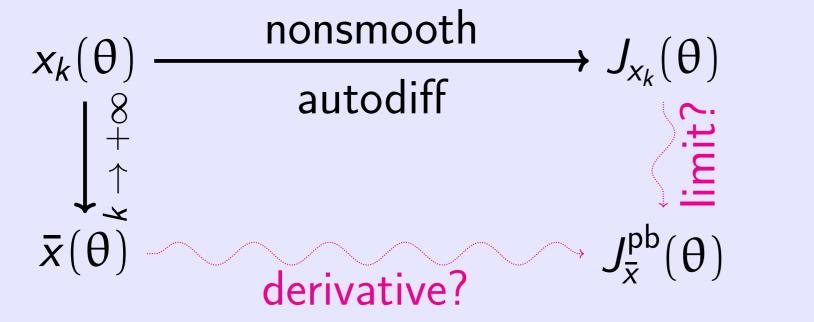
Automatic differentiation of nonsmooth iterative algorithms

Jérôme Bolte¹, Edouard Pauwels², Samuel Vaiter³ (NeurIPS 2022) ¹TSE, Univ. Toulouse ²IRIT, Univ. Toulouse ³CNRS & Univ. Côte d'Azur

Summary

Iterative algorithm

We characterize the attractor set of **nonsmooth** piggyback iterations as a set-valued fixed point which remains in the **conservative framework**.



- Piggyback propagation, *i.e.*, differentiation along **algorithms** is well understood [1] in the smooth case . We extend such results to nonsmooth problems.
- Our main assumption is nonexpansivity conditions on the algorithm studied.

Iterative algorithm. Pair of a Lipschitz function $F : \mathbb{R}^p \times \mathbb{R}^m \mapsto \mathbb{R}^p$ parameterized by $\theta \in \mathbb{R}^m$, with Lipschitz initialization $x_0: \theta \mapsto x_0(\theta)$ and

 $x_{k+1}(\theta) = F(x_k(\theta), \theta) = F_{\theta}(x_k(\theta)),$

where $F_{\theta} := F(\cdot, \theta)$, under the assumption that $x_k(\theta)$ converges to the unique fixed point of F_{θ} : $\bar{\mathbf{x}}(\theta) = \operatorname{fix}(F_{\theta})$.

Examples. gradient descent $F(x, \theta) = x - \theta \nabla h(x)$, deep equilibrium network.

Piggyback differentiation of iterative algorithms

Chain rule applied to smooth iterative algorithms ("Piggyback" recursion).

Conservative Jacobian

Definition [2]. $f : \mathbb{R}^p \to \mathbb{R}^m$ locally Lipschitz. The set-valued $J: \mathbb{R}^p \rightrightarrows \mathbb{R}^{m \times p}$ is a *conservative Jacobian* for the **path differentiable** *f* if *J* is closed, locally bounded and nowhere empty with

 $\frac{d}{dt}f(\gamma(t)) = J(\gamma(t))\dot{\gamma}(t) \quad \text{a.e.}$

for any $\gamma: [0,1] \to \mathbb{R}^p$ absolutely continuous with respect to the Lebesgue measure.

where $\frac{\partial}{\partial \theta} x_k$ is the Jacobian of x_k with respect to θ .

Assumption A (The conservative Jacobian of the iterations is a contraction). F is locally Lipschitz, path differentiable, jointly in (x, θ) , and J_F is a conservative Jacobian for F. There exists $0 \leq \rho < 1$, such that for any $(x, \theta) \in \mathbb{R}^p \times \mathbb{R}^m$ and any pair $[A, B] \in J_F(x, \theta)$, with $A \in \mathbb{R}^{p \times p}$ and $B \in \mathbb{R}^{p \times m}$, the operator norm of A is at most ρ . J_{x_0} is a conservative Jacobian for the initialization function $\theta \mapsto x_0(\theta)$.

 $\frac{\partial}{\partial \theta} x_{k+1}(\theta) = \partial_1 F(x_k(\theta), \theta) \cdot \frac{\partial}{\partial \theta} x_k(\theta) + \partial_2 F(x_k(\theta), \theta),$

Under Assumption A, F_{θ} is a strict contraction: $(x_k(\theta))_k$ converges linearly to $\bar{x}(\theta) = \operatorname{fix}(F_{\theta})$. Chain rule applied to *non*smooth iterative algorithms ("Piggyback" recursion).

$$J_{x_{k+1}}(\theta) = \{AJ + B, [A, B] \in J_F(x_k(\theta), \theta), J \in J_{x_k}(\theta)\}.$$

(PB-S)

Fixed point of affine iterations

 $\blacktriangleright \mathcal{J} \subset \mathbb{R}^{p \times (p+m)}$: compact set of matrices such that $\forall [A, B] \in \mathcal{J}, \|A\|_{op} \leq \rho.$ **Action of** \mathcal{J} **on matrices** of size $p \times m$ $\mathcal{J}: X \rightrightarrows \{AX + B, [A, B] \in \mathcal{J}\}$

