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CLEAR: Covariant LEAst-Square Refitting with Applications to Image
Restoration∗
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Abstract. In this paper, we propose a new framework to remove parts of the systematic errors affecting popular
restoration algorithms, with a special focus on image processing tasks. Generalizing ideas that
emerged for `1 regularization, we develop an approach refitting the results of standard methods
toward the input data. Total variation regularizations and nonlocal means are special cases of
interest. We identify important covariant information that should be preserved by the refitting
method and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the
original estimator. Then, we provide an approach that has a “twicing” flavor and allows refitting
the restored signal by adding back a local affine transformation of the residual term. We illustrate
the benefits of our method on numerical simulations for image restoration tasks.
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1. Introduction. Restoring an image from its single noisy and incomplete observation
necessarily requires enforcing regularity or a model prior on the targeted properties of the
sought solution. Regularity properties such as sparsity and gradient sparsity of an image are
difficult to enforce in general and notably lead to combinatorial and nonconvex problems.
When one is willing to guarantee such kinds of features, convex relaxation is a popular path.
This is typically done using the `1 norm instead of the `0 pseudonorm, as for the Lasso [45]
or the total variation [39]. Nevertheless, such relaxations are well known to create solutions
with a larger bias.

Typically, for the Lasso, using the `1 convex relaxation of the `0 pseudonorm leads large
coefficients to be shrunk toward zero.

For the total variation, the same relaxation on the jump amplitudes induces a loss of
contrast in the recovered signal; see Figure 1(a) for an illustration in this case.

In the Lasso case, a well-known refitting scheme consists in performing a posteriori a least-
square re-estimation of the nonzero coefficients of the solution. This post-refitting technique
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Figure 1. (a) Solutions of 1D-TV and our refitting on a noisy signal. (b) Illustration of the invariant
refitting in a denoising problem of dimension p = 3. The gray surface is a piecewise affine mapping that models
the evolution of x̂ in an extended neighborhood of y. The light red affine plane is the model subspace, i.e., the
set of images sharing the same jumps as those of the solution x̂(y). The red triangle is the restriction of the
model subspace to images that can be produced by TV. Finally, the pink dot represents the refitting Rinv

x̂ (y) as
the orthogonal projection of y on Mx̂(y).

became popular under various names in the literature, such as hybrid Lasso [20], Lasso–
Gauss [37], OLS post-Lasso [1], and debiased Lasso (see [29, 1] for extensive details on the
subject). For the anisotropic total variation (aniso-TV), the same post-refitting approach can
be performed to re-estimate the amplitudes of the jumps, provided their locations have been
correctly identified.

In this paper, we introduce a generalization of this refitting technique that aims at re-
enhancing the estimation toward the data without altering the desired properties imposed
by the model prior. The underlying reason is that if the user chooses an estimator for which
theoretical guarantees have been proven (as for the Lasso and total variation), refitting should
preserve these guarantees. To that end, we introduce the Covariant LEAst-square Refitting
(CLEAR). Though this method was originally elaborated with `1 analysis problems in mind,
it has the ability to generalize to a wider family, while in simple cases such as the Lasso or the
aniso-TV, it recovers the classical post-refitting solution described earlier. For instance, our
methodology successfully applies to Tikhonov regularization [47], isotropic total variation (iso-
TV), nonlocal means [3], block matching 3D (BM3D) [11], and dual domain image denoising
(DDID) [27]. In common variational contexts, e.g., `1− `2 analysis [21] (encompassing Lasso,
group Lasso [30, 55, 33], aniso-TV, and iso-TV), we show that our refitting technique can
be performed with a complexity overload of about twice that of the original algorithm. In
other cases, we introduce a scheme requiring about three times the complexity of the original
algorithm.

While our covariant refitting technique recovers the classical post-refitting solution in
specific cases, the proposed algorithm offers more stable solutions. Unlike the Lasso post-
refitting technique, ours does not require identifying a posteriori the support of the solution,
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i.e., the set of nonzero coefficients. In the same vein, it does not require identifying the
jump locations of the aniso-TV solution. Since the Lasso and the aniso-TV solutions are
usually obtained through iterative algorithms, stopped at a prescribed convergence accuracy,
the support or jump numerical identification might be imprecise (all the more so for ill-posed
problems). Such erroneous support identifications lead to results that strongly deviate from
the sought refitting. Our covariant refitting jointly estimates the re-enhanced solution during
the iterations of the original algorithm and, as a by-product, produces more robust solutions.

This work follows a preliminary study [15] that attempted to suppress the bias emerging
from the choice of the method (e.g., `1 relaxation), while leaving unchanged the bias due to
the choice of the model (e.g., sparsity). While the approach from [15]—hereafter referred to as
invariant refitting—provides interesting results, it is however limited to a class of restoration
algorithms that satisfy restrictive local properties.

In particular, invariant refitting cannot handle iso-TV. In this case, invariant refitting is
unsatisfactory as it removes some desired aspects enforced by the prior, such as smoothness,
and suffers from a significant increase of variance. A simple illustration of this phenomenon
for iso-TV is provided in Figure 2(d) where artificial oscillations are wrongly amplified near
the boundaries.

While covariant and invariant refitting both correspond to the least-square post-refitting
step in the case of aniso-TV, the two techniques do not match for iso-TV. Indeed, CLEAR
outputs a more relevant solution than the one from invariant refitting. Figure 2(e) shows
the benefit of our proposed solution with respect to (w.r.t.) the (naive) invariant refitting
displayed in Figure 2(d).

It is worth mentioning that covariant refitting is also strongly related to boosting methods
reinjecting useful information remaining in the residual (i.e., the map of the pointwise differ-
ence between the original signal and its prediction). Such approaches can be traced back to
twicing [48] and have recently been thoroughly investigated: boosting [4], Bregman iterations
and nonlinear inverse scale spaces [34, 5, 53, 35], unsharp residual iteration [8], SAIF-boosting
[31, 44], ideal spectral filtering in the analysis sense [24], and SOS-boosting [38] are some of
the most popular ones. Most of these methods can be performed iteratively, leading to a
difficult choice for the number of steps to consider in practice. Our method has the noticeable
advantage that it is by construction a two-step one. Iterating more would not be beneficial
(see subsection 4.2). Unlike refitting, these later approaches aim at improving the overall im-
age quality by authorizing the re-enhanced result to deviate strongly from the original biased
solution. In particular, they do not recover the aforementioned post-refitting technique in the
Lasso case. Our objective is not to guarantee the image quality to be improved but rather to
generalize the refitting approach with the ultimate goal of reducing the bias while preserving
the structure and the regularity of the original biased solution.

Interestingly, we have also realized that our scheme presents some similarities to the clas-
sical shrinking estimators introduced in [42], especially as presented in [23]. Indeed, the step
performed by CLEAR is similar to a shrinkage step with a data-driven residual correction
weight (later referred to as ρ in our approach; see Definition 14) when performing shrinkage
as in [23, section 3.1].

Last but not least, it is well known that bias reduction is not always favorable in terms of
mean square error (MSE) because of the so-called bias-variance trade-off. It is important to
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highlight that a refitting procedure is expected to reinject part of the variance; therefore, it
could lead to an increase of residual noise. Hence, the MSE is not expected to be improved by
refitting techniques (unlike the aforementioned boosting-like methods that attempt to improve
the MSE). We will show in our numerical experiments that refitting is in practice beneficial
when the signal of interest fits well the model imposed by the prior. In other scenarios, when
the model mismatches the sought signal, the original biased estimator remains favorable in
terms of MSE. Refitting is nevertheless essential in the latter case for applications where the
image intensities have a physical sense and critical decisions are taken from their values.

2. Background models and notation. We tackle the problem of estimating an unknown
vector x0 ∈ Rp from noisy and incomplete observations

(1) y = Φx0 + w,

where Φ is a linear operator from Rp to Rn and w ∈ Rn is the realization of a noisy random
vector. This linear model is widely used in statistics and in imagery (e.g., for encoding
degradations such as entrywise masking and convolution). Typically, the inverse problem
associated to (1) is ill-posed, and one should add additional information to recover at least
an approximation of x0 from y. We denote by x̂ : y 7→ x̂(y) the procedure that provides
such an estimation of x0. In this paper, we consider a popular class of estimators relying on
a variational formulation that involves a data fidelity term F (x, y) and a regularizing term
G(x):1

(2) x̂(y) ∈ argmin
x∈Rp

F (x, y) +G(x).

Another kind of estimator can be defined as the output of an iterative algorithm (k, y) 7→
xk, e.g., a numerical solver. For a chosen iteration k, we define the final estimator x̂(y) = xk.
Such a framework includes, for instance, proximal splitting methods, as well as discretization
of partial differential equations, though we do not investigate this latter method in detail.

2.1. Notation. For a matrix M , M+ is its Moore–Penrose pseudoinverse. For a (closed
convex) set C, ΠC is the Euclidean projection over C, and ιC is its indicator function defined
by ιC(u) = 0 if u ∈ C and +∞ otherwise.

For any integer d ∈ N∗, we write [d] for the set {1, . . . , d}. For any subset I of [d], its
complement in [d] is written Ic. For any vector v, vI ∈ R|I| is the subvector whose elements
are indexed by I ⊂ N, and |I| is its cardinality. For any matrix M , MI is the submatrix
whose columns are indexed by I. We denote, respectively, by Im[A] and Ker[A] the image
space and the kernel space of an operator A. For any vector x ∈ Rd and q ∈ [1,+∞] we
denote by ||x||q its standard `q norm and by ||x||0 the number of nonzero entries of x, i.e.,
||x||0 = | {i ∈ [d] : xi 6= 0} |.

2.2. Main investigated estimators. Here, we provide several canonical examples of esti-
mators of the form (2) that help us illustrate our methodology.

1Often the solution of (2) is nonunique, but for simplicity we only consider a selection of such solutions,
and we assume that the selected path x̂ : y 7→ x̂(y) is differentiable almost everywhere.
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Affine constrained least-squares, used when x0 belongs to the affine subspace C = b+Im[A]
with b ∈ Rp and A ∈ Rp×n, are a particular case of (2) where F (x, y) = 1

2 ||y − Φx||22 and
G(x) = ιC(x). The solution of the minimum Euclidean norm is unique and is given by
x̂(y) = b+A(ΦA)+(y − Φb) (see Appendix A.1).

Tikhonov regularization [47] (or Ridge regression [26]), used when ||Γx0||2 is small with
Γ ∈ Rm×p, is an instance of (2) where F (x, y) = 1

2 ||y − Φx||22 and G(x) = λ
2 ||Γx||

2
2 for some

parameters λ > 0. Provided Ker Φ ∩ Ker Γ = {0}, x̂(y) exists and is uniquely defined as
x̂(y) = (Φ>Φ + λΓ>Γ)−1Φ>y (see subsection A.2).

Hard-thresholding [17], used when Φ = Id and x0 is sparse, is a solution of (2) where

F (x, y) = 1
2 ||y − x||

2
2 and G(x) = λ2

2 ||x||0 for some parameter λ > 0. The hard-thresholding
operation writes as x̂(y)I = yI and x̂(y)Ic = 0, where I = {i ∈ [p] : |yi| > λ} (see subsection
A.3).

Soft-thresholding [17], used when Φ = Id and x0 is sparse, is a solution of (2) where
F (x, y) = 1

2 ||y − x||22 and G(x) = λ||x||1 for some parameter λ > 0. The soft-thresholding
operation writes as x̂(y)I = yI − λ sign(yI) and x̂(y)Ic = 0, where I is defined as for hard-
thresholding (see subsection A.4).

