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Robust Sparse Analysis Regularization
Samuel Vaiter, Gabriel Peyré, Charles Dossal, and Jalal Fadili

Abstract—This paper investigates the theoretical guarantees of
-analysis regularization when solving linear inverse problems.

Most of previous works in the literature have mainly focused on
the sparse synthesis prior where the sparsity is measured as the
norm of the coefficients that synthesize the signal from a given

dictionary. In contrast, the more general analysis regularization
minimizes the norm of the correlations between the signal
and the atoms in the dictionary, where these correlations define
the analysis support. The corresponding variational problem
encompasses several well-known regularizations such as the dis-
crete total variation and the fused Lasso. Our main contributions
consist in deriving sufficient conditions that guarantee exact or
partial analysis support recovery of the true signal in presence of
noise. More precisely, we give a sufficient condition to ensure that
a signal is the unique solution of the -analysis regularization
in the noiseless case. The same condition also guarantees exact
analysis support recovery and -robustness of the -analysis
minimizer vis-à-vis an enough small noise in the measurements.
This condition turns to be sharp for the robustness of the sign
pattern. To show partial support recovery and -robustness to
an arbitrary bounded noise, we introduce a stronger sufficient
condition. When specialized to the -synthesis regularization,
our results recover some corresponding recovery and robustness
guarantees previously known in the literature. From this per-
spective, our work is a generalization of these results. We finally
illustrate these theoretical findings on several examples to study
the robustness of the 1-D total variation, shift-invariant Haar
dictionary, and fused Lasso regularizations.

Index Terms—Analysis regularization, fused Lasso, inverse
problems, -minimization, noise robustness, sparsity, synthesis
regularization, total variation (TV), union of subspaces, wavelets.

I. INTRODUCTION

A. Inverse Problems and Signal Priors

T HIS paper considers the stability of regularized inverse
problems using sparsity-promoting priors. The forward

model in many data acquisition scenarios can be formulated as
the action of a linear mapping on some unknown (sought-after)
signal contaminated by an additive noise. This takes the form

(1)
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where are the observations, is the unknown
signal to recover, is the noise supposed to be of bounded
-norm, and is a bounded linear operator which maps the

signal domain into the observation domain where gen-
erally . Even when , the mapping is in gen-
eral ill-conditioned or even singular. This makes the problem
of solving for an accurate approximation of from the system
(1) ill-posed; see, for instance, [1] for an introduction to inverse
problems.
However, the situation radically changes if one has some

prior information about the underlying object . Regulariza-
tion is a popular way to impose such a prior, hence making the
search for solutions feasible. The general variational problem
we consider can be stated as

(2)

where the first term is the data fidelity reflecting -bounded-
ness of the noise, and is an appropriate (prior) regulariza-
tion term through which some regularity is enforced on the re-
covered signal. The regularization parameter should be
adapted to balance between the allowed fraction of noise level
and regularity as dictated by the prior on .
For noiseless observations, i.e., , taking the limit
, we end up solving the constrained problem

(3)

A popular class of priors are quadratic forms
where is a symmetric semidefinite positive kernel.

Problems (2) and (3) then correspond to Tikhonov regu-
larization, which typically induces some kind of uniform
smoothness in the recovered signal. More advanced priors that
have received considerable interest in the recent years rely on
nonquadratic, generally nonsmooth, functionals such as those
promoting sparsity of the signal in some transform domain
(e.g., its wavelet transform or its derivatives). These sparsity
priors are at the heart of this paper. They will be discussed in
more detail after some necessary definitions and notations are
first introduced in the following section.

B. Notations

Throughout this paper, we focus on real vector spaces. The
variable will denote a vector in , will be a vector in ,
and will be a vector in .
The sign vector of is
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Its support is

For a subset , will denote its cardinality, and
its complement.
The -operator (induced) norm of a matrix is

The matrix for a subset of is the submatrix
whose columns are indexed by . Similarly, the vector is the
restriction of to the entries of indexed by .
The matrix is the identity matrix, where the underlying

space will be clear from the context. For any matrix , is
its Moore–Penrose pseudoinverse and is its adjoint.
is the adjoint of the Moore–Penrose pseudoinverse of .

C. Synthesis and Analysis Sparsity Priors

1) Synthesis Sparsity Prior: Sparse regularization is a pop-
ular class of priors to model natural signals and images; see, for
instance, [2]. We recall that a dictionary is a (pos-
sibly redundant, i.e., ) collection of atoms .
It can also be viewed as a linear mapping from to which
is used to synthesize a signal as

where is the coefficient vector that synthesizes from the
dictionary .
In its simplest form, the sparsity of coefficients is

measured using the pseudonorm

Minimizing (2) or (3) with is however known to be
NP-hard; see, for instance, [3]. Several workarounds have been
proposed to alleviate this difficulty. A first family of methods
relies on greedy algorithms [4]. The most popular ones are
matching pursuit [5] and orthogonal matching pursuit [6], [7].
A second family of methods, which is the focus of this paper,
relies on convex relaxation which amounts to replacing the
pseudonorm by the norm [8].
The sparsest set of coefficients, according to the norm,

defines a signal prior which is the image of under

Therefore, any solution of (2) using can be written
as where is a solution of

(4)

where . -regularization was first considered in the
statistical community in [9] where it was coined Lasso. Note
that it was originally introduced as an -ball constrained opti-
mization and in the overdetermined case. It is also known in the

signal processing community as basis pursuit denoising [10].
Such a problem corresponds to the so-called sparse synthesis
regularization as sparsity is assumed on the coefficients that
synthesize the signal . In the noiseless case, the con-
strained problem (3) becomes

