One-step differentiation of iterative algorithms UNIVERSITÉ

Jérôme Bolte, Edouard Pauwels, Samuel Vaiter

NeurIPS'23 Spotlight

CNIS

When your algorithm is fast, it is enough to differentiate only the last iterate

Parametric iterative algorithm

 $\begin{aligned} x_0(\theta) \in \mathbb{R}^n \\ x_{k+1}(\theta) &= F(x_k(\theta), \theta) \end{aligned}$

 $F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ Recursive map

ex: gradient descent, Newton method, recurrent architectures, Deep Equilibrium Network, etc.

single step

Automatic differentiation

Input: $\theta \mapsto x_0(\theta) \in \mathcal{X}, k > 0.$ Eval: with_gradient for $i=1,\ldots,k$ do $x_i(\theta) = F(x_{i-1}(\theta), \theta)$ Return: $x_k(\theta)$ **Differentiation:** native autodiff on **Eval**.

Implicit differentiation

One-step differentiation

Toulouse

Economics

School of

SE

Input: $x_0 \in \overline{\mathcal{X}}, k > 0.$ Eval: stop_gradient for $i=1,\ldots,k-1$ do $x_i = F(x_{i-1}, \theta)$ with_gradient $x_k(\theta) = F(x_{k-1}, \theta)$ Return: $x_k(\theta)$ **Differentiation:** native autodiff on **Eval**

 $J_{\theta}x_{i+1}(\theta) = J_x F(x_i(\theta), \theta) J_{\theta}x_i(\theta) + J_{\theta}F(x_i(\theta), \theta)$

 $J^{\mathrm{ID}}x_k(\theta) = (I - J_x F(x_k(\theta), \theta))^{-1} J_\theta F(x_k(\theta), \theta)$

 $J^{\rm OS}x_{\bf k}(\theta) = J_{\theta}F(x_{\bf k-1}(\theta),\theta)$

Linearly convergent algorithms

Superlinear algorithms

Ass. (Vanishing Jac.). Let $F \colon \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ be C^1 , $x_k(\theta)$ converges globally locally uniformly in θ to the unique $\bar{x}(\theta)$, and $J_x F(\bar{x}(\theta), \theta) = 0$.

Ass. (Contract.). Let $F \colon \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ be C^1 , $\rho \in [0, 1)$, and $\mathcal{X} \subset \mathbb{R}^n \xleftarrow{\text{loc.}}$ be nonempty convex closed, s.t., for any θ , $F_{\theta}(\mathcal{X}) \subset \mathcal{X}$ and $\|J_x F_{\theta}\|_{\text{op}} \leq \rho$. $x_k(\theta) \to \bar{x}(\theta)$ and the convergence is linear

Proposition. Let *F* and \mathcal{X} such that $\theta \mapsto F(x, \theta)$ is L_F Lipschitz and $x \mapsto \Phi$ $J_{\theta}F(x,\theta)$ is L_{J} Lipschitz for all $x \in \mathbb{R}^{n}$. Then, for all $\theta \in \mathbb{R}^{m}$,

$$\begin{split} \|J^{\text{OS}} x_k(\theta) - J_{\theta} \bar{x}(\theta)\|_{\text{op}} &\leq \frac{\rho L_F}{1-\rho} + L_J \|x_{k-1} - \bar{x}(\theta)\| \\ \|J^{\text{ID}} x_k(\theta) - J_{\theta} \bar{x}(\theta)\|_{\text{op}} &\leq \frac{L_J L_F}{(1-\rho)^2} \|x_k - \bar{x}(\theta)\| + \frac{L_J}{1-\rho} \|x_k - \bar{x}(\theta)\| \end{split}$$

Proposition (Jacobian convergence). Let F satisfying (Vanishing Jac.). Then $J^{OS}x_k(\theta) \to J_{\theta}\bar{x}(\theta)$ as $k \to \infty$, and $J^{OS}\bar{x}(\theta) = J_{\theta}\bar{x}(\theta)$.

Quadratically convergent algorithms

Proposition. Let F satisfying (Vanishing Jac.) such that $x \mapsto f$ $J_{(x,\theta)}F(x,\theta)$ is L_J Lipschitz. Then,

 $\|J^{\mathrm{OS}}x_k(\theta) - J_{\theta}\bar{x}(\theta)\|_{\mathrm{op}} \leq L_J \|x_{k-1} - \bar{x}(\theta)\|.$

Numerical illustrations

Left: timing experiment for differentiable quadratic programs. Right timing experiment for differentiation of Newton algorithm for logistic regression. For Newton experiment, the one step estimator coincide with ID estimator up to 10^{-12} error. For the interior point experiment, it coincides with ID estimator up to 10^{-6} error.

Hypergradient descent for bilevel problems

 $\min_{\boldsymbol{\theta}} g(\boldsymbol{x}(\boldsymbol{\theta})) \text{ s.t. } \boldsymbol{x}(\boldsymbol{\theta}) \in \arg\min_{\boldsymbol{y}} f(\boldsymbol{y},\boldsymbol{\theta}) \quad \Longleftrightarrow \quad \min_{\boldsymbol{\theta}} g(\boldsymbol{x}(\boldsymbol{\theta})) \text{ s.t. } \boldsymbol{x}(\boldsymbol{\theta}) = F(\boldsymbol{x}(\boldsymbol{\theta}),\boldsymbol{\theta})$

(Hyper-)gradient descent using one-step estimator

 $\theta_{l+1} = \theta_l - \alpha J^{\mathsf{OS}} x_k(\theta_l)^T \nabla g(x_k(\theta_l))$

Proposition (Approximate critical points). Assume

References

Bolte, Pauwels, Vaiter. One-step differentiation of iterative algorithms. NeurIPS. 2023.

Finn, Abbeel, Levine. Model-agnostic meta-learning for fast adaptation of deep networks ICML. 2017.

Fung, Heaton, Li, McKenzie, Osher, Yin. Jacobian-free backpropagation for implicit models. AAAI. 2022.

Differentiation of gradient descent for solving weighted Ridge regression on cpusmall Top line: condition number of 1000. Bottom line: condition number of 100. Left column: small learning rate. Right column: big learning rate. Dotted lines: lack of optimality of the iterates. Filled lines: lack of optimality of the Jacobians. • F satifies (Contract.).

• g is l_q Lipschitz and ∇g is l_{∇} Lipschitz

• $\sup_{\theta} \|x_0(\theta) - F_{\theta}(x_0(\theta))\| \le M$, for some M > 0. • F is L_F Lipschitz and $J_{(x,\theta)}F$ is L_J Lipschitz jointly.

• g is C^1 , l_q Lipschitz with l_{∇} Lipschitz gradient. • $\frac{1}{\alpha} \ge \left(\frac{L_J}{1-\rho} \left(\frac{L_F}{1-\rho} + 1\right) l_g + l_{\nabla} \frac{L_F}{1-\rho}\right) \frac{L_F}{1-\rho}$ • $q \circ \overline{x}$ is lower bounded by q^* .

Then setting $\epsilon = \frac{\rho}{1-\rho} (L_F l_g + (L_J l_g + L_F l_{\nabla}) M \rho^{k-2})$, for all K, $\min_{l=0,\ldots,K} \|\nabla_{\theta}(g\circ\bar{x})(\theta_l)\|^2 \leq \epsilon^2 + \frac{2L((g\circ\bar{x})(\theta_0)-g^*)}{K+1}.$ Geng, Zhang, Bai, Wang, Lin. On training implicit models. NeurIPS 2021.

Shaban, Cheng, Hatch, Boots. Truncated back-propagation for bilevel optimization AISTATS. 2019.