`1 synthesis (or Lasso [45, 17]), used when x0 is sparse, is a solution of (2) where F (x, y) =
1
2 ||Φy−x||

2
2 and G(x) = λ||x||1 for some parameter λ > 0. Provided the solution is unique (see,

for instance, [46]), it reads

(3) x̂(y)I = (ΦI)
+yI − λ((ΦI)

>ΦI)
−1sI and x̂(y)Ic = 0

for almost all y and where I = supp(x̂(y)) = {i ∈ [p] : x̂(y)i 6= 0} is the support of x̂(y), and
sI = sign(x̂(y)I).

`1 analysis, used when Γx0 is sparse with Γ ∈ Rm×p, is a solution of (2) where

(4) F (x, y) =
1

2
||Φx− y||22 and G(x) = λ||Γx||1 for some λ > 0.

Provided Ker Φ ∩Ker Γ = {0}, there exists a solution given implicitly (see [49]) as

(5) x̂(y) = U(ΦU)+y − λU(U>Φ>ΦU)−1U>(Γ>)IsI

for almost all y and where I = supp(Γx̂(y)) = {i ∈ [m] : (Γx̂(y))i 6= 0} is called the Γ-support
of the solution, sI = sign((Γx̂(y))I), U is a matrix whose columns form a basis of Ker[ΓIc ],
and ΦU has full column rank.

Aniso-TV [39] is an instance of (4) where x0 ∈ Rp is identified to a b-dimensional signal,
for which Γ = ∇ : Rp → Rp×b is the discrete gradient operator and ||∇x||1 =

∑p
i=1 ||(∇x)i||1.

Aniso-TV promotes piecewise constant solutions with large constant regions and few sharp
transitions. Here, I is the set of indexes where the solution has discontinuities. The `1 norm
of the gradient field induces an anisotropic effect by favoring the jumps to be aligned with the
canonical directions (so it favors squared-like structures rather than rounded ones).

`1 − `2 analysis [30, 55, 33], used when Γx0 is block sparse with Γ ∈ Rp 7→ Rm×b, is a
solution of (2) with

(6) F (x, y) =
1

2
||Φx− y||22 and G(x) = λ||Γx||1,2
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(a) (b)

(c) (d) (e)

Figure 2. (a) A piecewise constant signal. (b) Its noisy version. (c) Solution of iso-TV with λ = 10 on the
noisy signal. (d) Solution of the invariant refitting of iso-TV. (e) Solution of the covariant refitting of iso-TV.
Red points indicate locations where the discrete gradient is nonzero.

for some parameter λ > 0 and where ||Γx||1,2 =
∑m

i=1 ||(Γx)i||2. Iso-TV [39] is a particular
instance of (6) where x0 ∈ Rp can be identified to a b-dimensional signal, for which Γ = ∇ :
Rp → Rp×b and ||∇x||1,2 =

∑p
i=1 ||(∇x)i||2. Like aniso-TV, it promotes solution with large

constant regions, but some transition regions can be smooth (see, e.g., [6])—typically those
with high curvature in the input image y; see Figure 2(a)–(c). A major difference is that
the `1 − `2 norm induces an isotropic effect by favoring rounded-like structures rather than
squared ones.

(Blockwise) nonlocal means [3], used when the image x0 ∈ Rp (with p = p1 × p2) is
composed of many redundant patterns, is the solution of (2) for F (x, y) = 1

2

∑
i,j wi,j ||Pix −

Pjy||22 and G(x) = 0, where Pi is the linear operator extracting a patch (i.e., a small window)
at pixel i of size (2b+1)2. The index i ∈ [p1]× [p2] spans the image domain, and j−i ∈ [−s, s]2
spans a limited search window. The weights wi,j are defined as wi,j = ϕ

(
||Piy − Pjy||22

)
where

the kernel ϕ : R+ → [0, 1] is a decreasing function. Assuming periodical boundary conditions,
its solution is given as

(7) x̂(y)i =

∑
j w̄i,jyj∑
j w̄i,j

with w̄i,j =
∑
k

wi−k,j−k,
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where k ∈ [−d, d]2 spans the patch domain (see subsection A.5).

2.3. Limitations. It is important to note that some of the previously introduced estima-
tors are known to suffer from systematic drawbacks.

For instance, Lasso contracts large coefficients toward 0 by the shift λ((ΦI)
>ΦI)

−1sI
whose expression simplifies to λ sign(yI) for soft-thresholding. In the same vein, `1 analysis
contracts the signal toward Ker[Γ] by the shift λU(U>Φ>ΦU)−1U>(Γ>)IsI . In the particular
case of aniso-TV, this last quantity is the well-known systematic loss of contrast of total
variation: a shift of intensity on each piece depending on its surroundings and the ratio
between its perimeter and its area (see [43] for a thorough study for the one-dimensional
(1D) case). A simple illustration is provided in Figure 1 where total variation is used for
denoising a 1D piecewise constant signal in [0, 192] and damaged by additive white Gaussian
noise (AWGN) with a standard deviation σ = 10. Even though total variation has perfectly
retrieved the support of ∇x0 with one more extra jump, the intensities of some regions are
systematically under- or overestimated. Iso-TV also suffers from a systematic loss of contrast,
as illustrated in Figure 2(c).

In the following we investigate possible solutions to reduce such artifacts.

3. Invariant least-square refitting. As mentioned earlier, practitioners have realized that
a systemic contraction affects estimators like Lasso and aniso-TV. In the Lasso case, a simple
remedy (presented in the introduction) is to perform a posteriori a least-square refitting step
of the nonzero coefficients, i.e., constrained to the support I of the Lasso solution x̂(y), given
by

argmin
x ; supp(x) ⊆ I

1
2 ||Φx− y||

2
2.(8)

In this section, we present a refitting procedure, discussed in [15], that generalizes this ap-
proach to a broad family of estimators.

3.1. Refitting through model subspace least-squares. We investigate a refitting proce-
dure well suited for estimators almost everywhere differentiable (a.e. differentiable). It relies
on the notion of model subspace, which requires Jacobian matrix computations. From now
on, we consider only estimators y 7→ x̂(y) from Rn to Rp and a.e. differentiable.

Many estimation procedures rely on a structural prior of the data. Such structures include
smoothness, sparsity, autosimilarity, or the fact that the signal is piecewise constant. Such
priors can be captured by the following notion of model subspace.

Definition 1. The model subspace associated to an a.e. differentiable estimator x̂ is defined
at almost all points y ∈ Rn by the affine subspace of Rp

(9) Mx̂(y) = x̂(y) + Im [Jx̂(y)] ,

where Jx̂(y) ∈ Rp×n is the Jacobian matrix of x̂ taken at y.

The model subspace captures what is linearly invariant through x̂ w.r.t. small perturba-
tions of y; typically, for Lasso, it will encode the set of signals sharing the same support. In
order to generalize the refitting step, it is thus natural to cast it as a constrained optimization
procedure preserving the model subspace.
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Definition 2. The invariant refitting associated to an a.e. differentiable estimator y 7→ x̂(y)
is given for almost all y ∈ Rn by

(10) Rinv
x̂ (y) = x̂(y) + J(ΦJ)+(y − Φx̂(y)) ∈ argmin

x∈Mx̂(y)

1
2 ||Φx− y||

2
2,

where J = Jx̂(y) is the Jacobian matrix of x̂ at the point y. In the following, we use the
notation J when no ambiguity is possible.

Remark 3. We only consider F (x, y) = 1
2 ||Φx − y||

2
2, but extension to a general F (e.g.,

logistic regression) is straightforward and reads Rinv
x̂ (y) ∈ argminx∈Mx̂(y) F (x, y).

Remark 4. When x̂(y) ∈ Im[J ], then Mx̂(y) = Im[J ] and Rinv
x̂ (y) = J(ΦJ)+(y).

3.2. Refitting examples. We now exemplify the previous definitions for the various vari-
ational estimators introduced in subsection 2.2.

Affine constrained least-squares have everywhere the same Jacobian matrix J = A(ΦA)+,
and its affine model subspace is Mx̂(y) = b + Im[A(ΦA)>] (as Im[M+] = Im[M>]). Taking
C = Rp, n = p, A = Id, and b = 0 leads to x̂(y) = Φ+y, whose model subspace is Mx̂(y) =
Im[Φ>], reducing to Rp when Φ has full column rank. In this case, the invariant refitting is
Rinv
x̂ (y) = x̂(y).

Tikhonov regularization has everywhere the same Jacobian matrix J = (Φ>Φ+λΓ>Γ)−1Φ>

and everywhere the same affine model subspace Mx̂(y) = Im[J ]. It follows that Rinv
x̂ (y) =

J(ΦJ)+y. In particular, when Φ has full column rank, Mx̂(y) = Rp and Rinv
x̂ (y) = Φ+y.

Soft- and hard-thresholding share a.e. the same Jacobian matrix given by J = IdI ∈ Rp×|I|.
Their model subspace reads as Mx̂(y) = Im[IdI ] = Im[J ], and the invariant refitting is the
same for both hard-thresholding and soft-thresholding.

`1 synthesis (or Lasso) has for Jacobian matrix J = IdI(ΦI)
+ a.e., and when ΦI has full

column rank, it shares the same model subspace Mx̂(y) = Im[IdI ] = Im[J ] as the hard- and
soft-thresholding. Its invariant refitting is in this case Rinv

x̂ (y) = IdI(ΦI)
+y. While Lasso

systematically underestimates the amplitude of the signal by a shift λIdI((ΦI)
tΦI)

−1sI , the
refitting Rinv

x̂ (y) is free of such a contraction.
`1 analysis has for Jacobian matrix J = U(ΦU)+ a.e. (since the Γ-support, I, and the sign

sI are a.e. stable w.r.t. small perturbations [49]). It results that the model subspace reads as
Mx̂(y) = Ker[ΓIc ] = Im[J ]. The generalization of the Lasso refitting leads to the least-square
estimator constrained on the Γ-support of x̂(y):

(11) Rinv
x̂ (y) = U(ΦU)+y.

For aniso-TV denoising (i.e., Φ = Id and Γ = ∇), the model subspace is the space of images
whose jumps are included in those of the solution x̂(y). The refitting procedure Rinv

x̂ is the
projector ΠIm[J ] = UU+ that performs a piecewise average of its input on each plateau of the
solution (see Figure 1(a) for an illustration in one dimension).

`1 − `2 analysis admits a.e. the following Jacobian operator [50]:

J = U(U>Φ>ΦU + λU>Γ>ΩΓU)−1U>Φ>y,(12)

where Ω : z ∈ Rm×b 7→

{
1

||(Γx̂(y))i||2

(
zi −

〈
zi,

(Γx̂(y))i
||(Γx̂(y))i||2

〉
(Γx̂(y))i
||(Γx̂(y))i||2

)
if i ∈ I,

0 otherwise,
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(a) Noisy obs. y (b) aniso-TV x̂(y) (c) Ref. Rinv
x̂ (y) (=Rx̂(y))

(d) iso-TV x̂(y) (e) Inv. ref. Rinv
x̂ (y) (f) Cov. ref. Rx̂(y)

Figure 3. (a) A noisy image y = x0 + w where x0 contains six overlapping squares. (b) The solution
x̂(y) of aniso-TV with λ = 10 and (c) its invariant refitting Rinv

x̂ (y) (which coincides in this case with the
covariant one Rx̂(y)). (d) The solution x̂(y) of iso-TV with λ = 10, (e) its invariant refitting Rinv

x̂ (y), and (f)
its covariant one Rx̂(y).

with U and I defined exactly as for the `1 analysis case. Note that (12) is well founded
as soon as Ker[ΓIc ] ∩ Ker Φ = {0}. For weaker conditions, see [50, Example 26]. In the
particular case where ΦU has full column rank, the model subspace matches with that of the
`1 analysis, i.e., Mx̂(y) = Ker[ΓIc ] = Im[J ], and the refitting is also given by (11); hence
Rinv
x̂ (y) = U(ΦU)+y. As a consequence, for the iso-TV denoising, i.e., when Φ = Id and

Γ = ∇, the invariant refitting step consists again in performing a piecewise average on each
plateau of the solution.