(5)

which goes by the name of basis pursuit after [10]. Taking
amounts to assuming sparsity of the signal itself, and

was used for instance for sparse spike train deconvolution in
seismic imaging [11]. Sparsity in orthogonal as well as redun-
dant wavelet dictionaries is popular to model natural signals
and images that exhibit certain singularities [2].

2) Analysis Sparsity Prior: Analysis regularization corre-
sponds to using in (2) where

in which case (2) reads

Of course, is not in general the adjoint operator of a full rank
dictionary . Note that the analysis problem is more
general than the synthesis one (4) because the latter is recovered
by taking and in the former.
As the objective in is proper (i.e., not infinite every-

where), continuous, and convex, it is a classical existence result
that the set of (global) minimizers is nonempty and compact if
and only if

From now on, we suppose that this condition holds.
In the noiseless case, the -analysis equality-constrained

problem is

One of the most popular analysis sparsity-inducing regular-
izations is the total variation (TV), which was first introduced
for denoising (in a continuous setting) in [12]. It roughly corre-
sponds to taking as a derivative operator. Typically, for 1-D
discrete signals, can be taken as a dictionary of forward finite
differences where

. . .

. . .

(6)

The corresponding prior favors piecewise constant signals
and images. A comprehensive review of TV regularization can
be found in [13].
The theoretical properties of TV regularization have been

previously studied. A distinctive feature of this regularization
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is its tendency to yield a staircasing effect, where discontinu-
ities not present in the original data might be artificially created
by the regularization. This effect has been studied by Nikolova
in the discrete case in a series of papers; see, e.g., [14] and in
[15] in the continuous setting. The stability of the discontinuity
set of the solution of the 2-D continuous TV-based denoising
problem is investigated in [16]. Section IV-C shows how our
results also shed some light on this staircasing effect for 1-D
discrete signals.
It is also possible to use a dictionary of shift invariant

wavelets so that the corresponding regularization term can
be viewed as a multiscale (higher order) TV [17]. Such a prior
tends to favor piecewise regular signals and images. From a nu-
merical standpoint, an extensive study is reported in [18] using
these redundant dictionaries to highlight differences between
synthesis and analysis sparsity priors for inverse problems.
As a last example of sparse analysis regularization, we would

like to mention the fused Lasso [19], where is the concatena-
tion of a discrete derivative and a weighted identity. The corre-
sponding prior promotes both sparsity of the signal and its
derivative, hence favoring the grouping of nonzero coefficients
in blocks.

3) Synthesis Versus Analysis Priors: In a synthesis prior,
the vector that synthesizes the signal from the dictionary
is sparse, whereas in an analysis prior, the correlation between
the signal and the atoms in the is sparse. Some insights
on the relation and distinction between analysis and synthesis-
based sparsity regularizations were first given in [20]. When
is orthogonal, and more generally when is square and invert-
ible, and the Lasso entail equivalent regularizations in
the sense that the set of minimizers of one problem can be re-
trieved from that of an equivalent form of the other through a
bijective change of variable. However, when is redundant,
synthesis and analysis regularizations differ significantly.

D. Union of Subspaces Model

As analysis regularization involves the sparsity of the corre-
lation vector , it is thus natural to keep track of the support
of . To fix terminology, we define this support and its com-
plement.

Definition 1: The -support of a vector is
. Its -cosupport is

.
A signal such that is sparse lives in a subspace of

small dimension whose formal definition is as follows.

Definition 2: Given a dictionary , and a subset of
, the cospace is defined as

where we recall that is the subdictionary whose columns are
indexed by .
Following the cosparse model introduced in [21], the signal

space can thus be decomposed as

where

(7)

which is dubbed union of subspaces of dimension .
The union of subspaces associated with synthesis regulariza-

tion, i.e., , corresponds to as the set of axis-aligned
subspaces of dimension . For the 1-D TV prior, where

as defined in (6), is the set of piecewise constant sig-
nals with steps. Several examples of subspaces , in-
cluding those corresponding to translation invariant wavelets,
are discussed in [21].
More general union of subspaces models (not necessarily cor-

responding to analysis regularizations) has been introduced in
sampling theory to model various types of nonlinear signal en-
sembles; see, for instance, [22]. Union of subspaces models
has been extensively studied for the recovery from pointwise
sampling measurements [22] and compressed sensing measure-
ments [23]–[26].

