2𝐿⟨∇𝑓(𝑧), 𝑣⟩2) .

Minimizing the infimum boils down to maximizing ⟨∇𝑓(𝑧), 𝑣⟩2, that is obtained with 𝑣 =
∇𝑓(𝑧), hence the result.
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Co-coercivity of the gradient of a 𝐿-smooth function

Convex 𝐿-smooth functions are co-coercive. This result is sometimes coined Baillon–Haddad
theorem (Baillon and Haddad 1977), but one shall note that the original contributionis much
more general than its application to the gradient.

Proposition 0.6. Let 𝑓 be a full-domain convex 𝐿-smooth function. Then, ∇𝑓 is 1/𝐿-co-
coercive, i.e.,

∀𝑥, 𝑦 ∈ ℝ𝑛, ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 1
𝐿‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2

∗ .

Proof. Let 𝑓𝑥(𝑧) = 𝑓(𝑧) − ⟨∇𝑓(𝑥), 𝑧⟩ and 𝑓𝑦(𝑧) = 𝑓(𝑧) − ⟨∇𝑓(𝑦), 𝑧⟩. The two are convex.

Since 𝑓 is 𝐿-smooth, 𝑓𝑥 and 𝑓𝑦 are also 𝐿-smooth.

Canceling the gradient of 𝑓𝑥 shows that 𝑧 = 𝑥 minimizes 𝑓𝑥. Hence, using the quadratic upper
bound, we have

𝑓(𝑦) − 𝑓(𝑥) − ⟨∇𝑓(𝑥), 𝑥 − 𝑦⟩ = 𝑓𝑥(𝑦) − 𝑓𝑥(𝑥)

≥ 1
2𝐿‖∇𝑓𝑥(𝑦)‖2

∗

= 1
2𝐿‖∇𝑓(𝑦) − ∇𝑓(𝑥)‖2

∗ .

Doing exactly the same thing for 𝑓𝑦 leads a similar bound, and combining the two gives the
result.

It turns out that smoothness, co-coercivity and upper quadratic boundness are equivalent
properties for full-domain convex function.

Proposition 0.7. Let 𝑓 be a differentiable convex function with dom 𝑓 = ℝ𝑛. Then the three
following properties are equivalent:

1. 𝑓 is 𝐿-smooth.

2. The quadratic upper bound Equation 6 holds.

3. ∇𝑓 is 1/𝐿-co-coercive.

Proof. The only one to prove is 2. ⟹ 3. (by Cauchy-Schwarz).

For the special case of the ℓ2 norm, we have:
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Proposition 0.8. Let 𝑓 be a differentiable convex function with dom 𝑓 = ℝ𝑛, and 𝐿-smooth
with respect to the Euclidean norm. Then,

1. 𝐿Id − ∇𝑓 is monotone, i.e.

∀𝑥, 𝑦 ∈ ℝ𝑛, ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≤ 𝐿‖𝑥 − 𝑦‖2
2.

2. 𝐿
2 ‖𝑥‖2

2 − 𝑓(𝑥) is convex.

3. If 𝑓 is twice differentiable, then,

𝜆max(∇2𝑓(𝑥)) ≤ 𝐿, ∀𝑥 ∈ ℝ𝑛.

When 𝑓 is both 𝐿-smooth and 𝜇-strongly convex, we have the following “strenghened” co-
coercivity.

Proposition 0.9. Let 𝑓 be a 𝐿-smooth and 𝜇-strongly convex function. For any 𝑥, 𝑦 ∈ ℝ𝑛,
we have

⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 𝜇𝐿
𝜇 + 𝐿||𝑥 − 𝑦||2 + 1

𝜇 + 𝐿||∇𝑓(𝑥) − ∇𝑓(𝑦)||2.

Proof. Consider the convex function 𝜙(𝑥) = 𝑓(𝑥)− 𝜇
2 ||𝑥||2. Its gradient reads ∇𝜙(𝑥) = ∇𝑓(𝑥)−

𝜇𝑥. Using the 𝐿-smoothness of 𝑓 , we have that

⟨∇𝜙(𝑥) − ∇𝜙(𝑦), 𝑥 − 𝑦⟩ = ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ − 𝜇⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩
≤ (𝐿 − 𝜇)||𝑥 − 𝑦||2.

Hence, 𝜙 is (𝐿 − 𝜇)-smooth.

If 𝐿 = 𝜇, then nothing is left to prove since 𝑓 is 𝜇-strongly convex. Otherwise, the (𝐿 − 𝜇)-co-
coercivity of 𝜙 (Proposition 0.6) gives us

⟨∇𝜙(𝑥) − ∇𝜙(𝑦), 𝑥 − 𝑦⟩ ≥ 1
𝐿 − 𝜇||∇𝜙(𝑥) − ∇𝜙(𝑦)||2.

Explicing the expression of ∇𝜙(𝑥) allows us to conclude.
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