Nonlocal means has a Jacobian matrix with a complex structure [51, 19]. In particular,
computing the projection on the model subspace is challenging in this case, and so is the
computation of the invariant refitting. Note that a greedy procedure was proposed in [15] to
compute the invariant refitting.

3.3. Results and limitations. Figure 1(a) illustrates the invariant refitting in the case of
a 1D total variation denoising example (`1 analysis estimator). It recovers the jumps of the
underlying signal (adding an extra one) but systematically underestimates their amplitudes.
As expected, refitting re-enhances the amplitudes of all plateaus toward the data. Figure 1(b)
gives a geometrical interpretation in dimension p = 3 of the model subspace and the invariant
refitting. The model subspace is represented as the tangent plane of x̂ at y, and its refitting
is the projection of y on this plane. All elements of this plane share the same jumps with the
solution x̂(y). Figure 3(a)–(c) gives a similar illustration for a two-dimensional (2D) aniso-TV
denoising example.
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(a) Masked obs. y (b) Tikhonov x̂(y) (c) Inv. ref. Rinv
x̂ (y) (d) Cov. ref. Rx̂(y)

Figure 4. (a) A noisy and incomplete image y = Φx0 +w where Φ is a masking operator encoding missing
pixel values (in red) and x0 is a smooth signal. (b) Tikhonov regularization x̂(y) with Γ = ∇ and λ = 20, (c)
its invariant refitting Rinv

x̂ (y), and (d) its covariant one Rx̂(y).

While the invariant refitting acts properly for the `1 analysis estimator, it is less appealing
in other scenarios. Figure 2(c)–(d) and Figure 3(d)–(e) give two illustrations of the invariant
refitting of a 2D iso-TV denoising example. As for aniso-TV, the invariant refitting is the
projection of y on the space of signals whose jumps are located at the same position as
those of x̂(y). But unlike the anisotropic case, x̂(y) is not piecewise constant. Instead of being
composed of distinct flat regions, it reveals smoothed transitions with dense supports (referred
to as extended supports in [6]); see Figure 2(c). As a consequence, the invariant refitting re-
introduces a large amount of the original noisy signal in these smooth but nonconstant areas,
creating the artifacts observed in Figure 2(d) and Figure 3(e).

Figure 4(a)–(c) gives another illustration of the invariant refitting of a 2D Tikhonov mask-
ing example (with Φ a diagonal matrix with 0 or 1 elements on the diagonal and Γ = ∇).
While the dynamic of the Tikhonov solution x̂(y) has been strongly reduced, the refitting
Rinv
x̂ (y) refits clearly the solution toward the original intensities. However, such a refitting is

not satisfactory as it does not preserve the smoothness of the solution x̂(y).
In fact, the model subspace captures only what is linearly invariant through x̂ w.r.t. small

perturbations of y. This includes the support of the solution for iso-TV and the absence of
variations inside Im[J ]⊥ for Tikhonov regularization. In particular, it fails at capturing some
of the desirable relationships between the entries of y and the entries of x̂(y), which we call the
covariants. These relationships typically encode some of the local smoothness and nonlocal
interactions between the entries of the solution x̂(y). Such crucial information is not encoded
in the linear model subspace, but interestingly the Jacobian matrix captures by definition how
much the entries of x̂ linearly vary w.r.t. all the entries of y. This is at the heart of covariant
refitting, defined in the next section, and, for comparison, it produces the results given in
Figure 2(e), Figure 3(f), and Figure 4(d).

4. Covariant LEast-square Refitting (CLEAR). The objective of this section is to present
our main contribution, the introduction of the covariant refitting procedure CLEAR. We
particularly aim at solving the issues raised in subsection 3.3. Toward this goal, we put
a stronger emphasis on the first-order behavior of the original estimator by imposing the
conservation of its Jacobian, at least locally. To define the refitting procedure we first need
to introduce a procedure which, loosely speaking, takes as input the original estimator and
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a guess of Φx0 and outputs a new estimator with some targeted properties. We next define
our Covariant LEast-square Refitting (CLEAR) by choosing a specific guess for Φx0; see
Definition 14.

4.1. Local approach and desired properties for a suitable refitting. In this subsection,
our objective is to define, from the original estimator x̂ and a guess z ∈ Rn of Φx0, a new
estimator Dx̂,z : Rn → Rp that satisfies several desirable properties and shares with x̂ some
first-order properties. Afterward, we will consider the choice z = y, and the resulting estimator
is going to be our covariant refittingRx̂. We are now equipped to introduce such a guess-based
refitting.

Definition 5. Let x̂ : Rn → Rp be differentiable at z ∈ Rn. An estimator Dx̂,z : Rn → Rp
is a guess-based covariant least-square refitting of x̂ for z if

(13) Dx̂,z ∈ argmin
h∈H

||Φh(z)− z||22,

where H is the set of maps h : Rn → Rp satisfying, for all y ∈ Rn,
1. Affine map: h(y) = Ay + b for some A ∈ Rp×n, b ∈ Rp.
2. Covariant preserving: Jh(z) = ρJx̂(z) for some ρ ∈ R.
3. Coherent map: h(Φx̂(z)) = x̂(z).

Definition 5 is natural as it states that a guess-based refitting of x̂ for z should be, in
prediction, as close as possible to z. Of course, it should satisfy some extra conditions. First,
the estimator should be easy to compute, and so we choose a first-order approximation, leading
to a locally affine estimator. Second, as highlighted in subsection 3.3, the relative variation of
the original estimator w.r.t. the input should be preserved to capture not only the invariant
features of the estimator but also its first-order behavior, capturing both its singularities
and smoothness. Third, applying a refitting step to the prediction obtained by the original
estimator at z should not modify it. The purpose of refitting is to be close to y while also
preserving the structure of x̂(z). Hence, if y = Φx̂(z), the result should be unaltered.

The next theorem provides a unique closed form expression for Dx̂,z(y).

Theorem 6. Let x̂ be an estimator from Rn to Rp differentiable at z ∈ Rp. Then, for
δ = z −Φx̂(z), the guess-based covariant least-square refitting, defined in Definition 5, exists,
is unique if ΦJδ 6= 0, and is given by

(14) Dx̂,z(y) = x̂(z) + ρJ(y − Φx̂(z)), where ρ =


〈ΦJδ, δ〉
||ΦJδ||22

if ΦJδ 6= 0,

1 otherwise,

where J = Jx̂(z) is the Jacobian matrix of x̂ at the point z.

Proof. Let h be a mapping satisfying properties 1, 2, and 3 in the previous definition.
Observe that properties 1 and 2 of the set H together ensure that the estimator is of the
form h(y) = ρJy + b for some ρ ∈ R and b ∈ Rp. Plugging in condition 3 gives that
b = (Id − ρJΦ)x̂(z); hence h(y) = x̂(z) + ρJ(y − Φx̂(z)). Reciprocally, it is easy to see that
any estimator of the form h(y) = x̂(z) + ρJ(y−Φx̂(z)) satisfies properties 1, 2, and 3. It thus
remains to find ρ.
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Note that problem (13) can be recast as a 1D problem,

min
ρ∈R

{
||Φ(x̂(z) + ρJ(z − Φx̂(z)))− z||22 = ||(Id− ρΦJ)(Φx̂(z)− z)||22

}
,(15)

whose unique solution, if ΦJ(Φx̂(z)− z) 6= 0, is given by (14), and ρ = 1 otherwise.

The case where ΦJ is an orthogonal projector leads to interesting properties, such as when
x̂ is associated to constrained least-squares, Lasso, or aniso-TV.

Proposition 7. If ΦJ is an orthogonal projector, then ρ = 1.

Proof. If ΦJ is an orthogonal projector, then it follows that ||ΦJδ||22 = 〈ΦJδ, ΦJδ〉 =
〈(ΦJ)>ΦJδ, δ〉 = 〈ΦJδ, δ〉. Injecting this into (14) gives ρ = 1.

Statistical interpretation. For a random vector with expectation Φx0 and finite second-
order moment, the bias and covariance of Dx̂,z are given in closed form.

Proposition 8. Let Y be a random vector in Rn such that E[Y ] = Φx0 and Cov[Y ] = Σ ∈
Rn×n. Then y 7→ Dx̂,z(y) satisfies

E[Dx̂,z(Y )]− x0 = (Id− ρJΦ)(x̂(z)− x0),(16)

Cov[Dx̂,z(Y ), Y ] = ρJΣ,(17)

Cov[Dx̂,z(Y )] = ρ2JΣJ>,(18)

where the cross covariance is Cov[X,Y ] = E[XY >] − E[X]E[Y ]> for any random column
vectors X and Y (not necessarily of the same size) and Cov[Y ] = Cov[Y, Y ].

Proof. The first equality is a direct consequence of the linearity of the expectation opera-
tor. The second equality arises from

E[(x̂(z) + ρJ(Y − Φx̂(z)))Y >]−E[(x̂(z) + ρJ(Y − Φx̂(z)))]E[Y ]>(19)

= ρJ
(
E[Y Y >]− E[Y ]E[Y ]>

)
since J and ρ are constant w.r.t. y as they depend only on the guess z. The third equation
follows the same sketch by expanding the expression of Cov[Dx̂,z(Y )].

Proposition 8 provides a closed form expression for the bias, the cross-covariance, and the
covariance of Dx̂,z. The derivation of these quantities for a nonlinear estimator x̂ is a much
more intricate task. Nevertheless, the next corollary shows how these quantities relate to
those of the first-order Taylor expansion of the original estimator x̂.

Corollary 9. Let Tx̂,z(y) be the tangent estimator of x̂ at z ∈ Rn defined as

(20) Tx̂,z(y) = x̂(z) + J(y − z).

Let Y be a random vector in Rn such that E[Y ] = Φx0 and Cov[Y ] = Σ. Then y 7→ Tx̂,z(y)
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and y 7→ Dx̂,z(y) satisfy

E[Tx̂,z(Y )]− x0 = (x̂(z)− x0) + J(Φx0 − z),(21)

Cov[Dx̂,z(Y ), Y ] = ρCov[Tx̂,z(Y ), Y ],(22)

Cov[Dx̂,z(Y )] = ρ2Cov[Tx̂,z(Y )],(23)

Corr[Dx̂,z(Y ), Y ] = Corr[Tx̂,z(Y ), Y ],(24)

Corr[Dx̂,z(Y )] = Corr[Tx̂,z(Y )],(25)

where the cross-correlation matrix is defined as

Corr[X,Y ]i,j = Cov[X,Y ]i,j/
√

Cov[X]i,iCov[Y ]j,j

for any random column vectors X and Y (not necessarily of the same size), and Corr[Y ] =
Corr[Y, Y ].

Proof. The first relation holds from the expression of Tx̂,z and that J does not depend
on y. It follows that Cov[Tx̂,z(Y ), Y ] = JΣ and Cov[Tx̂,z(Y )] = JΣJ>. These, jointly with
Proposition 8, conclude the proof.