Main result: infinite chain rule

Set-valued (piggyback) map based on the fix operator from Theorem 1, $J_{\bar{\mathbf{x}}}^{\mathsf{pb}} \colon \theta \Longrightarrow \operatorname{fix} [J_F(\bar{\mathbf{x}}(\theta), \theta)] = \operatorname{fix} [J_F(\operatorname{fix}(F_{\theta}), \theta)].$

Theorem 2 (Conservative mapping for the fixed point map) Under Assumption A, $J_{\bar{x}}^{\rm pb}$ is a conservative Jacobian for the fixed point map \bar{x} , and:

 \blacktriangleright (Extended) action of \mathcal{J} on set of matrices $\mathcal{J}: \mathcal{X} \rightrightarrows \{AX + B, [A, B] \in \mathcal{J}, X \in \mathcal{X}\}.$

▶ **Recursive action** of \mathcal{J} on $(\mathcal{X}_k)_{k \in \mathbb{N}}$

 $\mathfrak{X}_{k+1} = \mathfrak{J}(\mathfrak{X}_k) \quad \forall k \in \mathbb{N}.$

Theorem 1 (Set-valued affine contractions). There is a unique nonempty compact set $fix(\mathcal{J})$ satisfying $fix(\mathcal{J}) =$ $\mathcal{J}(\operatorname{fix}(\mathcal{J})),$

$$\forall k \in \mathbb{N}, \quad \operatorname{dist}(\mathcal{X}_k, \operatorname{fix}(\mathcal{J})) \leq \rho^k \frac{\operatorname{dist}(\mathcal{X}_0, \mathcal{J}(\mathcal{X}_0))}{1 - \rho}.$$

for all θ , $\lim_{k\to\infty} gap(J_{x_k}(\theta), J_{\overline{x}}^{pb}(\theta)) = 0;$ for **almost** all θ , $\lim_{k \to \infty} \frac{\partial}{\partial \theta} x_k(\theta) = \frac{\partial}{\partial \theta} \bar{x}(\theta)$, where $gap(\mathcal{X}, \mathcal{Y}) = \max_{x \in \mathcal{X}} d(x, \mathcal{Y})$, and $d(x, \mathcal{Y}) = \min_{v \in \mathcal{Y}} ||x - y||$.

 \blacktriangleright Limit-derivative exchange: Asymptotically, the gap between the differentiation of x_k and the derivative of the limit is zero. (can be shown to be linear under additional hypotheses,) Assuming that for every $[A, B] \in J(\bar{x}(\theta), \theta)$, the matrix I - A is invertible, we have [3] $J_{\bar{x}}^{\text{imp}}: \theta \Longrightarrow \left\{ (I - A)^{-1}B, [A, B] \in J_F(\bar{x}(\theta), \theta) \right\}$

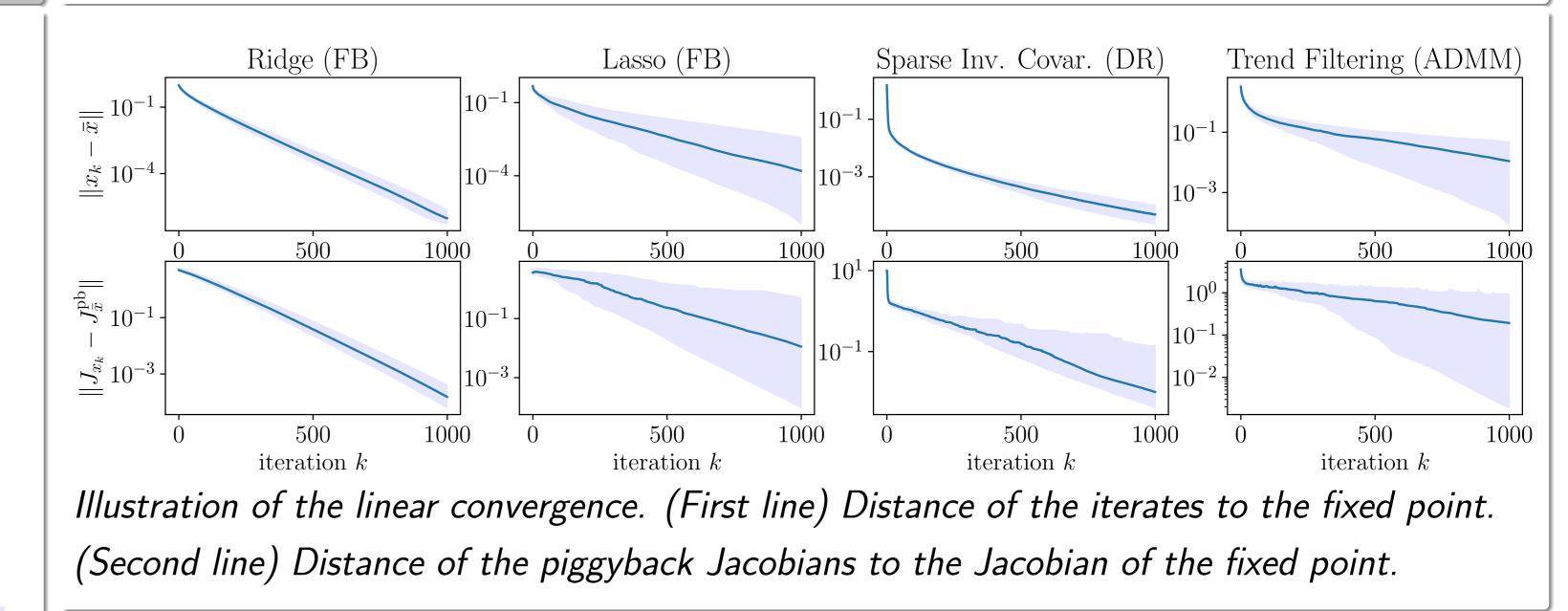
is a conservative Jacobian for \bar{x} (implicit differentiation). Under Assumption A, one has $J_{\overline{x}}^{imp}(\theta) \subset J_{\overline{x}}^{pb}(\theta)$. If F is not differentiable, the inclusion may be strict.

