
What functions can GNNs compute on random graphs? The role of Positional Encodings
Nicolas Keriven Samuel Vaiter

CNRS, IRISA, Rennes CNRS, LJAD, Nice

I - Summary

On large random graphs, GNNs converge to prediction
functions on some latent space to label nodes. But:
1. the approximation power of these function spaces, and
2. the role of input node features,

are not well-understood.
In this paper, we fully characterize the function
space that GNNs can approximate. We study the
role of input node features, and in particular of aug-
menting them with Positional Encodings.

I Approximation theorem is natural but not trivial: novel result for
ReLU-MLP universality in L2 norm.

I Novel concentration result for ReLU-filtered random graphs of
independent interest.

I The theory yields normalization strategies for PEs to be consistent
across graph sizes, which improves results in practice.

II - Settings and Notations

I Latent Space Random Graphs

xi
iid
∼ P ∈ P(Rp), aij ∼ Bernoulli(αnw(xi , xj)) 1 6 i < j 6 n

I distribution P with compact support, continuous connectivity kernel w , sparsity factor αn & log n/n

I Graph matrix S ∈ Rn×n, assumed to converge to graph operator S.
I Ex 1: normalized adjacency matrix S = A/(nαn), operator Sf (x) =

∫
w(x , z)f (z)dP(z)

I Ex 2: normalized Laplacian S = D−1
2

A AD−1
2

A , operator Sf (x) =
∫ w(x ,z)√

d(x)d(z)
f (z)dP(z)

Assumption: denoting ιX f = [f (xi)]
n
i=1,

n−1‖SιX f − ιXSf ‖2
F

P−−−→
n→∞ 0

I Prop: True for the two examples above.

I Graph Neural Networks for node prediction, using S and ReLU:
Z (`+1) = ReLU

(
Z (`)θ

(`)
0 + SZ (`)θ

(`)
1 + 1n(b(`))>

)
, Φθ(S ,Z (0)) = Z (L)θ(L) + 1n(b(L))>

III - Function approximation

I It has been shown [1] that the output of GNNs on large random graphs is close to a
prediction function on the latent variables. How can we characterize precisely
the functions well-approximated by GNNs?

Definition: Given a base space B of input functions, the set of functions well-
approximated by GNNs is:
FGNN(B) =

{
f | ∀ε, ∃θ, ∃f (0) ∈ B, P

(
n−1‖Φθ(S , ιX f (0)) − ιX f ‖2

F > ε
)
−→ 0
}

I θ depends on ε! This is an approximation notion (not simply convergence)

I What can a GNN do? Structurally, two things: apply S (which converges to S), and
compute MLPs (which can approximate any function).

Definition: the S-extension FS(B) of B is defined by the following rules:
1. B ⊂ FS(B)

2. ∀f ∈ FS(B), Sf ∈ FS(B)

3. ∀f ∈ FS(B), g Lip., g ◦ f ∈ FS(B)

4. FS(B) is a vector space
5. FS(B) is closed
6. FS(B) is minimal

Thm.
FGNN(B) = FS(B)

The result is natural, the proof not so trivial!
I Need to prove both sides of the inclusion
I L2 norm (convergence of GNNs) and L∞ norm (universality of

MLPs) do not mix well: need new, specialized universality
theorem for ReLU MLPs in L2

IV - Consequences and input B

I We need only focus on FS(B) to characterize the functions
computed by GNNs. The inputs to the GNNs B is key.

Node features
1. if Z (0) = ιX f (0), then B = {f (0)}

2a. if Z (0) = ιX f (0) + ν with νi centered i.i.d., the noise
doesn’t vanish (imperfect approximation).

2b. but (e.g.) Z (0) = S(ιX f (0) + ξ) restores B = {Sf (0)}

No node features?
1. Constant Z (0) = 1n yields B = {1}
2. Degrees Z (0) = S1n yields B = {S1}, but same FS(B)

3. More recently, “Positional Encodings” (PE) [2]:

Z (0) = PEγ(S ,Z )

I potentially considering existing node features Z (often simple
concatenation)

I Ex: Spectral, random walk... need to be permutation
equivariant PEγ(πSπ>,πZ ) = πPEγ(S ,Z )

V - Spectral PEs and SignNet

Take uS
1 , uS

2 ... the eigenvectors of S by decreasing eigenvalues. SignNet [2] is
a type of spectral-PEs insensitive to sign ambiguity:

PEγ(S) =
[
MLPγi(

√
nuS

i ) + MLPγi(−
√

nuS
i )
]q

i=1 ∈ R
n×q

It is known that eigenvectors often converge to the eigenfunctions uS
i of S:

Thm: for a p.s.d. kernel w or SBM random graphs, SignNet yields
BPE =

{
[fi ◦ uS

i + fi ◦ (−uS
i )]

q
i=1 | fi continuous

}
I w psd or SBM for simplicity (not necessary, case-by-case basis)
I normalization

√
n necessary since ‖uS

i ‖ = 1 in Rn.
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Left to right: before SignNet with normalization, without normalization, after SignNet idem.

VI - Distance-encoding PEs

Distance-encoding PEs [2] aggregate distances (random walk, shortest path,
etc.). Many choices, here we take the columns of Sk aggregated with
DeepSet (aka MLP + average):

PEγ(S) = n−1
∑

j
MLPγ(n [Sej, . . . , Sqej]) ∈ Rn×q

This does not converge! We need to use a ReLU-
MLP filter on the eigenvalues of S ← Sξ = hMLPξ(S)
and a novel concentration result for ReLU-filtered
random graphs (of independent interest). 0.05 0.00 0.05 0.10 0.15
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Thm: for a p.s.d. kernel w or SBM random graphs, with S = Sξ above,
distance-PE yields (with δx “Dirac” at x)

BPE =

{∫
f ([Sδx , . . . ,Sqδx ]) dP(x) | f : Rq → Rp

}
I FS(BPE) is then sometimes universal! Generalization of [4]

VII - Other properties

I Prop. GNNs are useful: for all examples, there
are cases where BPE ⊂ FS(BPE) strictly

I Prop. PEs are powerful: for all examples, there
are cases where FS({1}) ⊂ FS(BPE) strictly

Normalization to be consistent across graph sizes is useful even on real data.
Dataset Eigenvectors Distance-encoding

w/ norm. w/o norm. w/ norm. w/o norm.
Synthetic 68.61 65.59 67.31 62.49
Synthetic (out-of-dist) 67.87 62.51 66.80 63.33
CiteSeer-subgraphs 49.45 49.43 48.99 37.09
IMDB-BINARY (graph-classif.) 67.80 66.10 71.10 63.95
COLLAB (graph-classif.) 73.74 74.77 75.65 75.02
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