E. Organization of This Paper

The rest of this paper is organized as follows. Section II de-
tails ourmain contributions. Section III draws some connections
with relevant previous work. Section IV illustrates our results on
some examples. The proofs are deferred to Section V.

II. CONTRIBUTIONS

This paper proves the following three main results.
1) Robustness to small noise: we provide a sufficient condi-
tion on ensuring that the solution of is unique,
lives in the same cospace, and is close to when is
small enough.

2) Noiseless identifiability: under the same sufficient condi-
tion, is guaranteed to be the unique solution of
when .

3) Robustness to bounded noise: we then give a sufficient con-
dition that depends on the -cosupport of under which
the solution of is unique and close to for an ar-
bitrary bounded noise , with the proviso that is large
enough.

Each contribution will be rigorously described in a corre-
sponding section.
It is worth mentioning that our results will extend previously

known ones in the synthesis case; see, for instance, [27]–[31].
Additionally, there are only a few recent works that we are aware
of and which give provable guarantees using analysis regular-
ization for exact recovery in the noiseless case [21] or accurate
and robust recovery in the noisy case [32]–[37]. We will dis-
cuss this prior literature in detail in Section III. Nevertheless, to
the best of our knowledge, it appears that our work is the first
that addresses the aforementioned three questions in the anal-
ysis case.
For some cosupport , the invertibility of on will play

a pivotal role in our theory. This is achieved by imposing that

To get the gist of the importance of , consider the noise-
less case where we want to recover a -sparse signal from
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. Let be the -cosupport of and assume that it is
known. As , for to be uniquely re-
covered from , must be verified. Conversely, if is such
that does not hold, then any , with ,
is also a candidate solution, i.e., .
Clearly, one cannot reconstruct such -sparse objects.
With assumption at hand, we are in a position to define

the following matrix whose role will be clarified shortly.

Definition 3: Let be a -cosupport. Suppose that
holds. We define the operator as

(8)

where is a matrix whose columns form a basis of .
It is worth noting that the action of on a vector can

be computed without explicitly constructing a basis of by
solving the quadratic problem

A. Robustness to Small Noise

Our first contribution consists in showing that -analysis
regularization is robust to a small enough noise under a suffi-
cient condition that depends on the sign of and its -co-
support. This condition will be formulated via the following
criterion.

Definition 4: Let , its support, and
. Suppose that holds. The analysis identifiability crite-

rion of is defined as

where

We have the following theorem.

Theorem 1: Let be a fixed vector of -support
and -cosupport . Let . Assume that
holds and . Then, there exist constants

and satisfying

such that if is chosen according to

the vector

(9)

is the unique solution of . Moreover

In plain words, Theorem 1 asserts that when
, the support and sign pattern of

are exactly recovered by solving with wisely
chosen and provided that the nonzero entries of are
large enough compared to noise. In addition, if is chosen
proportional to the noise level, (9) implies

Remark 1: One may question the benefit of minimizing
over in the criterion . First note that is
upper bounded by . For with maximally linear
independent columns, and is large. On the
other hand, when is large, minimizing the (translated)
-norm over is likely to produce lower values of .

In a nutshell, linear dependences among the columns of , in
some sense, are desirable to optimize the value of . This is
in agreement with the observations of [21].
At this stage, one may wonder whether the sufficient con-

dition can be weakened while ensuring
both sign consistency and cospace recovery by solving
in presence of small noise. The following proposition provides
a first answer by proving that the condition is in some sense
necessary.

Proposition 1: Let be a fixed vector of -co-
support . Let . Suppose that holds and

. If

(10)

where , then for any solution
of , we have

In plain words, for signals with , the
associated sign vector and -support cannot be simultaneously
identified by solving even with a small noise for the
range of obeying (10).

B. Noiseless Identifiability

In the noiseless case, , the criterion can be used to
test identifiability. A vector is said to be identifiable if is
the unique solution of . We will prove the following
theorem.

Theorem 2: Let be a fixed vector of -cosupport
. Suppose that holds and . Then,
is identifiable.
The conclusions of Proposition 1 remain valid even in the

noiseless case.

Corollary 1: Let be a fixed vector of -cosupport
. Suppose that holds and . Then,
for any and any solution of
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When , Proposition 1 and Corollary 1
do not allow to conclude. In Section IV-C, a family of signals
is built such that , and where we show

that depending on the noise structure, recovery can be possible
or not.

C. Robustness to Bounded Noise

Let us now turn to robustness to an arbitrary bounded noise.
To this end, we introduce the following criterion, which is a
strengthened version of the criterion.

Definition 5: The analysis recovery criterion (RC) of
is defined as

It is clear that if is the -support of , implies
. Moreover, depends solely on the

-support while relies both on the -support and the sign
vector .
In Theorem 1, the assumption on plays a pivotal role: if

is too small, there is no way to distinguish the small components
of from the noise. If no assumption is made on , it turns
out that one can nevertheless expect robustness to an arbitrary
bounded noise if the parameter is large enough. In this case,
solving allows us to recover a unique vector which lives
in the same cospace as the unknown signal , and whose
distance from is within a factor of the noise level.