Consequence for automatic differentiation

Applications to proximal methods

Input:
$$k \in \mathbb{N}$$
, $\theta \in \mathbb{R}^m$, $\dot{\theta} \in \mathbb{R}^m$, $\bar{w}_k \in \mathbb{R}^p$. Initialize: $x_0 = x_0(\theta) \in \mathbb{R}^p$

Forward mode (JVP): **Reverse mode (VJP):** $\bar{\theta}_k = 0$. $\dot{x}_0 = J\theta, \ J \in J_{x_0}(\theta).$ for i = 1, ..., k do for i = 1, ..., k do $x_i = F(x_{i-1}, \theta)$ $x_i = F(x_{i-1}, \theta)$ for i = k, ..., 1 do

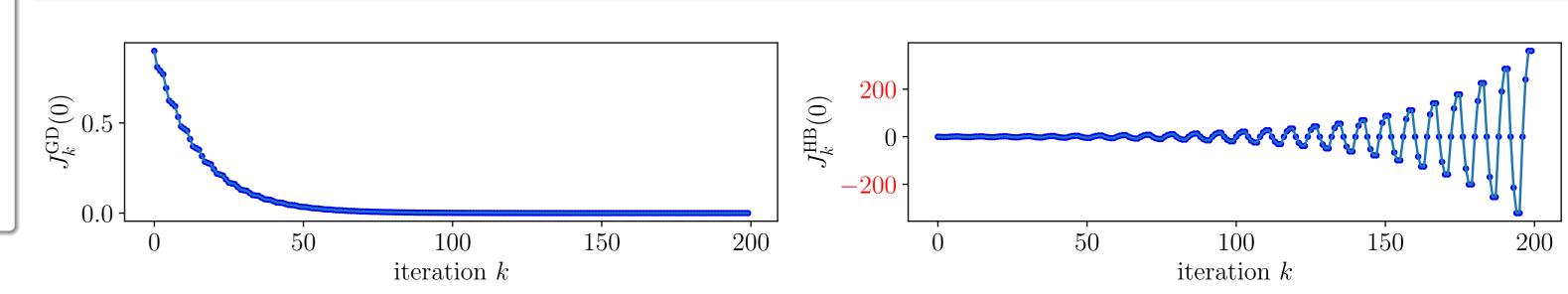


- $\dot{x}_{i} = A_{i-1}\dot{x}_{i-1} + B_{i-1}\theta$ $[A_{i-1}, B_{i-1}] \in J_F(x_{i-1}, \theta)$ **Return:** \dot{x}_k
- $\bar{\theta}_k = \bar{\theta}_k + B_{i-1}^T \bar{w}_i \quad \bar{w}_{i-1} = A_{i-1}^T \bar{w}_i$ $[A_{i-1}, B_{i-1}] \in J_F(x_{i-1}, \theta)$ $\bar{\theta}_k = \bar{\theta}_k + J^T \bar{w}_0, \ J \in J_{x_0}(\theta)$ **Return:** θ_k

Theorem 3 (Convergence of JVP and VJP).

- ► (JVP). For almost all $\theta \in \mathbb{R}^m$, $\dot{x}_k \to \frac{\partial \bar{x}}{\partial \theta} \dot{\theta}$.
- ▶ (VJP). Assume that $\lim_{k\to\infty} \bar{w}_k = \bar{w}$ (for example, $\bar{w}_k = \nabla \ell(x_k)$ for a C^1 loss ℓ), then for almost all $\theta \in \mathbb{R}^m$, $\bar{\theta}_k^T \to \bar{w}^T \frac{\partial \bar{x}}{\partial \theta}$.
- Gilbert. Automatic differentiation and iterative processes. Opt. Met. Soft., 1992. |1|
- Bolte, Pauwels. Conservative set valued fields, automatic differentiation, stochastic gradient 2 method and deep learning. Math. Prog. 2020.
- Bolte, Le, Pauwels, Silveti-Falls. Nonsmooth Implicit Differentiation for Machine-Learning and 3 **Optimization**. *NeurIPS*. 2021.

Failure of inertial methods



Behavior of automatic differentiation for first-order methods on a piecewise quadratic function. (Left) Stability of the propagation of derivatives for the fixed step-size gradient descent. (Right) Instability of the propagation of Heavy-Ball initialized.