Corollary 9 is essential in this work as it states that, by preserving the Jacobian structure,
Dx̂,z(Y ) cannot depart from the tangent estimator of x̂ at z in terms of (cross-)correlations.
As a consequence, one can expect that they only differ in terms of expectation, i.e., in terms
of bias. The next propositions state that when ΦJ is a projector, the bias in prediction is
guaranteed to be reduced by our refitting.

Proposition 10. Let Y be a random vector of Rn such that E[Y ] = Φx0. Assume ΦJ is an
orthogonal projector; then y 7→ Dx̂,z(y) satisfies

||Φ(E[Dx̂,z(Y )]− x0)||2 6 ||Φ(E[Tx̂,z(Y )]− x0)||2.(26)

Proof. As ΦJ is an orthogonal projector, by virtue of Proposition 7, ρ = 1; then

||Φ(E[Tx̂,z(Y )]− x0)||22 = ||Φ(x̂(z) + J(Φx0 − z)− x0)||22(27)

= ||Φ(x̂(z) + JΦ(x0 − x̂(z))− x0)||22 + ||ΦJ(Φx̂(z)− z)||22
= ||Φ(E[Dx̂,z(Y )]− x0)||22 + ||ΦJδ||22,

which concludes the proof.

Proposition 10 is a bit restrictive as it requires ΦJ to be a projector. Nevertheless, this
assumption can be relaxed when z satisfies a more technical assumption, as shown in the next
proposition.

Proposition 11. Let Y be a random vector of Rn such that E[Y ] = Φx0. Let ρ0 = 〈δ0,ΦJδ0〉
||ΦJδ0||22

and δ0 = Φ(x0 − x̂(z)). Assume there exists α ∈ [0, 1] such that∣∣∣∣ρ− ρ0

ρ0

∣∣∣∣ 6 √1− α(28)

and ||ΦJ(δ − δ0)||22 + 2〈δ0, ΦJ(δ − δ0)〉 > −α〈δ0, ΦJδ0〉2

||ΦJδ0||22
.(29)



256 C.-A. DELEDALLE, N. PAPADAKIS, J. SALMON, AND S. VAITER

Then, y 7→ Dx̂,z(y) satisfies

||Φ(E[Dx̂,z(Y )]− x0)||2 6 ||Φ(E[Tx̂,z(Y )]− x0)||2.(30)

Proof. It follows from Proposition 8 and Corollary 9 that ||Φ(E[Dx̂,z(Y )]− x0)||2 = ||(Id−
ρΦJ)δ0||2 and ||Φ(E[Tx̂,z(Y )]−x0)||2 = ||δ0 +ΦJ(δ−δ0)||2. Subsequently, we get that (30) holds
true if

||(Id− ρΦJ)δ0||22 6 ||δ0 + ΦJ(δ − δ0)||22,(31)

i.e., ρ2||ΦJδ0||22 − 2ρ〈δ0, ΦJδ0〉 6 ||ΦJ(δ − δ0)||22 + 2〈δ0, ΦJ(δ − δ0)〉.(32)

Using assumption (29), a sufficient condition for (30) to hold is

ρ2||ΦJδ0||22 − 2ρ〈δ0, ΦJδ0〉2 + α
〈δ0, ΦJδ0〉2

||ΦJδ0||22
6 0.(33)

The roots of this polynomial are given by (1±
√

1− α)ρ0, which concludes the proof.

Remark 12. Note that requiring (28) is quite natural, as it states that ρ should be close
enough to the optimal ρ0, minimizing the discrepancy with regard to Φx0 (i.e., minimizing
||Φh(z)− Φx0||22 for h ∈ H defined as in Definition 5). While the condition (29) sounds more
technical, it holds true in several interesting cases. For instance, when z = Φx0, assumption
(29) holds true, as it would read 0 > −α〈δ0, ΦJδ0〉2/||ΦJδ0||22 (since δ = δ0 and ρ = ρ0).
Another case of interest is when ΦJ is an orthogonal projector for which (29) holds true, as
it would read ||ΦJδ||22 − ||ΦJδ0||22 > −||ΦJδ0||22 (using that ρ = ρ0 = 1, 〈·, ΦJ ·〉 = ||ΦJ · ||22, and
choosing α = 1). Hence, Proposition 11 recovers Proposition 10.

Remark 13. Using the same sketch of proof as we did for Proposition 11, we find that the
condition |(ρ− ρ0)/ρ0| 6 1 is sufficient to get ||Φ(E[Dx̂,z(Y )] − x0)||2 6 ||Φ(x̂(z) − x0)||2. In
other words, even though ρ has a relative error of 100% w.r.t. ρ0, the estimator y 7→ Dx̂,z(y)
still reduces the bias of the constant estimator y 7→ x̂(z). This result remains valid when
comparing y 7→ Dx̂,z(y) to the pseudo-oracle estimator y 7→ x̂(z) + J(y − Φx0), with the
notable difference that they moreover share the same correlation structure.

While it is difficult to state a general result, we can reasonably claim from Proposition 10,
Proposition 11, and Remark 12 that the bias tends to be reduced by our refitting provided ΦJ
is almost a projector (i.e., has eigenvalues concentrated around 0 and 1) and/or z is not too
far from Φx0. In such cases, the estimator Dx̂,z can be considered as a debiasing procedure
of x̂, in the sense that it reduces the bias of Tx̂,z while preserving its correlation structure
(according to Corollary 9).

4.2. Definitions and properties. Using Dx̂,z defined in Theorem 6, we can now give an
explicit definition of CLEAR as Rx̂(y) = Dx̂,y(y).

Definition 14 (CLEAR). The Covariant LEast-square Refitting associated to an a.e. dif-
ferentiable estimator y 7→ x̂(y) is, for almost all y ∈ Rn, given by

Rx̂(y) = x̂(y) + ρJ(y − Φx̂(y)) with ρ =


〈ΦJδ, δ〉
||ΦJδ||22

if ΦJδ 6= 0,

1 otherwise,
(34)
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Figure 5. Geometrical illustration of the covariant refitting in a denoising problem of dimension p = 3. We
assume that Mx̂(z) =Mx̂(y) for the sake of clarity. The gray surface is the manifold modeling the evolution
of x̂ in an extended neighborhood of y. The light red affine plane is the model subspace tangent at z. The
ellipses represent the positive-definite symmetric covariance matrices of some random vectors, as defined in
Proposition 8 and Corollary 9.

where δ = y − Φx̂(y) and J = Jx̂(y) is the Jacobian matrix of x̂ at the point y.

Figure 5 gives a geometrical interpretation of CLEAR for a denoising task in dimension
p = 3. One can observe that if Y varies isotropically, so will its projection on the model
subspace. Contrarily, the tangent estimator at a guess z can present an anisotropic behavior
along the model subspace, and the guess-based refitting, which is closer to z, will respect
this anisotropy in order to capture the local regularity of x̂. Finally, the covariant refitting is
obtained from the guess-based refitting at z = y. For clarity, we assumed thatMx̂(z) =Mx̂(y)
in this illustration.

Remark 15. The covariant refitting performs an additive correction of x̂(y) with a fraction
of the directional derivative Jδ in the direction of the residual δ.

Remark 16. Observe that in Definition 14, the value of ρ varies when y varies, contrary
to the map y 7→ Dx̂,z(y) for which ρ is constant. Note that the mapping y 7→ Dx̂,z(y) is affine,
but the map y 7→ Rx̂(y) is not. Note that, as a consequence, the statistical interpretations
given in the previous section do not hold for Rx̂(y) even though they shed some light on its
behavior.

Why not iterate the procedure? The refitting procedure computes x̃2 = x̃1 + ρJ(y−Φx̃1),
with x̃1 = x̂(y). One may wonder if it is beneficial to iterate the process as x̃k+1 = x̃k +
ρJ(y − Φx̃k) (in the same vein as [48, 4, 34, 44, 38]). Consider a denoising problem Φ = Id
with Tikhonov or iso-TV, for which J is symmetrical and x̂(y) ∈ Im[J ] (see examples in
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subsection 3.2). The sequence will converge if and only if J(y − x̃k) vanishes; i.e., x̃k must
converge to J+Jy + ζ with ζ ∈ Ker[J ]. By construction, x̃k ∈ Im[J ] = Ker[J>]⊥ = Ker[J ]⊥;
hence ζ = 0. Moreover, as J is symmetrical and x̂(y) ∈ Im[J ], the quantity J+Jy coincides
with JJ+y = Rinv

x̂ (y) (by virtue of Remark 4), i.e., the invariant refitting. Remembering the
artifacts illustrated in Figure 3(e), this is not satisfying.

An interesting property of Rx̂ is the fact that it belongs to the model subspace of x̂ as
stated in the following proposition.

Proposition 17. Let y 7→ x̂(y) be an a.e. differentiable estimator. Then for almost all
y ∈ Rn, one has Rx̂(y) ∈Mx̂(y).

Proof. As Mx̂(y) = x̂(y) + Im J and ρJ(y − Φx̂(y)) ∈ Im J , the proposition holds.

The case where ΦJ is an orthogonal projector leads to properties that will be of interest
regarding some estimators considered in subsection 2.2.

Proposition 18. Suppose that ΦJ is an orthogonal projector. Then, Rx̂(y) = x̂(y) + J(y −
Φx̂(y)), and ΦRx̂(y) = ΦRinv

x̂ (y).

Proof. By virtue of Proposition 7, ρ = 1, and then Rx̂(y) = x̂(y) + J(y − Φx̂(y)). The
fact that ΦRx̂(y) = ΦRinv

x̂ (y) comes from the fact that ΦJ(ΦJ)+ = ΦJ .

The next proposition provides, when JΦ satisfies a fixed point formulation, an expression
of Rx̂(y) that will be useful for efficient computations of the refitting as discussed in section 5,
a notable example being iso-TV regularization.

Proposition 19. Assume that JΦx̂(y) = x̂(y). Then the covariant refitting reads Rx̂(y) =
(1− ρ)x̂(y) + ρJy.

Proof. We have Rx̂(y) = x̂(y) + ρJ(y − Φx̂(y)) = x̂(y) + ρJy − ρJΦx̂(y), and since
JΦx̂(y) = x̂(y) by assumption, this concludes the proof.

Interestingly, the next theorem shows that the condition JΦx̂(y) = x̂(y) is met provided
x̂(y) is solution of a variational problem with a 1-homogeneous regularizer.

Theorem 20. Let x̂(y) be the unique a.e. differentiable solution of

(35) x̂(y) = argmin
x

F (y − Φx) +G(x),

with F , G being convex and G being 1-homogeneous. Then JΦx̂(y) = x̂(y) a.e.

The proof of Theorem 20 is postponed to Appendix B.
Affine constrained least-squares, `1 synthesis, `1 − `2 analysis, aniso-TV, and iso-TV are

solutions of a variational problem, with F being differentiable and G being 1-homogeneous.
As a consequence, Theorem 20 shows that the aforementioned methods satisfy JΦx̂(y) = x̂(y),
and hence Rx̂(y) = (1− ρ)x̂(y) + ρJy.

4.3. Examples of refitting procedures. We now exemplify the previous definitions for
the wide class of variational estimators introduced in subsection 2.2.

Affine constrained least-squares have Jacobian matrix J = A(ΦA)+. In this case, ΦJ =
ΦA(ΦA)+ is an orthogonal projector, ρ = 1, and the covariant refitting coincides with the
invariant one and reads Rx̂(y) = Rinv

x̂ (y) = x̂(y).
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Tikhonov regularization has Jacobian matrix J = (Φ>Φ + λΓ>Γ)−1Φ>, and in this case ρ
depends on the residual δ, and the refitting reads as the weighted sum Rx̂(y) = (1 + ρ)x̂(y)−
ρJΦx̂(y).