Theorem 3: Let be a fixed -support, its associated
-cosupport. Let . Suppose that holds. If

and

where

then for every of -support , problem has a unique
solution whose -support is included in and

. More precisely

III. RELATED WORKS

A. Previous Works on Synthesis Identifiability and Robustness

There is an extensive literature on guarantees for identifia-
bility and robustness to noise of sparse synthesis regular-
ization, i.e., Lasso in (4). In [28], Fuchs introduced a synthesis
identifiability criterion , which is a specialization of our
to the case where .

Definition 6: Let , its support, and its
cosupport. We suppose is full rank. The criterion of a
sign vector associated with a support is defined as

Let us point out that the full rank assumption on is a par-
ticularization of to the synthesis prior case.
The following result is proved in [28]. We restate it here for

completeness.

Theorem ([28]): Let be a fixed vector of support .
If has full rank and , then is identifi-
able, i.e., it is the unique solution of (4) for .
Note that the aforementioned condition is also known as the

irrepresentable condition in the statistical literature.
The work of Tropp [29], [30] in the synthesis case developed

a sufficient noise robustness condition built upon the so-called
exact recovery coefficient (ERC) of the support.

Definition 7: The ERC of is defined as

Note again that while depends both on the sign and
the support, depends only on the support and we have the
inequality .
It is proved in [29] that is a sufficient condition

for partial support recovery and -consistency by solving the
Lasso.

Theorem ([29]): Let be a fixed support. Suppose that
has full rank. If and large enough, then for every
of support , problem (4) with has a unique

solution whose support is included in and
.

By noticing that when , , and by def-
inition of the operator norm , we easily conclude that
our criteria and are equivalent to and .

Proposition 2: If , then
and .

There are of course many other sufficient conditions in the
literature which provably guarantee uniqueness, identifiability,
and noise robustness in the -synthesis regularization case; see
[38] for a thorough review. Among the most popular, we have
coherence-based conditions and those based on the RIP which
plays a central role in the compressed sensing theory [31], [39].
In the inverse problems community, efforts have been un-

dertaken to derive results of robustness to arbitrary bounded
noise (so-called convergence rates), for -synthesis regulariza-
tion to solve ill-posed linear inverse problems. In the regulariza-
tion theory, the source or range condition as well as a restricted
invertibility condition on are generally imposed; see, e.g.,
[40]–[44] and references therein. For instance, the authors in
[43] have shown that a strengthened version of the source condi-
tion generalizing is a necessary and sufficient con-
dition for noise robustness with the rate . This source
condition is detailed in (11) for the more general analysis set-
ting. However, these results do not say anything about the sign
and support recovery.

B. Previous Works on Analysis Identifiability and Robustness

It is only very recently that recovery and noise robustness
theoretical guarantees of -analysis sparse regularization have
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been investigated. The previous works that we are aware of are
[21] and [32]–[37].
Taking a compressed sensing perspective with a general-

ization of the RIP (called D-RIP) on , and assuming that
is a tight frame, the authors [32] prove that -analysis

regularization allows accurate and robust recovery from noisy
measurements uniformly over all signals that are (even nearly)
-sparse. Needell andWard [37] also give a provable guarantee

of robust recovery for images from compressed measurements
via TV regularization. As usual, the RIP-based guarantees are
uniform and the (D-)RIP is satisfied for Gaussian matrices and
other random ensembles. This setting is thus quite far from
ours.
The work of [21] is much closer to ours. It studies noise-

less identifiability using and sparse analysis regulariza-
tion. Their result on -analysis noiseless identifiability is the
following whose proof is inspired from an extension of the null
space property [45] to the -analysis case.

Theorem ([21]): Let be a fixed vector whose -support
is and -cosupport . Let be any basis matrix of .
Assume that has full rank and ,
where

Then, is identifiable.
Note that does not imply neither

the opposite. Moreover, unlike , does not reduce to
in the -synthesis case; see the discussion on their

fundamental differences in [21, Sec. 5.3]. In the noisy case,
is not sufficient to guarantee stability

of the sign pattern to noise, even a small one. More precisely,
if but , then
according to Proposition 1, any solution of , for
satisfying (10), will violate the sign agreement property,

i.e., . Robustness guarantees of
-analysis regularization by an appropriate strengthening of

the analysis equivalent of the null space property remain an
open problem.
Turning to the inverse problems literature, some authors

have established linear convergence rates. For instance, in [36],
convergence (robustness) rates for convex regularizations
have been derived with respect to the Bregman divergence
under a source condition. The Bregman divergence measures
the distance between the regularization term and its affine
approximation at the true solution. Analysis-type regulariza-
tions where is not necessarily injective, such as the TV, fall
within the class of regularization functionals they considered.
The author in [35] derived more general linear convergence
rates for a large class of positively homogeneous convex
sparsity promoting regularization functionals , including
analysis-type ones, under a source condition and a suitable
restricted injectivity condition on . The convergence was
established with respect to the error in the solution measured in
terms of the regularization functional. Specialized to the case
of -analysis regularization, this result reads.

