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Summary

We characterize the attractor set of nonsmooth
piggyback iterations as a set-valued fixed point

which remains in the conservative framework.
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▶ Piggyback propagation, i.e., differentiation along

algorithms is well understood [1] in the smooth case .
We extend such results to nonsmooth problems.

▶ Our main assumption is nonexpansivity conditions on
the algorithm studied.

Conservative Jacobian
Definition [2]. f : Rp → Rm locally Lipschitz. The
set-valued J : Rp ⇒ Rm×p is a conservative Jacobian for the
path differentiable f if J is closed, locally bounded and
nowhere empty with

d
dt f (γ(t)) = J(γ(t))γ̇(t) a.e.

for any γ : [0, 1] → Rp absolutely continuous with respect to
the Lebesgue measure.

Iterative algorithm

Iterative algorithm. Pair of a Lipschitz function F : Rp ×Rm 7→ Rp parameterized by
θ ∈ Rm, with Lipschitz initialization x0 : θ 7→ x0(θ) and

xk+1(θ) = F (xk(θ), θ) = Fθ(xk(θ)),

where Fθ := F (·, θ), under the assumption that xk(θ) converges to the unique fixed point of
Fθ: x̄(θ) = fix(Fθ).
Examples. gradient descent F (x , θ) = x − θ∇h(x), deep equilibrium network.

Piggyback differentiation of iterative algorithms

Chain rule applied to smooth iterative algorithms (“Piggyback” recursion).
∂

∂θ
xk+1(θ) = ∂1F (xk(θ), θ) ·

∂

∂θ
xk(θ) + ∂2F (xk(θ), θ), (PB-S)

where ∂
∂θ

xk is the Jacobian of xk with respect to θ.
Assumption A (The conservative Jacobian of the iterations is a contraction).
F is locally Lipschitz, path differentiable, jointly in (x , θ), and JF is a conservative Jacobian
for F . There exists 0 ⩽ ρ < 1, such that for any (x , θ) ∈ Rp × Rm and any pair
[A,B] ∈ JF(x , θ), with A ∈ Rp×p and B ∈ Rp×m, the operator norm of A is at most ρ.
Jx0 is a conservative Jacobian for the initialization function θ 7→ x0(θ).

Under Assumption A, Fθ is a strict contraction: (xk(θ))k converges linearly to x̄(θ) = fix(Fθ).
Chain rule applied to nonsmooth iterative algorithms (“Piggyback” recursion).

Jxk+1(θ) = {AJ + B, [A,B] ∈ JF(xk(θ), θ), J ∈ Jxk(θ)} . (PB-NS)

Fixed point of affine iterations

▶ J ⊂ Rp×(p+m): compact set of matrices such that
∀[A,B] ∈ J, ∥A∥op ⩽ ρ.

▶ Action of J on matrices of size p × m
J : X ⇒ {AX + B, [A,B] ∈ J}

▶ (Extended) action of J on set of matrices
J : X⇒ {AX + B, [A,B] ∈ J, X ∈ X}.

▶ Recursive action of J on (Xk)k∈N
Xk+1 = J(Xk) ∀k ∈N.

Theorem 1 (Set-valued affine contractions). There is
a unique nonempty compact set fix(J) satisfying fix(J) =
J(fix(J)),

∀k ∈N, dist(Xk,fix(J)) ⩽ ρkdist(X0, J(X0))

1 − ρ
.

Main result: infinite chain rule
Set-valued (piggyback) map based on the fix operator from Theorem 1,

Jpb
x̄ : θ⇒ fix [JF(x̄(θ), θ)] = fix [JF(fix(Fθ), θ)] .

Theorem 2 (Conservative mapping for the fixed point map) Under Assumption A,
Jpb

x̄ is a conservative Jacobian for the fixed point map x̄ , and:
for all θ, lim

k→∞ gap(Jxk(θ), J
pb
x̄ (θ)) = 0;

for almost all θ, lim
k→∞

∂

∂θ
xk(θ) =

∂

∂θ
x̄(θ),

where gap(X,Y) = maxx∈X d(x ,Y), and d(x ,Y) = miny∈Y ∥x − y∥.
▶ Limit-derivative exchange: Asymptotically, the gap between the differentiation of xk

and the derivative of the limit is zero. (can be shown to be linear under additional hypotheses,)
▶ Assuming that for every [A,B] ∈ J(x̄(θ), θ), the matrix I − A is invertible, we have [3]

J imp
x̄ : θ⇒

{
(I − A)−1B, [A,B] ∈ JF(x̄(θ), θ)

}
is a conservative Jacobian for x̄ (implicit differentiation). Under Assumption A, one has
J imp

x̄ (θ) ⊂ Jpb
x̄ (θ). If F is not differentiable, the inclusion may be strict.

Consequence for automatic differentiation

Input: k ∈N, θ ∈ Rm, θ̇ ∈ Rm, w̄k ∈ Rp. Initialize: x0 = x0(θ) ∈ Rp.
Forward mode (JVP):
ẋ0 = J θ̇, J ∈ Jx0(θ).
for i = 1, . . . , k do

xi = F (xi−1, θ)
ẋi = Ai−1ẋi−1 + Bi−1θ̇
[Ai−1,Bi−1] ∈ JF(xi−1, θ)

Return: ẋk

Reverse mode (VJP): θ̄k = 0.
for i = 1, . . . , k do

xi = F (xi−1, θ)
for i = k , . . . , 1 do

θ̄k = θ̄k + BT
i−1w̄i w̄i−1 = AT

i−1w̄i
[Ai−1,Bi−1] ∈ JF(xi−1, θ)

θ̄k = θ̄k + JT w̄0, J ∈ Jx0(θ)
Return: θ̄k

Theorem 3 (Convergence of JVP and VJP).
▶ (JVP). For almost all θ ∈ Rm, ẋk → ∂x̄

∂θ
θ̇.

▶ (VJP). Assume that limk→∞ w̄k = w̄ (for example, w̄k = ∇ℓ(xk) for a
C 1 loss ℓ), then for almost all θ ∈ Rm, θ̄T

k → w̄T ∂x̄
∂θ

.
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Applications to proximal methods
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Illustration of the linear convergence. (First line) Distance of the iterates to the fixed point.
(Second line) Distance of the piggyback Jacobians to the Jacobian of the fixed point.

Failure of inertial methods
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Behavior of automatic differentiation for first-order methods on a piecewise quadratic
function. (Left) Stability of the propagation of derivatives for the fixed step-size gradient
descent. (Right) Instability of the propagation of Heavy-Ball initialized.


