What functions can GNNs compute on random graphs? The role of Positional Encodings
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| - Summary Il - Settings and Notations
On large random graphs, GNNs converge to prediction » Latent Space Random Graphs
functions on some latent space to label nodes. But: jid

L . i~ P e P(RP), a; ~B i oc,w(X;, X 1<i<j<
1. the approximation power of these function spaces, and X (RF), aj ernoulli( o, w(x;, x;)) F<<Jxn

. » distribution P with compact support, continuous connectivity kernel w, sparsity factor o, > log n/n
2. the role of input node features, P PP y parsity n % logn/

are not well-understood. » Graph matrix S € R"", assumed to converge to graph operator S.

In this paper, we fully characterize the function > Ex 1: normalized adjacency matrix S = A/(nw,), operator Sf(x) = [ w(x, z)f(z)dP(z)

space that GN INs can approximate_ We Study the » Ex 2: normalized Laplacian S = D;ﬁADgﬁ, operator Sf(X) :f \/V;((j;?(z)f(z)dp(z)
role of input node features, and in particular of aug-
menting them with Positional Encodings.

Assumption: denoting txf = [f(x;)]7"_;,

_ P
n 1H5fo — LXsfH%_- > 0
> Approximation theorem is natural but not trivial: novel result for n— 00
ReLU-MLP universality in L% norm » Prop: True for the two examples above.

» Novel concentration result for Rel. U-filtered random graphs of
independent interest. » Graph Neural Networks for node prediction, using S and Rel U:

» The theory yields normalization strategies for PEs to be consistent 7U+) — Ral U (Z(ﬁ)eé‘z) 4 Sz(ﬁ)eg‘z) 4 1n(b(€))T)  Dg(S, Z(O)) — zWgll) 4 1n(b(L))T

across graph sizes, which improves results in practice.

11 - Function approximation IV - Consequences and input B
» |t has been shown [1] that the output of GNNs on large random graphs is close to a » We need only focus on Fg(B) to characterize the functions
prediction function on the latent variables. How can we characterize precisely computed by GNNs. The inputs to the GNNs B is key.

the functions well-approximated by GNNs?
Node features

Definition: Given a base space B of input functions, the set of functions well- |
1. if 79 = (xf'%, then B = {0}

approximated by GNNs is:
Feun(B) = {f Ve, 30, ST (n_lHCDe(S, LXf(O)) - LXfHQF > e) . O} 2a. it £ = LX.f TI_V with v; cent.ered.l.l.d., the noise
doesn't vanish (imperfect approximation).

> O depends on €! This is an approximation notion (not simply convergence) b but (e o ) 7(0) — S(fo(O) + &) restores B = {Sf(O)}

» What can a GNN do? Structurally, two things: apply S (which converges to S), and

: . : ?
compute MLPs (which can approximate any function). No node features:

1. Constant Z'9 =1, yields B = {1}

Definition: the S-extension Fg(B) of B is defined by the following rules:
2. Degrees 79 = S1, yields B = {S1}, but same F5(B)

1. B C Fg(B) 4. Fg(B) is a vector space
2. Vf € F5(B), SF € Fs(B) 5. Fs(B) is closed 3. More recently, “Positional Encodings” (PE) [2]:
3. Vf € F5(B), g Lip.,, go f € Fg(B) 6. Fs(B) is minimal 70 — PE, (S, Z)
Th The result is natural, the proof not so triviall > potentially considering existing node features Z (often simple
m. > Need to prove both sides of the inclusion concatenation)
Fonn(B) = Fs(B) » L2 norm (convergence of GNNs) and L® norm (universality of » Ex: Spectral, random walk... need to be permutation
MLPs) do not mix well: need new, specialized universality equivariant PE,(nSnt', nZ) = nPE, (S, Z)
theorem for ReLU MLPs in [°

V - Spectral PEs and SignNet VI - Distance-encoding PEs
Take up, U5 ... the eigenvectors of S by decreasing eigenvalues. SignNet [2] is  Distance-encoding PEs [2] aggregate distances (random walk, shortest path,
a type of spectral-PEs insensitive to sign ambiguity: etc.). Many choices, here we take the columns of S* aggregated with
S S+79 DeepSet (aka MLP + average):
PE,(S) = [MLP,,(/nu?) + MLPy,(—/nu?)| ", € R™ ( ge)
. . - . S _ B

It is known that eigenvectors often converge to the eigenfunctions u? of S: PE,(S) = n 1Zj MLP,(n [Se;, ..., S%]) € R"™

Thm: for a p.s.d. kernel w or SBM random graphs, SignNet yields This does not convergel We need to use a RelLU- [ % Nofier /

Bpe = {[fi o up + fio (—uP)]?, | f; continuous} MLP filter on the eigenvalues of S <— S: = hyp,(S) ) — deatter
and a novel concentration result for ReLU-filtered | //
» w psd or SBM for simplicity (not necessary, case-by-case basis) random graphs (Of independent interest). ol ®
» normalization ./n necessary since ||u?|| =1 in R”.
test error=0.018 . test error=0.565 Thm fOr d de kernel W Ofr SBM I’andom graphs, Wlth 5 — 5& above,

o ,,.4‘"" T VN °° f"‘-s'- o distance-PE yields (with 0, “Dirac” at x)

ZZ ° 'Tl'raitn ‘p“‘ ol ® Irain ‘..3}' ::Z . (..,’: &'\).‘ o:z— .i. ?’3: ’ 4 P N
L es o est | 5] R, €N % g~ 0.0- ’\ ¢ B o g . q p

¢ A < L g =< | F([S0,,...,S%,])dP(x) | f:R" — IRP;
e N ot W ONG e = { | F1S8.... 5%, dPLx) |
""""""""""""""""""" > Fs(Bpg) is then sometimes universal!l Generalization of [4]
Left to right: before SignNet with normalization, without normalization, after SignNet idem.

Vl I _ Other properties Normalization to be consistent across graph sizes is useful even on real data. 1] Keriven, Bietti, Vaiter. Convergence and Stability of Graph
Dataset Eigenvectors Distance-encoding Convolutional Networks on Large Random Graphs, Neur/PS 2020.
w/ norm. w/o norm. w/ norm. w/o norm. [2] Dwivedi et al. Graph Neural Networks with Learnable Structural and
> Prop. GNNs are useful: for all examples, there  sypinetic 68.61 6559 6731  62.49 Positional Representations, /CLR 2022
are cases where BPE C ?S(BPE) St”Ct/)/ Synthetic (out-of-dist) 67.87 62.51 66.80 63.33 [3] Lim et al. Sign and Basis Invariant Networks for Spectral Graph
CiteSeer-subgraphs 49.45 49.43 48.99 37.09 R tation Learning, /CLR 2022.
> Prop. PEs are powerful: for all examples, there . " oo | ph eait 780 6610 7110 €30n CPESERLAtion Tearing
- (graph-classif.) ' ' ' ' [4] Keriven, Bietti, Vaiter. On the Universality of Graph Neural Networks

are cases where Fs({1}) C Fg(Bpg) strictly COLLAB (graph-classif.) 7374 7477 7565  75.02 on Large Random Graphs. Neur/PS 2021.
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