Theorem ([35]): Let of -support and
such that . Assume also that there exist

such that

(11)

(source condition). Let such that . Suppose
that holds with such . Then, for proportional to , there
exists independent of such that

Interestingly, for , if is satisfied,
implies that the source and restricted

injectivity conditions stated in the previous theorem are in
force. More precisely, the following holds.

Proposition 3: Let of -cosupport such that
holds and . Then, the source and

restricted injectivity conditions of Theorem ([35]) hold. The
claimed convergence is therefore also valid.
However, in none of these works in the inverse problem lit-

erature, robustness with respect to the -norm, i.e., -distance
of the solution from the true one, was established for general
. Of course, if were injective, -robustness would follow

immediately from [35]. In addition, their results do not allow to
conclude anything about the sign and -support recovery un-
less there is no noise.

IV. EXAMPLES

This section details algorithms to compute the criteria and
, together with a detailed study of three -analysis regular-

izations: TV, which when is the shift-invariant Haar dictio-
nary, and the fused Lasso. The source code used to produce the
numerical results is available online at github.com/svaiter/ro-
bust_sparse_analysis_regularization.

A. Computing Sparse Analysis Regularization

It is not the main scope of this paper to give a comprehen-
sive treatment of provably convergent minimization schemes
that can be used to solve .We describe one possible effi-
cient algorithm to do so which originates from the realm of non-
smooth convex optimization theory, and more precisely, prox-
imal splitting.
In the case where (denoising), is strictly (ac-

tually strongly) convex, and one can compute its unique solution
by solving an equivalent Fenchel–Rockafellar dual problem

[46]

The dual problem can be solved using, e.g., projected gradient
descent or a multistep accelerated version of it.
In the general case, we advocate the use of a primal-dual

algorithm such as the relaxed Arrow–Hurwicz scheme recently
revitalized in [47]. This algorithm is designed to minimize the
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sum of two proper lower semicontinuous convex functions,
one of which is composed of a linear bounded operator. To put
problem in a form amenable to apply this scheme, we
can rewrite it as follows:

The primal-dual algorithm requires the computation of the prox-
imity operator of which is a separable and simple function,
i.e., its proximity operator is easy to compute. Recall that the
proximity operator of a proper lower semicontinuous
function and convex is defined as

Computing involves applying a soft thresholding (the
-part) and a diagonal Wiener filtering (the separable quadratic

part).

B. Computing the Criteria

In the case where , computing
entails solving a convex minimiza-

tion problem. The latter can be cast as

where is the indicator function of , i.e.,

if
otherwise.

The previous objective is the sum of a translated -norm
and the indicator function of . It can then be solved
efficiently with the Douglas–Rachford splitting algorithm
[48]. This will necessitate to compute the proximity operator
of which is the orthogonal projector on , and

can be computed with standard prox-
imal calculus rules such as Moreau-identity

where is the projection onto the unit ball. This projector
can be computed through sorting and soft thresholding; see [49]
for details.
Unfortunately, computing (see Definition 5) is not as

easy since it necessitates to solve a difficult maxi-minimization
optimization problem which is nonsmooth, and convex in both
and (while concavity in would have been desirable).

A stronger criterion, which is easy to compute, is obtained by
taking in

One can easily see that for every vector with -support
, the following inequalities hold:

Fig. 1. (Top row) Two examples of signals having two jumps. (Bottom row)
Associated dual vector .

For many cases, might be strictly greater than 1. How-
ever, there are situations where , such as when
the associated cospace is close to the whole space, i.e., high
-cosparsity or equivalently very small -sparsity.

C. TV Denoising

The discrete 1-D TV corresponds to taking as
defined in (6). We recall that the TV union of subspaces model
is formed by where is the subspace of piecewise
constant signals with steps. We now define a subclass of
such signals.

Definition 8: A signal is said to contain a staircase subsignal
if there exists such that

Fig. 1 shows examples of signals with (left) and without
(right) staircase subsignals.
The following result will allow us to characterize robustness

of TV regularization when , i.e., TV denoising.

Proposition 4: We consider the case where . If
does not contain a staircase subsignal, then
. Otherwise, .
Proof: Let be the unique solution of with

-cosupport and . Using Lemma 1, there ex-
ists . Since , we have

. We denote the vector defined as

The vector satisfies . One can show
that this implies that is the solution of a discrete Poisson
equation

and

where is a discrete Laplacian operator. This implies
that for where are consecutive indices of ,
is obtained by linearly interpolating (see Fig. 1) the values
and , i.e.,
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Hence, if does not contain a staircase subsignal, one has
. On the contrary, if there is such that

, where and are consecutive indices of , then
for every which implies that

.