Soft- and hard-thresholding, used with Φ = Id, have Jacobian matrix J = IdI . As a
consequence, ΦJ = IdI is an orthogonal projection, and the covariant refitting coincides with
the invariant one, namely the hard-thresholding itself.

`1 synthesis has Jacobian matrix J = IdI(ΦI)
+, where ΦI has full column rank. As for

the thresholding, ΦJ = ΦU(ΦU)+ is an orthogonal projection, and the covariant refitting
reads Rx̂(y) = Rinv

x̂ (y).
`1 analysis has Jacobian matrix J = U(ΦU)+. Again, ΦJ = ΦU(ΦU)+ is an orthogonal

projection, and the covariant refitting reads Rx̂(y) = Rinv
x̂ (y).

`1− `2 analysis has the Jacobian operator given in (12), which applied to a vector d ∈ Rn
is a solution of the following problem:

Jd ∈ argmin
x ; supp(Γx) ⊆ I

1
2 ||Φx− d||

2
2 + λ

2ω(Γx),(36)

where ω : z ∈ Rm×b 7→
∑
i∈I

1

||(Γx̂(y))i||2

(
||zi||22 −

〈
zi,

(Γx̂(y))i
||(Γx̂(y))i||2

〉2
)
.

Note that ω(ΓJd) = 0 only if (ΓJd)i is colinear to (Γx̂(y))i for all i ∈ I. For iso-TV, this
means that the level lines of Jd must be included in those of x̂(y). Moreover, by virtue of
Theorem 20, one has JΦx̂(y) = x̂(y), and hence Rx̂(y) = (1−ρ)x̂(y)+ρJy. As a consequence,
unlike the invariant refitting of x̂(y), the covariant refitting is constrained to be faithful to the
regularity of x̂(y), since it enforces the discontinuities of Jd to be colinear to (Γx̂(y))I . This
is especially important where the iso-TV solution presents transitions with high curvature.
Such appealing behavior of the covariant refitting explains the results observed in Figure 2(e)
and Figure 3(f).

Nonlocal means has an intricate Jacobian matrix. Nevertheless, its directional derivative
has a simpler expression given, for any direction d ∈ Rn, by

(37) Jd =

∑
j w̄
′
i,jyj +

∑
w̄i,jdj − x̂(y)i

∑
j w̄
′
i,j∑

j w̄i,j
with w̄′i,j =

∑
k

w′i−k,j−k,

where x̂(y) is defined in (7) and

(38) w′i,j = 2〈Piy − Pjy, Pid− Pjd〉ϕ′
(
||Piy − Pjy||2

)
,

with ϕ′ the a.e. derivative of the kernel function ϕ. Subsequently, the covariant refitting is
obtained from its general form with two steps, by first computing x̂(y) and then applying the
Jacobian to the direction d = y − x̂(y).

5. Covariant refitting in practice. This section details the computation of CLEAR for
standard algorithms. We first recall some properties of two different differentiation techniques
that allow computing some image of J jointly with x̂(y).
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5.1. Algorithmic differentiation. Following [16], we consider restoration algorithms whose
solutions x̂(y) = xk are obtained via an iterative scheme of the form

(39)

{
xk = γ(ak),

ak+1 = ψ(ak, y).

Here, ak ∈ A is a sequence of auxiliary variables, ψ : A × Rn → A is a fixed point operator
in the sense that ak converges to a?, and γ : A → Rp is nonexpansive (i.e., ||γ(a1)− γ(a2)|| 6
||a1 − a2|| for all a1, a2 ∈ A) entailing xk converges to x? = γ(a?).

As a result, for almost all y and for any direction d ∈ Rn, the directional derivatives
Dkx = Jx̂k(y)d and Dka = Jak(y)d can be jointly obtained with xk and ak as

(40)


xk = γ(ak),

ak+1 = ψ(ak, y),

Dkx = ΓaDka ,
Dk+1
a = ΨaDka + Ψyd,

where Γa = ∂γ(a)
∂a

∣∣∣
ak

, Ψa = ∂ψ(a,y)
∂a

∣∣∣
ak

, and Ψy = ∂ψ(ak,y)
∂y

∣∣∣
y
. Interestingly, in all considered

cases, the cost of evaluating Γa, Ψa, and Ψy is about the same as the one of evaluating γ and
ψ. As a result, the complexity of (40) is about twice the complexity of (39). In practice, Γa,
Ψa, and Ψy can be implemented either thanks to their closed form expression or in a black
box manner using automatic differentiation. The latter has been well studied, and we refer
the reader to [25, 32] for a comprehensive study.

5.2. Finite difference based differentiation. Another strategy is to approximate direc-
tional derivatives by finite differences, for any d ∈ Rn and ε > 0, as

Jx̂(y)d ≈ x̂(y + εd)− x̂(y)

ε
.(41)

As a result, the complexity of evaluating (41) is also twice the complexity of (39) since x̂ must
be evaluated at both y and y+εd. The main advantage of this method is that x̂ can be used as
a black box, i.e., without any knowledge of the underlying algorithm that provides x̂(y). For
ε small enough, it performs as well as the approach described in (40) (with x̂(y) = xk) that
requires the knowledge of the derivatives. Indeed, if y 7→ x̂(y) is Lipschitz-continuous, then
(41) converges to (40) when ε→ 0 (by virtue of Rademacher’s theorem and [22, Theorems 1–2,
section 6.2]). This implies that the value ε can be chosen as small as possible (up to machine
precision), yielding an accurate approximation of Jx̂(y)d. This finite difference approach has
been used in many fields, and notably for risk estimation; see, e.g., [54, 41, 36]. We will apply
this black box strategy on state-of-the-art algorithms in subsection 6.5.

5.3. Two-step computation for the general case. In the most general case, the compu-
tation of the covariant refitting, given by

(42) Rx̂(y) = x̂(y) + ρJ(y − Φx̂(y)) with ρ =
〈ΦJδ, δ〉
||ΦJδ||22

and δ = y − Φx̂(y),
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requires us to sequentially evaluate x̂(y) and J(y − Φx̂(y)).
With finite difference differentiation, two steps are required. First x̂(y) must be computed

with the original algorithm, and next J(y−Φx̂(y)) is obtained by finite difference (41) on the
direction of the residual d = y −Φx̂(y). Once J(y −Φx̂(y)) is computed, ρ can be evaluated,
and subsequently (42). The overall complexity is about twice that of the original algorithm
producing x̂(y).

With algorithmic differentiation, as J(y − Φx̂(y)) depends on x̂(y), the original iterative
scheme (39) must be run first. In the second step, J(y − Φx̂(y)) is obtained with the dif-
ferentiated version (40) on the direction of the residual d = y − Φx̂(y). As a result, x̂(y) is
computed twice, first by (39), and next by (40). It leads to an overall complexity about three
times that of the original algorithm. Nevertheless, in several cases, one can avoid the first
step by running (40) only once.

5.4. One-step computation for specific cases. When x̂(y) fulfills the assumption JΦx̂(y) =
x̂(y) of Proposition 19, the covariant refitting reads as

(43) Rx̂(y) = (1− ρ)x̂(y) + ρJy with ρ =
〈Φ(Jy − x̂(y)), y − Φx̂(y)〉

||Φ(Jy − x̂(y))||22
.

The computations of x̂(y) and Jy are then sufficient to compute the refitting Rx̂(y). As a
result, in the case of algorithmic differentiation, (40) can be run once to get Rx̂(y) since using
d = y directly provides x̂(y), Jy, and subsequently ρ. Compared to the two-step approach, the
complexity of the refitting reduces to about twice that of the original step from (39). Recall
that the condition JΦx̂(y) = x̂(y) is met for Lasso, generalized Lasso, aniso-TV, and iso-TV;
hence they can be re-enhanced with a complexity twice that of their original algorithm.

5.5. Example on a primal-dual solver for `1 analysis. In this section we instantiate
algorithm (40) to the case of the primal-dual sequence of [7]. By dualizing the `1 analysis
norm x 7→ λ||Γx||1, the primal problem (4) can be reformulated, with x? = x̂(y) as the following
saddle-point problem:

(44) (z?, x?) ∈ arg max
z∈Rm

min
x∈Rp

1

2
‖Φx− y‖22 + 〈Γx, z〉 − ιBλ(z),

where z? ∈ Rm is the dual variable, and Bλ = {z ∈ Rm : ||z||∞ 6 λ} is the `∞ ball.
Problem (44) can be efficiently solved using the primal-dual algorithm of [7]. By taking

στ < 1/‖Γ‖22, θ ∈ [0, 1] and initializing (for instance) x0 = v0 = 0 ∈ Rp, z0 = 0 ∈ Rm, the
algorithm reads

(45)


zk+1 = ΠBλ(zk + σΓvk),
xk+1 = (Id + τΦ>Φ)−1

(
xk + τ(Φ>y − Γ>zk+1)

)
,

vk+1 = xk+1 + θ(xk+1 − xk),

where the projection of z over Bλ is done componentwise as

(46) ΠBλ(z)i =

{
zi if |zi| 6 λ,
λ sign(zi) otherwise.
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The sequence xk converges to a solution x? of the `1 analysis problem [7].
It is easy to check that the primal-dual sequence defined in (45) can be written in the

general form considered in (39); see, for instance, [16]. As a result, we can use the algorithmic
differentiation based strategy described by (40) as follows: for the initialization x̃0 = ṽ0 = 0 ∈
Rp, z̃0 = 0 ∈ Rm, and for β = 0, as



zk+1 = ΠBλ(zk + σΓvk),
xk+1 = (Id + τΦ>Φ)−1

(
xk + τ(Φ>y − Γ>zk+1)

)
,

vk+1 = xk+1 + θ(xk+1 − xk),
z̃k+1 = Πzk+σΓvk(z̃k + σΓṽk),
x̃k+1 = (Id + τΦ>Φ)−1

(
x̃k + τ(Φ>y − Γ>z̃k+1)

)
,

ṽk+1 = x̃k+1 + θ(x̃k+1 − x̃k),

(47)

where Πz(z̃)i =

{
z̃i if |zi| 6 λ+ β,
0 otherwise.

Recall that the refitting is Rxk(y) = x̃k, since JΦ is an orthogonal projector.
Remark that the algorithmic differentiation of (45) is exactly (47) for β = 0; hence,

x̃k = Rxk(y). However, if one wants to guarantee the convergence of the sequence x̃k toward
Rx̂(y), one needs a small β > 0 as shown in the next theorem. In practice, β can be chosen
as the smallest available positive floating number.

Theorem 21. Assume that x? satisfies (5) with ΦU full-column rank.2 Let α > 0 be the
minimum nonzero value3of |Γx?|i for all i ∈ [m]. Choose β such that ασ > β > 0. Then, the
sequence x̃k = Rxk(y) defined in (47) converges to the refitting Rx̂(y) of x̂(y) = x?.

The proof of this theorem is postponed to Appendix C.

A similar result was obtained in [14] when solving the `1 analysis problem (4) with the
Douglas–Rachford splitting algorithm described in [18, 9].

5.6. Example for a primal-dual solver for `1 − `2 analysis. The algorithm for `1 − `2
analysis regularization can be derived with the exact same considerations as for the `1 analysis
case. The only difference in the application of the primal-dual algorithm comes from the
nonlinear operation (46) that now reads, for z ∈ Rm×b, as

(48) Πiso
Bλ(z)i =

{
zi if ||zi||2 6 λ,

λ zi
||zi||2 otherwise.

