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When your algorithm is fast,
it is enough to differentiate only the last iterate
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ex: gradient descent, 
Newton method,
recurrent architectures, 
Deep Equilibrium Network, etc.
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Differentiation of gradient descent for solving weighted Ridge regression on cpusmall.
Top line: condition number of 1000. Bottom line: condition number of 100.
Left column: small learning rate. Right column: big learning rate.
Dotted lines: lack of optimality of the iterates. Filled lines:  lack of optimality of the Jacobians.

Left: timing experiment for differentiable quadratic programs.
Right timing experiment for differentiation of Newton algorithm for logistic regression.
For Newton experiment, the one step estimator coincide with ID estimator up to 10-12 error.
For the interior point experiment, it coincides with ID estimator up to 10-6 error.
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