This proposition together with Theorem 1 shows that if a
signal does not have a staircase subsignal, then TV denoising
from is robust to a small noise. This means that if
is small enough, for proportional to the noise level, the TV de-
noised version of contains the same jumps as . However, the
presence of a staircase in a signal, i.e., ,
does not comply with the assumptions of neither Theorem 1 nor
Proposition 1. This prevents us from drawing positive or nega-
tive robustness conclusions.
To gain a better understanding of the latter situation, we build

an instructive family of signals for which the criterion satu-
rates at 1. It will turn out that depending on the structure of the
noise , the -support of can be either stably identified or
not.
For a multiple of 4, we split into four sets

of cardinality . Let
be the boxcar signal whose support is . Consider the staircase
signal degraded by a deterministic noise
of the form , where . The observation
vector reads

Suppose that , then the solution of is

if , and

if , and 0 if . Similarly, if
, the solution reads

if , and

if , and 0 if . Fig. 2 displays plots
of the coordinates’ path for both cases. It is worth pointing out
that when , the -support of is always different from
that of whatever the choice of , whereas in the case ,
for any , the -support of and sign of
are exactly those of .

D. Shift-Invariant Haar Deconvolution

Sparse analysis regularization using a 1-D shift-invariant
Haar dictionary is efficient to recover piecewise constant sig-

Fig. 2. (Top row) Signals for (left) and (right) . (Bottom row)
Corresponding coordinates’ path of as a function of . The solid lines cor-
respond to the coordinates in and , and the dashed ones to the coordinates
in and .

nals. This dictionary is built using a set of scaled and dilated
Haar filters

if
if
otherwise

where is a normalization exponent. For , the dictio-
nary is said to be unit-normed. For , it corresponds to
a Parseval tight frame. The action on a signal of the analysis
operator corresponding to the translation-invariant Haar dictio-
nary is

where stands for the discrete convolution (with appropriate
boundary conditions) and , where is the size
of the signal. The analysis regularization can also be
written as the sum over scales of the TV semi-norms of filtered
versions of the signal. As such, it can be understood as a sort of
multiscale TV regularization. Apart from amultiplicative factor,
one recovers TV when .
We consider a noiseless convolution setting (for )

where is a circular convolution operator with a Gaussian
kernel of standard deviation . We first study the impact of
on the identifiability criterion . The original signal is a
centered boxcar signal with a support of size

Fig. 3 displays the evolution of as a function
of for three dictionaries: the TV dictionary and the Haar
wavelet dictionary with two normalization exponents
and . In this experiment, we chose . One
can observe that the three curves pass through 1 for the same
value of (near 1 here). In addition, in the identifiability
regime, appears smaller in the case of the
unit-normed normalization (i.e., ). However, one should
avoid to infer stronger conclusions since a detailed computation
of the constants involved in Theorem 1 would be necessary
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Fig. 3. Behavior of for a noiseless deconvolution scenario with a Gaussian
blur and -analysis sparsity regularization in a shift-invariant Haar dictionary
with . is plotted as a function of the Gaussian blurring kernel size

for the TV dictionary and the Haar wavelet dictionary with two
normalization exponents . Dash-dotted line: (unit-normed). Dashed
line: (tight frame). Solid line: TV.

to completely and fairly compare the stability performance
achieved with each of these three dictionaries.

E. Fused Lasso Compressed Sensing

Fused Lasso was introduced in [19]. It corresponds to taking

in , where . The associated union of subspaces (7)
is , where is the set of signals that are the sum of
boxcars of disjoint supports, i.e., a signal can be written
as

where and .
We consider a noiseless compressed sensing setting (with the

signal size ) and examine the behavior of with re-
spect to the undersampling ratio and the true signal prop-
erties. is drawn from the standard Gaussian ensemble, i.e.,

. The sampled signal is the superposi-
tion of two boxcars distant from each other by and each of
support size

In our simulations, we fixed .
Fig. 4 depicts the evolution of the empirical probability with

respect to the sampling of of the event as a function
of the sampling ratio and the boxcar support
size . This probability is computed from 1000
Monte Carlo replications of the sampling of . With no sur-
prise, one can clearly see that the probability increases as more
measurements are collected. This probability profile also seems
to be increasing as decreases, but this is likely to be a conse-
quence of the choice of the Fused Lasso parameter , and the
conclusion may be different for other choices.

Fig. 4. Behavior of for a compressed sensing scenario matrix with a
Gaussian measurement matrix and the Fused Lasso regularization. Empir-
ical probability of the event as a function of the sampling ratio

and the support size with .

Fig. 5. Behavior of for a compressed sensing scenario matrix with
a Gaussian measurement matrix and the fused Lasso regularization. Em-
pirical probability of the event as a function of the parameter

and the support size with .