2This could be enforced as shown in [49].
3If |Γx?|i = 0 for all i ∈ [m], the result remains true for any α > 0.
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It follows that the algorithmic differentiation strategy reads as

zk+1 = Πiso
Bλ(zk + σΓvk),

xk+1 = (Id + τΦ>Φ)−1
(
xk + τ(Φ>y − Γ>(zk+1))

)
,

vk+1 = xk+1 + θ(xk+1 − xk),
z̃k+1 = Πiso

zk+σΓvk
(z̃k + σΓṽk),

x̃k+1 = (Id + τΦ>Φ)−1
(
x̃k + τ(Φ>y − Γ>z̃k+1)

)
,

ṽk+1 = x̃k+1 + θ(x̃k+1 − x̃k),

(49)

where Πiso
z (z̃)i =

{
z̃i if ||zi||2 6 λ+ β,
λ
||zi||2

(
z̃i −

〈
z̃i,

zi
||zi||2

〉
zi
||zi||2

)
otherwise.

Unlike the `1 case, the refitted solution is not x̃k itself, but, following subsection 5.4, it can
be obtained at iteration k as

Rxk(y) = (1− ρ)xk + ρx̃k with ρ =
〈Φ(x̃k − xk), y − Φxk〉
||Φ(x̃k − xk)||22

.(50)

5.7. Example for the nonlocal means. In this section, we specify the update rule (40)
to an acceleration of the nonlocal means inspired from [12, 13]. We use the procedure of [40]
to correctly handle the central pixel. Again, one can check that this implementation can be
written in the general form considered in the update rule (39), where the fixed point solution
is obtained directly at the first iteration.

The pseudocode obtained with the algorithmic differentiation scheme, as described in (40),
is given in Figure 6. All variables with the suffix ′ correspond to the directional derivative
obtained by using the chain rule on the original variables. This fast computation relies on the
fact that all convolutions can be computed with integral tables, leading to a global complexity
in O(s2n), for both the computation of the estimator x̂(y) and its directional derivative Jd.
Recall that the covariant refitting is obtained from its general form in two steps, by first
computing first x̂(y) and then applying the proposed pseudocode in the direction d = y− x̂(y).

6. Numerical experiments and comparisons with related approaches. Here, we first
give illustrations of our CLEAR method on toy image restoration problems. Then, through
quantitative results in terms of peak signal-to-noise ratio (PSNR)4 and the structural similarity
(SSIM) [52], we numerically evaluate the refitting, discuss its benefit and limitations in several
scenarios, and compare this method with popular approaches from the literature.

6.1. Denoising with isotropic total-variation (iso-TV). Figure 7 gives an illustration of
our covariant refitting of the 2D iso-TV, where λ has been chosen large enough to highlight
the behavior of the refitting. We apply it to the denoising (i.e., Φ = Id) of an 8-bit piecewise
constant image damaged by AWGN with standard deviation σ = 20, known as the Shepp–
Logan phantom. As discussed earlier, iso-TV introduces a significant loss of contrast [43],
typically for thin detailed structures, which are re-enhanced in our result.

The residuals x̂(y)−x0 and Rx̂(y)−x0 highlight that our refitting technique efficiently re-
enhances the attenuated structure while leaving the lost structures unchanged. Nevertheless,

4PSNR = 10 log10 2552/ 1
p
||x̂(y)− x0||22 for an image ranging on [0, 255].
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Algorithm. Nonlocal means [3] and its directional derivative.

Inputs: noisy image y, direction d, noise standard-deviation σ
Parameters: half search window width s, half patch width b, kernel function ϕ
Outputs: x? = x̂(y) and x̃ = Jx̂(y)d

Initialize W ← ϕ(2σ2(2b+ 1)2) 1p1×p2
(add weights for the central pixels [40])

Initialize Wy ← ϕ(2σ2(2b+ 1)2) y (accumulators for the weighted sum)
Initialize W ′ ← 0p1×p2

Initialize W ′y ← ϕ(2σ2(2b+ 1)2) d
for k ∈ [−s, s]2 \ {0, 0} do

Compute e← [ (y − Sk(y))2 ] ? κ (error between each k shifted patches [12, 13])
Compute w ← ϕ(e) ? κ (contribution for each patch of its k shift)
Update W ←W + w (add weights at each position)
Update Wy ←Wy + wSk(y) (add contribution of each k shifted patches)

Compute e′ ← [ 2(y − Sk(y))(d− Sk(d)) ] ? κ
Compute w′ ← [ e′ϕ′(e) ] ? κ
Update W ′ ←W ′ + w′

Update W ′y ←W ′y + w′Sk(f) + wSk(d)
end for
Compute x? ←Wy/W (weighted mean)
Compute x̃← (W ′y −W ′x?)/W

Figure 6. Pseudoalgorithm for the computation of the nonlocal means and its Jacobian in a direction d.
All arithmetic operations are elementwise, Sk is the operator that shifts all pixels in the direction k, ? is the
discrete convolution operator, and κ ∈ Rp1×p2 is such that κi,j = 1 if (i, j) ∈ [−b, b]2 and 0 otherwise.

after refitting, some small residuals around the edges appear. In fact, in the vicinity of edges,
iso-TV finds (barely visible) discontinuities that are not in accordance with the underlying
image. This creates an overload of small constant regions. When refitting is performed, such
regions are refitted to the noisy data, and they become barely visible artifacts. In other words,
the refitting has re-enforced the presence of a modeling problem, resulting in an increase of
residual variance for which iso-TV had originally compensated by attenuating the amplitudes.

6.2. Demasking with isotropic total variation (iso-TV). Figure 8 gives another illustra-
tion of our covariant refitting of the 2D iso-TV used for the restoration of an approximate
8-bit piecewise constant image damaged by AWGN with σ = 20, known as Boat. The operator
Φ is a random mask removing 40% of pixels. Again, iso-TV introduces a significant loss of
contrast, typically for thin details such as the contours of the objects, which are re-enhanced
in our refitting result.

Inspecting the map of residuals in Figure 8(e)–(f) illustrates that our refitting technique
eliminates most of the bias at the price of a small variance increase. This is clearer when
looking at the mast and the ropes. While the mast was preserved by iso-TV and re-enhanced
by our refitting, the ropes remain lost for both methods.
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Figure 7. (a) Noisy y = x0 + w and (d) noise-free x0. (b) Iso-TV x̂(y) with λ = 3 and (e) the residual
x̂(y)− x0. (c) Our refitting Rx̂(y) and (f) the residual Rx̂(y)− x0.

6.3. Denoising with nonlocal means. Figure 9 gives an illustration of our refitting proce-
dure for the nonlocal means algorithm used in a denoising problem of the 8-bit image Pirate,
enjoying many repetitive patterns and damaged by AWGN with σ = 20. We choose a regu-
larizing kernel ϕ(·) = exp(·/h), h > 0, that leads to strong smoothing in order to highlight
the behavior of the refitting. Our refitting technique provides favorable results: many details
are enhanced compared to the standard method. This reveals that the nonlocal means is ac-
tually able to well capture the repetitions of many patterns, but this information is not used
properly to create a satisfying result. The refitting produces a sharper result by enforcing the
correct use of all the structures identified by patch comparisons. The maps of residuals in
Figure 9(e)–(f) highlight that our refitting technique efficiently suppresses this dull effect while
preserving the model originally captured by patch redundancy. Again the suppression of this
phenomenon is counterbalanced by an increase in the residual variance which is prominent
where the local patch redundancy assumption is violated.

In these examples, the overall residual norm is clearly reduced by the refitting because the
amount of reduced bias surpasses the increase of residual variance. This favorable behavior
depends on the internal parameters of the original estimator acting on the bias-variance trade-
off, as we investigate next.
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Figure 8. (a) Partial and noisy y = Φx0 + w (red indicates missing pixels) and (d) noise-free x0. (b)
Iso-TV x̂(y) with λ = 3 and (e) the residual x̂(y)−x0. (c) Our refitting Rx̂(y) and (f) the residual Rx̂(y)−x0.

Figure 9. (a) Noisy y = x0 + w and (d) noise-free x0. (b) Nonlocal means x̂(y) with h = 3 and (e) the
residual x̂(y)− x0. (c) Our refitting Rx̂(y) and (f) the residual Rx̂(y)− x0.

6.4. A bias-variance analysis for the covariant refitting. Previous experiments have
revealed that while CLEAR tends to reduce the bias, it increases (as expected) the residual
variance. It is therefore important to understand under which conditions the bias-variance
trade-off is in favor of our refitting technique.
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Figure 10. Experiment with aniso-TV: (Top) poorly piecewise constant case. (Bottom) pure piecewise
constant case. (a) Noise-free x0. (b) Noisy y = x0 +w. (e) MSE of x̂(y) and its refitting Rx̂(y) w.r.t. λ. Two
values of λ are selected corresponding to (c) refitting for a suboptimal λ, (d) original for a suboptimal λ, (f)
original for the optimal λ, and (g) refitting for the optimal λ.

Figure 10 illustrates the evolution of performance, measured in terms of mean squared
error (MSE) of both aniso-TV and its refitting version as a function of the regularization
parameter λ. Two images are considered: Cameraman, an approximate piecewise constant
image (top), and a truly piecewise constant image (bottom).

This experiment highlights that optimal results for both approaches are not reached at the
same λ value. Visual inspection of the optima shows that due to the bias, the optimal solution
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of aniso-TV is reached for a λ value promoting a model subspace that is not in accordance
with the underlying signal: typically the presence of an overload of (barely visible) transitions
in homogeneous areas. These transitions become clear when looking at the refitted version
where each small region is refitted on the noisy data, revealing an excessive residual variance.
Conversely, the optimal λ value for the refitting seems to retrieve the correct model, i.e., with
transitions that are closely in accordance with the underlying signal. Comparing their relative
performance, when both are used at their own optimal λ, reveals that our refitting brings a
significant improvement if the underlying image is in fact piecewise constant.

Figure 11 provides a similar illustration of the evolution of performance for the nonlocal
means and its refitted version as a function of the smoothing parameter h of the kernel function
ϕ(·) = exp(·/h). Two images are considered: Lady, a crude approximation of an image with
redundant patterns (top), and Fingerprint, an image with many redundant patterns (bottom).
Similar conclusions can be made from this experiment. In particular, comparing their relative
performance, when both are used at their own optimal h value, seems to demonstrate that the
refitting brings an improvement when most patches of the underlying image are redundant.

While it is difficult to make a general statement, we can reasonably claim from these
experiments that refitting is all the more relevant in terms of MSE than the underlying image
x0 is in agreement with the retrieved subspace modelMx̂(y). In other words, refitting is safe
when the original restoration technique was chosen appropriately w.r.t. the underlying image
of interest. Beyond MSE performance, the refitted results at their optimal parameter choices
might nevertheless be preferable (as assessed by the SSIM values): intensities and contrasts
are recovered better.

6.5. Behavior on more sophisticated filters. We focus here on two filters, BM3D [11]
and DDID [27], reaching state-of-the-art results in denoising. As mentioned in the previous
paragraph, refitting is all the more relevant in that the first estimate is obtained with high
smoothing strength. It is thus important to compare the original filter with its refitted version
for varying smoothing parameters. For simplicity, we have considered only one smoothing
parameter γ > 0 for these two algorithms.

For DDID, we use the authors’ implementation and choose to multiply by γ the two
inner parameters γf and γr [27]. For BM3D, we use the implementation of [28] and choose
to multiply by γ the inner parameters λhard3D (in the hard-thresholding step) and σ (in the
Wiener filtering step). Unlike previous experiments, the refitted results are obtained here by
finite difference, as discussed in subsection 5.2.

Figure 12 illustrates the evolution of performance, measured in terms of MSE, of BM3D,
DDID, and their refitted versions as a function of the smoothing parameter γ. BM3D is
studied on the Monarch image and DDID on the Lena image. Similar conclusions can be
made from this experiment; refitting reaches its optimal performance for a larger smoothing
parameter. Because the original estimator is nearly unbiased, refitting becomes challenging
only when the original solution is oversmoothed; otherwise the gain in terms of bias is too
small to compensate for the loss in terms of variance. Given this high smoothing strength,
some tiny structures have been lost, and thus the optimal refitting does not reach as good a
performance as the optimal original solution.

However, even though the MSE is not necessarily improved, our refitting solutions present
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Figure 11. Experiment with nonlocal means: (Top) moderate patch redundancy case. (Bottom) high patch
redundancy case. (a) Noise-free x0. (b) Noisy y = x0 + w. (e) MSE of x̂(y) and its refitting Rx̂(y) w.r.t. h.
Two values of h are selected corresponding to (c) refitting for a suboptimal h, (d) original for a suboptimal h,
(f) original for the optimal h, and (g) refitting for the optimal h.

fewer artifacts (as confirmed by the very small gap in terms of SSIM values); see, for instance,
the stripes of the Monarch or the left cheek of Lena. In fact, in order to recover details
with low signal-to-noise ratio, the optimal original estimators authorize the apparition of low-
contrasted oscillating features. Nevertheless, a few of these oscillations tend to amplify some
noise structures and hence explain these artifacts. In contrast, the optimal refitting prefers
losing such details rather than taking the risk of creating arbitrary structures and is thus more
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Figure 12. (Top) Experiments with BM3D [11, 28] and with DDID [27] (bottom). (a) Noise-free x0. (b)
Noisy y = x0 +w. (e) MSE of x̂(y) and its refitting Rx̂(y) w.r.t. γ. Two values of γ are selected corresponding
to (c) refitting for a suboptimal γ, (d) original for a suboptimal γ, (f) original for its optimal γ, and (g) refitting
for its optimal γ.

reliable.
Regarding our previous discussion, we believe that refitting would be nevertheless benefi-

cial in terms of MSE for the class of images that are promoted by such restoration techniques.
Characterizing this class of solutions for these methods is a very challenging topic which is
outside the scope of this paper.
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6.6. Comparisons with other techniques devoted to the `1 case. We detail hereafter
two different alternative strategies devoted to re-enhancing the solution of the `1 analysis
regularization.

Iterative hard-thresholding. As shown earlier, hard-thresholding is the refitted version of
soft-thresholding. Given an iterative solver (k, y) 7→ xk composed of linear and soft-thresholding
(such as primal-dual algorithms), one could consider replacing all soft-thresholding by hard-
thresholding while keeping linearities unchanged—a technique often referred to as “iterative
hard-thresholding” [2]. Unfortunately, such techniques only provide convergence to a local
minimum of the `0-regularized problem, and they do not converge to the sought refitting
Rx̂(y).

Cosupport identification based post-refitting. Another solution, referred to as post-refitting
and studied in, e.g., [20, 37, 1, 29, 1], consists in identifying the (co)support I =
{i : (Γx̂(y))i 6= 0} and solving a least-square problem constrained to {x : (Γx)Ic = 0}, typi-
cally with conjugate gradient descent. However, x̂(y) is usually obtained thanks to a converg-
ing sequence xk, and unfortunately supp(Γxk) can be far from supp(Γx̂(y)) even though xk

can be made arbitrarily close to x̂(y). Such erroneous support identifications lead to results
that strongly deviate from Rx̂(y).

Figure 13 provides a comparison of our refitting method with the two other approaches
mentioned earlier for aniso-TV used on an 8-bit image (peppers) damaged by AWGN with σ =
20. The iterative hard-thresholding approach does not preserve the model space: transitions
are not localized at the same positions as in the original solution, and suspicious oscillations
are created. Post-refitting and our approach have both improved x̂(y) by enhancing each
piece and preserving the location of transitions. Our method is nevertheless more stable than
support identification, which produces many errors due to wrong cosupport identification.

Figure 14 provides another illustration highlighting the problem of support identification
in an ill-posed problem. It consists of an 8-bit image (Cameraman) damaged by a Gaussian
blur of 2px and AWGN with σ = 20. Again, while aniso-TV reduces the contrast, the
refitting recovers the original amplitudes and leaves discontinuities unchanged. Post-refitting
offers results comparable to ours except for suspicious oscillations due to wrong cosupport
identification.

In contrast to the support identification, CLEAR requires neither the identification of the
cosupport nor the identification of the model subspace Mx̂(y). This is appealing since the
cosupport of x̂(y) is difficult to identify, particularly in the analysis context. Being computed
along the iterations of the original algorithm, i.e., jointly with x̂(y), our refitting strategy also
provides more stable solutions.

6.7. Comparisons with boosting strategies. We detail hereafter other popular alterna-
tives designed to re-enhance results of an arbitrary estimator.

Twicing and boosting. Boosting iterations, introduced in [4], is a simple approach that
consists in reinjecting into the current solution x̃k a filtered version of its residual y − Φx̃k.
The idea is that if parts of the signal were lost at iteration k, they might be retrieved in the
residual. Given x̃0 = 0, the iterations reads

x̃k+1 = x̃k + x̂(y − Φx̃k).(51)
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Figure 13. (a) Noise-free x0. (b) Noisy y = x0 + w. (c) Original aniso-TV x̂(y) with λ = 1.2. Enhanced
results by (d) iterative hard-thresholding, (e) post-refitting with support identification, and (f) our proposed
covariant refitting.

Figure 14. (a) Original x0. (b) Blurred and noisy y = Φx0 +w. (c) Original aniso-TV x̂(y) with λ = 0.7.
Enhanced results by (d) iterative hard-thresholding, (e) post-refitting with support identification, and (f) our
proposed covariant refitting.

The first iterate is x̃1 = x̂(y), and x̃2 is known as the twicing estimate [48]. Such approaches
are popular in nonparametric statistics, e.g., for kernel smoothing [10].

When k increases, its bias tends to decrease, while its variance increases; see [44]. In denois-
ing (i.e., when Φ = Id) with a linear estimator x̂(y) = Wy (e.g., the Tikhonov regularization),
we get x̃k = (Id−(Id−W )k)y for k > 0. In particular, the twicing reads as x̃2 = (2W −W 2)y.
In this linear case, the covariant refitting reads as Rx̂(y) = (W + ρW − ρW 2)y and coincides
with the twicing when ρ = 1.

Unsharp residual iteration (URI) is a related approach studied in [8] that reads as x̃k+1 =
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x̃k + x̂(y)− x̂(Φx̃k) and that is also equivalent in the linear case.
Iterative Bregman refinement. In [34], the authors proposed an iterative procedure, origi-

nally designed to improve iso-TV results, given by

x̃k+1 = x̂

(
y +

k∑
i=1

(y − Φx̃k)

)
.(52)

Unlike boosting, which iteratively filters the residual, the idea is to filter a modified version of
the input y amplified by adding the sum of the residuals. When Φ = Id and x̂(y) = Wy, the
iterative Bregman refinement reads as x̃k = (Id − (Id −W )k)y and coincides with boosting
(we refer the reader to [5, 53, 24, 35] for related approaches).

SOS-boosting. In [38], the authors follow a similar idea by iteratively filtering a strength-
ened version of the input y. Their method, named Strengthen Operate Substract boosting
(SOS-boosting), originally proposed for Φ = Id, iteratively performs the following update:

x̃k+1 = τ x̂(y + αΦx̃k)− (τα+ τ − 1)x̃k,(53)

where α and τ are two real parameters. The first controls the emphasis of the solution (and the
convergence of the sequence), while the second controls the rate of convergence. When Φ = Id
and x̂(y) = Wy, the SOS refinement with τ = 1 reads as x̃k = Wy + α(W − Id)x̃k−1, and in
particular, for k = 2, we get x̃2 = (W − αW + αW 2)y, which coincides with our covariant
refitting for the choice α = −ρ. For all considered estimators, we have always observed ρ > 0,
contrarily to [38], where α > 0 is implicitly assumed. Hence, we cannot conclude that the
two models match in a specific linear setting. Another difference is that while we provide an
automatic way to compute ρ (see (43)), the α parameter of the SOS-boosting must be tuned
by the practitioner, a possibly cumbersome task, e.g., when using cross-validation on a fixed
dataset of images and/or for varying noise levels.

SAIF-boosting. As described in [31], the diffusion of a filter consists in iteratively re-
applying the filter to the current estimate x̃k+1 = x̂

(
x̃k
)
. The authors of [44] noticed that,

unlike the boosting method of [4], the bias of this estimator increases and its variance decreases
with k. As a consequence, the authors suggest mixing the two approaches by deciding at each
iteration between performing a boosting or a diffusion step. To that end, they proposed a
plug-in risk estimator that crudely estimates the MSE from a prefiltered version of y. This
approach is in fact applied locally on image patches and is referred to as spatially adapted
iterative filter boosting (SAIF-boosting). Unlike the other techniques, SAIF-boosting cannot
be used as a black-box. Indeed, it requires performing an eigendecomposition of x̂ locally for
each patch of y. This can be efficiently done for some kernel-based averaging filters but can
be very challenging for arbitrary estimators, such as, for instance, iso-TV.

Though we have compared the expressions of boosting approaches with our refitting in
the case of linear estimators, it is worth mentioning that boosting approaches are scarcely
used in this case. Boosting appears more relevant in the nonlinear case, since the successive
reapplication of a nonlinear estimator x̂ allows us to recover parts of the signal that were
lost at former iterations. Nevertheless, to boost the solution, the internal parameters of x̂
may need to be readapted at each iteration, leading to cumbersome tuning of parameters in
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practice. Unlike boosting methods, a refitting approach should not modify the regularity and
the structure of the first estimate. This is why CLEAR only considers the linearization of x̂
at y through the Jacobian.

It is important to have in mind that most of the theoretical results regarding boosting
methods are often well grounded in the case where, even though x̂ is nonlinear, it acts locally as
an averaging filter. In other words, locally, there exists a row stochastic linear operator W , i.e.,
W1n = 1n (or even bistochastic, symmetric or independent of y), such that x̂(y) = Wy. Such
theoretical results could not be applied to soft-thresholding (or to more advanced methods
we have considered). Indeed, for soft-thresholding, a candidate for W is the diagonal matrix
defined as

Wii =

{
1− λ

|yi| if |yi| > λ,

0 otherwise,
(54)

which is not row stochastic. In this context, the matrix W is not the Jacobian, which is given
in this case by the diagonal matrix

Jii =

{
1 if |yi| > λ,
0 otherwise,

(55)

which, unlike W , is row stochastic and locally a projector. A second limitation is that even
though W is row stochastic, it might still encode a bias part. Typically, for the `1 analysis
described in (5), a candidate for W is

(56) W = U(ΦU)+ − U(U>Φ>ΦU)−1U>(Γ>)IR,

where R is a diagonal matrix with diagonal elements Rii = λ/|yi| for i ∈ I and 0 otherwise.
One can check that if 1n ∈ Ker[Γ] (which holds true for aniso-TV), then W is row stochastic.
However, as seen in (5), the quantity U(U>Φ>ΦU)−1U>(Γ>)IR is the term responsible for
the systematic contraction of the `1 analysis regularization (this simplifies to λ/|yi| for soft-
thresholding). As a consequence, the bias cannot be corrected by a single application of W .
The Jacobian J = U(ΦU)+, which is again row stochastic, is free of this contraction term.
Therefore, our covariant refitting gets rid of this bias term after one single application of the
Jacobian J .