This is indeed confirmed in our last experiment whose re-
sults are displayed in Fig. 5. It shows the evolution of the em-
pirical probability of the event as a function of the
fused Lasso parameter and the support size

. This probability is again computed from 1000
Monte Carlo replications. Depending on the choice of , the
probability profile does not necessarily exhibit a monotonic be-
havior as a function of . For large values (more weight on
in the fused Lasso dictionary), the probability decreases mono-
tonically as increases which can be explained by the fact that
higher corresponds to less sparse signals. As is lowered,
higher weight is put on the TV regularization, and the behavior
is not anymore monotonic. Now, the probability reaches a peak
at intermediate values of and then vanishes quickly. The peak
probability also decreases with decreasing .

V. PROOFS

This section details the proofs of our main results in Theo-
rems 1–3. Throughout, we use the shorthand notation for
the objective function in
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We remind the reader that condition is supposed to hold
true in all our statements.

A. Preparatory Lemmata

We first need some key lemmata that will be central in our
proofs.
The first one gives the first-order optimality conditions for the

analysis variational problem .

Lemma 1: A vector is a solution of if, and only
if, there exists , where is the -cosupport of , such
that

(12)

(13)

where is the -support of and .
Proof: The subdifferential of a real-valued proper convex

function is denoted . From standard
convex analysis, we recall the definition of at a point in
the domain of

It is clear from this definition that is a (global) minimizer of
if, and only if, . By classical subdifferential calculus,
the subdifferential of at is the nonempty convex compact
set

where

where and are, respectively, the -support and -cosupport
of . Therefore, is equivalent to the existence
of such that and
satisfying

Letting , this is equivalent to .

The following lemma is a key to prove uniqueness statements.
It characterizes the normal cone at zero to the subdifferential of

at a minimizer . By definition, this normal cone is

Lemma 2: Let be a solution of whose -support
is . Suppose there exist and with

. Then

Moreover, if is the -cosupport of , then

Proof: Let . We decompose such that
where . Since , it follows that
defined by

is such that and therefore from Lemma 1

Let such that . Consider the set

For every , we define

and we denote

We therefore have

since .
Let and . By construction of , we

have that

and

Clearly, . In view of the definition of
, we know that

In particular

Now, observe that , and .
Indeed, and

Moreover
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This implies that

That is

Let . Then, there exist and
such that

Let the vector defined as

is by construction an element of since
. Therefore, the associated vector is

i.e., . Since , we get
. This together with the fact that

implies

We conclude that .
Suppose now that is the -cosupport of , i.e., .

We prove that

To this end, we show that . Indeed, let
. We write with
and . Since , one has

since . This implies that .
In view of the assertion in the first part, we conclude.

The following lemma gives a sufficient condition, which
guarantees that has exactly one minimizer.

Lemma 3: Let be a vector of -support . Suppose that
there exist such that holds and
such that

Then, is the unique solution of .
Proof: For notational convenience, we write as

Let . Two different cases occur.

1) If , then using Lemma 2, . This
negation means that for some ,
whence it follows immediately that

2) Let us turn to the case . Since holds, , hence
, is strongly convex on with some modulus .

Consequently, for any , we have

is a minimizer if, and only if, such
that

This yields

Altogether, we have proved that for any ,
, or equivalently that is the unique

minimizer of .

The following lemma gives an implicit equation satisfied by
any (nonnecessarily unique) minimizer of .

Lemma 4: Let be a solution of . Let
be the -support and be the -cosupport of and

. We suppose that holds. Then,
satisfies

(14)

Proof: Owing to the first-order necessary and sufficient
minimality condition (Lemma 1), there exists
satisfying

(15)

By definition, . We can then write
for some . Since , multiplying both

sides of (15) on the left-hand side by , we get

Since is invertible, the implicit equation of follows
immediately.

Suppose now that a vector satisfies the aforementioned im-
plicit equation. The next lemma derives two equivalent neces-
sary and sufficient conditions to guarantee that this vector is ac-
tually a (possibly unique) solution to .

Lemma 5: Let and let be a -cosupport such that
holds, and . Suppose that satisfies
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where . Then, is a solution of if,
and only if, there exists satisfying one of the following
equivalent conditions:

(16)

or

(17)

where , ,
, and .

Moreover, if then is the unique solution of
.

Proof: First, we observe that . According to
Lemma 1, is a solution of if, and only if, there ex-
ists . Since holds, is properly defined.
We can then plug the assumed implicit equation in (13) to get

Rearranging the terms multiplying and , we arrive at

This shows that is a minimizer of if and only if

To prove the equivalence with (17), we first note that
implying that , and

thus, . With a similar argument, we get
. Hence, the existence of such

that is equivalent to

which in turn is equivalent to

Replacing the inequality by a strict inequality condition gives
the uniqueness of by virtue of Lemma 3.

B. Proof of Theorem 1

Recall the analysis identifiability criterion from Defini-
tion 4.

Proof: The proof is divided into three steps.
1) We give a first condition on to ensure

.
2) We then derive another condition on to guarantee that
the minimality conditions are satisfied at , and assuming

that is the unique solution to
.

3) We finally prove that these two conditions are compatible.
Let us consider the vector

where . Obviously, .
1) We first give a condition on to ensure sign consistency,
i.e.,

The two vectors have the same sign if

(18)

Let us upper bound as follows:

Introducing

the condition

(19)

is sufficient for (18) to hold true.
2) We now turn to the second step of the proof. Observe that

since . Let a min-
imizer of over . We consider the
following candidate vector defined by:

We have

By definition of

Thus, since and provided that

(20)

we have . Appealing to Lemma 5, it follows that
is the unique solution of .

3) Let us show that (19) and (20) are in agreement. We intro-
duce the constants and

and
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On the one hand, if

then

On the other hand, if

then

which is condition (19). Moreover, also im-
plies that

which is condition (20).

C. Proof of Proposition 1

Proposition 1 is a simple consequence of Lemmata 4 and 5.
Proof: Let be a solution of . Suppose that

. As a consequence, is the -co-
support of . According to Lemmata 4 and 5, there exists
such that and

or equivalently, there exists such that

It follows that

Since and
by assumption, we have

This implies

which is a contradiction.

D. Proof of Theorem 2

Theorem 2 is proved in three steps.

1) First, we specialize Theorem 1 to the case .
2) Then, we show that under the condition

, the vector is a solution
of .

3) Finally, we prove Theorem 2 by considering another fea-
sible vector of .

Corollary 2: Let be a fixed vector, be its
-support, and . Suppose that holds and

. Let . Then,
for

is the unique solution of .
Proof: Take in Theorem 1.

Lemma 6: Let be a fixed vector, be its -support,
and . Suppose that holds and
. Then, is a solution of .
Proof: According to Corollary 2, has a unique

solution for

where . Let such that .
For every , one has by definition
of . Then

By continuity of the norm, and taking the limit as in the
last inequality yields

whence it follows that is a solution of .

Proof of Theorem 2: Using Lemma 6, is a solution of
. We shall prove that is actually unique. Let

For small enough, one has .
Then, if , it follows from Corollary 2 that
is the unique solution of where .
Let be another feasible point of , i.e.,

with . Since is the unique
solution of , we obtain

which implies that

This proves that indeed is the unique solution of .

E. Proof of Theorem 3

Recall the recovery criterion from Definition 5.
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Proof: Consider the following restricted problem:

Our strategy is to construct a solution of , and to show
that it is the unique solution of . To achieve this goal,
we split the proof into four steps.
1) We exhibit such that

2) We prove that satisfies an implicit equation of the form

3) We prove that satisfies the first-order minimality condi-
tions of Lemma 1 using the construction of .

4) Finally, we derive the -robustness bound.
By a simple change of variable , we rewrite in
an unconstrained form

1) Applying Lemma 1 with and instead of and
, is a solution of if, and only if, there exists
with such that

where is the -support of and
. We introduce defined as

which satisfies

The previous first-order optimality condition then takes the
compact form

(21)

2) Owing to condition , is invertible, and we
obtain

Multiplying both sides by recovers as

(22)

3) We now prove that is a solution of , i.e., there
exists such that

Take such that

and

(23)

We recall from Lemma 5 that

Plugging (22), we get

Let us denote . From (21),
we have . Since

is the orthogonal projector on ,
we conclude that . It then follows that

We can then write the bound

From (23), and by definition of , we get the bound

Let defined by

Since by assumption and

we get and .
Invoking Lemma 1, we conclude that is a solution of

. Moreover, since and holds,
is the unique solution of according to Lemma 3.

4) We now bound the -distance between and
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Since , we have .
Consequently

This concludes the proof.

VI. CONCLUSION

In this paper, we provided theoretical guarantees for accurate
and robust recovery with -analysis sparse regularization. We
derived a sufficient condition under which the -support and
sign of the true signal can be exactly identified in presence of a
small enough noise (and a fortiori without noise). We showed
that this condition for support recovery is in some sense sharp.
We proposed a stronger condition to ensure a partial support
recovery for arbitrary noise if the regularization parameter is
sufficiently large. As a byproduct, these conditions also guar-
antee robustness in -error. Some examples were provided and
discussed to illustrate our results. For discrete 1-D TV regular-
ization, we show that staircasing induces an instability of the
-support, i.e., jumps are not preserved. We believe that these

contributions will allow us to gain a better understanding of the
behavior of sparse analysis regularizations. We would like to
emphasize that a distinctive feature of our approach with respect
to the literature is that we have guarantees on the robustness
of the cospace associated with the true signal. This approach
often has a meaningful interpretation (such as the conservation
of jumps for TV regularization).

APPENDIX
PROOF OF PROPOSITION 3

Let and be the -cosupport of . Let
such that

Let be such that and . Since
, we have ,

which shows that , and therefore that
.

Now, as and , we have

(24)

where is the orthogonal projection on . Since
and owing to (24), we get

Using the expression of , we obtain

Choosing , and since ,
we arrive at

or equivalently that . This concludes the proof.
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