Figures 15 and 16 provide a comparison of our covariant refitting with the three first afore-
mentioned boosting approaches on two 8-bit images (SitaHanuBanana and Barbara) damaged
by AWGN with σ = 20, respectively, for iso-TV and for nonlocal means. Note that the inner
parameters of iso-TV and nonlocal means are fixed for all approaches. The α and τ parameters
of the SOS-boosting approach have been tuned to offer the most satisfying results, even though
we did not observe a significant impact in the iso-TV case. As expected, our covariant refitting
provides results re-enhanced toward the amplitudes of the noisy inputs. In contrast, boosting
approaches do not systematically refit toward the original amplitudes. While CLEAR pre-
serves the structural content and smoothness of the original solution, the boosting approaches
reinject structural contents that were not originally preserved and can present a large amount
of residual noise. In these experiments, the original estimators were significantly biased, but
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(a)
PSNR: 22.20, SSIM: 0.465

(b)
PSNR: 25.27, SSIM: 0.880
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PSNR: 28.40, SSIM: 0.938

(d)
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PSNR: 28.45, SSIM: 0.869 PSNR: 24.72, SSIM: 0.594 PSNR: 22.45, SSIM: 0.475 PSNR: 22.21, SSIM: 0.465
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g

PSNR: 25.25, SSIM: 0.881

(e) 1 iteration
PSNR: 25.26, SSIM: 0.881

(f) 2 iterations
PSNR: 25.26, SSIM: 0.881

(g) 5 iterations
PSNR: 25.26, SSIM: 0.881

(h) 20 iterations

Figure 15. (a) Cartoon image x0. (b) Noisy version y = x0 + w. (c) Iso-TV x̂(y) with λ = 1.5. (d) Our
covariant refitting Rx̂(y). (e)–(h) From top to bottom, boosting [48, 4], Bregman iterations [5], and SOS-boosting
[38] at, respectively, 1, 2, 5, and 20 iterations.

for smaller parameter choices, reinjecting structural contents would have improved the PSNR
more than refitting the amplitudes only. In fact, boosting techniques are more relevant to
improving the quality of near unbiased estimates, while refitting techniques correct only for
the inaccuracy of biased but precise estimates (i.e., with low estimation variance).

Figure 17 illustrates this point on an 8-bit image (House) damaged by AWGN with σ = 20
and σ = 60 for iso-TV. Unlike the previous comparison, the approaches are compared for
different values of the regularization parameter λ. We have chosen to perform one single
iteration for all boosting methods such that they share the same computation time with
our refitting. Studying the MSE as a function of λ reveals that SOS-boosting and twicing
indeed improve on the MSE for lower values of the regularization parameter (i.e., for nearly
unbiased estimators). The Bregman iteration and our refitting improve on the biased estimate
for higher values of the regularization parameter λ. The optimal refitting has higher MSE
than the biased estimate and all other boosting approaches (tuned at their own optimal λ
value). This was expected, as Figures 10, 11, and 12 have already shown that the MSE of the
optimal original estimator is better than that of the optimal CLEAR. As a consequence, any
“boosting” approach that barely modifies the original estimator will necessarily present lower
MSE than CLEAR, in particular for twicing and SOS-boosting in this context. However, the
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Figure 16. (a) Image x0 with moderate patch redundancy. (b) Noisy version y = x0 + w. (c) Nonlocal
means x̂(y) with h = 5.5. (d) Covariant refitting Rx̂(y). (e)–(h) From top to bottom, boosting [48, 4], Bregman
iterations [5], and SOS-boosting [38] at, respectively, 1, 2, 5, and 20 iterations.

SSIM values are very close for all compared methods.
Quantifying the quality of a debiasing is a difficult task. The main issue is that the noisy

image itself has a null bias, and any method that overfits to the noise tends to have a small bias
too. Then debiasing cannot be defined only in terms of bias reduction; otherwise x̂(y)=Φ+y
would be an optimal rule. Debiasing should be defined as a technique minimizing the bias while
preserving properties of the original solution, e.g., the model subspace (invariant refitting),
or the cross-correlations (covariant refitting). Because of the lack of such a quantitative
criterion, we have displayed the results obtained by each method at their optimal λ value for
visual comparisons. At a relatively low noise level σ = 20, all approaches are on par. For
σ = 60, fundamental differences are revealed. SOS-boosting and twicing appear close to the
original biased estimate, while the Bregman iteration and our refitting lead to a significant
contrast re-enhancement with larger homogeneous regions.

While in practice the results obtained by the Bregman iteration may look preferable, our
refitting has a methodological benefit. If the user chooses a biased estimator for which the-
oretical guarantees on the model space have been proven (e.g., Lasso, total variation, etc.),
our CLEAR solution enjoys the same properties, whereas they can be lost with boosting.
For instance, for total variation, one can characterize the preserved/lost objects w.r.t. their
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Figure 17. Comparison of refitting and boosting with iso-TV for varying parameter value λ in AWGN
contexts with (top) standard deviation σ = 20 and (bottom) σ = 60. (a) Noisy image y = x0 +w. (b) Original
estimate x(y). (c) Our refitting x̂(y). (d) Twicing. (f) One Bregman iteration. (g) SOS-boosting with one
iteration. (b)–(d), (f)–(g) All of these results are obtained at their own respective optimal λ values. (e) MSE
of x(y), refitting x̂(y), and the three boosting approaches.

perimeter, area, and the chosen λ. Because the model subspace is preserved, the same ob-
jects can be preserved/lost after applying CLEAR. This cannot be guaranteed for boosting
approaches even though they can offer a lower approximation error. This behavior in terms of
MSE is well known for Lasso (for instance, soft-thresholding is known to achieve lower MSE
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than hard-thresholding), but even still refitting is commonly performed because it preserves
the guarantees proved for the original estimator while reaching lower bias. Given the signifi-
cant efforts made by the community to develop theoretical results for solutions of variational
problems, we believe it is important that our scheme inherits such guarantees.

7. Conclusion. We have introduced a generalization of the popular least-square refitting,
originally aimed at reducing the systematic contraction of Lasso.

Together with this generalization, a generic implementation has been given for a wide class
of ill-posed linear problem solvers. This implementation requires a computational overload of
at most a factor three compared to the original solver—a factor that can even be reduced to
two for most popular estimators in image processing.

While classical refitting is inspired by the standard Lasso debiasing step (i.e., least-square
refitting on the estimated support), our generalization leverages the Jacobian of the estimator
and does not rely on the notion of support, and its unstable identification. In particular, the
proposed implementation only requires chain rules and differentiating the considered solver,
and in practice it also has the benefit of increased stability compared to naive implementations.

For estimators such as Tikhonov regularization, total variation, nonlocal means, BM3D,
or DDID, numerical experiments have demonstrated the efficiency of the CLEAR technique
in retrieving correct intensities while respecting the structure of the original biased estimator.
Moreover, it has been shown in practice that refitting is beneficial when the underlying signal
structure is well captured by the original estimator. Otherwise, refitting leads to too-simplistic
approximations, typically reflecting an inaccurate prior model. In other words, if the consid-
ered estimator is adequate w.r.t. the application context, then refitting is recommended.

We have highlighted the importance in distinguishing boosting approaches from the refit-
ting approach. In particular, refitting should be preferred in applications where the content
of the original solution must be preserved. While boosting approaches are mostly used to en-
hance near unbiased estimators (typically coming from combinatorial or nonconvex problems),
refitting is all the more relevant for estimators that present biases. For instance, refitting is
essential for estimators’ solution of a convex problem that requires a large bias correction to
accurately retrieve the content of the signal of interest, a canonical example being iso-TV.
Nevertheless, we believe that the notion of Jacobian-based refitting could be of interest for
boosting applications, and we leave this to future work.

Appendix A. Sketch of proofs. This section details how to retrieve closed form expres-
sions of some of the estimators studied in the paper.

A.1. Retrieving the least-square solution. We aim at retrieving here a minimizer of
||Φx− y||22 + ιC(x), where C = b+ Im[A], b ∈ Rp, and A ∈ Rp×n. The initial problem can be
recast as

(57) argmin
x∈C

||Φx− y||22 = b+A · argmin
t∈Rn

||ΦAt− (y − Φb)||22.

The right-hand side problem being differentiable and convex, its first-order optimality condi-
tions give A>Φ>ΦAt = A>Φ>(y − Φb). In particular, t = (ΦA)+(y − Φb) is a solution, and
hence x = b+At, i.e., x = b+A(ΦA)+(f − Φb) is a solution.
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A.2. Retrieving the Tikhonov solution. We consider the minimization problem, defined
for Γ ∈ Rm×p and λ > 0, of 1

2 ||Φx − y||
2
2 + λ

2 ||Γx||
2
2. The objective being differentiable and

convex, its first-order optimality conditions give

(58) Φ>(Φx− y) + λΓ>Γx = 0⇔ (Φ>Φ + λΓ>Γ)x = Φ>f.

Provided Ker Φ ∩ Ker Γ = {0} and λ > 0, the quantity Φ>Φ + λΓ>Γ is invertible and x =
(Φ>Φ + λΓ>Γ)−1Φ>y is the unique solution.

A.3. Retrieving the hard-thresholding solution. We consider the minimization problem,
defined for λ > 0, of E(x, y) = 1

2 ||x − y||
2
2 + λ2

2 ||x||0. The problem is separable, meaning that[
argminx∈Rn E(x, y)

]
i

= argminxi∈REi(xi, yi) with

Ei(xi, yi) =
1

2

{
y2
i if xi = 0,

(xi − yi)2 + λ2 otherwise.
(59)

Since y2
i 6 minxi [(xi − yi)2 + λ2]⇔ |yi| 6 λ, we get

(60) min
xi

Ei(xi, yi) =
1

2

{
y2
i if |yi| 6 λ,
λ2 otherwise,

which is reached by setting xi = 0 when |yi| 6 λ and xi = yi otherwise.

A.4. Retrieving the soft-thresholding solution. We consider the minimization problem,
defined for λ > 0, of E(x, y) = 1

2 ||x− y||
2
2 +λ||x||1, which is, as for hard-thresholding, separable

with Ei(xi, yi) = 1
2(xi − yi)2 + λ|xi|. By convexity, a minimum is reached when zero belongs

to its subdifferential. Hence, xi is solution if

(61) 0 ∈ ∂Ei(xi, yi)⇔ xi ∈ yi − λ
{

sign(xi) if |xi| > 0,
[−1, 1] otherwise,

which holds true by setting xi = 0 when |yi| 6 λ and xi = yi − λ sign(yi) otherwise.

A.5. Retrieving the (blockwise) nonlocal means. We assume periodical boundary condi-
tions such that all quantities q indexed by i = (i1, i2) ∈ Z2 satisfy qi = q(i1,i2) = q(i1+k1p1,i2+k2p2)

for all (k1, k2) ∈ Z2. This leads, for l ∈ [−b, b]2, to the following relationship:

F (x, y) =
1

2

∑
i,j

wi,j ||Pix− Pjy||22 =
1

2

∑
i,j

wi,j
∑
l

(xi+l − yj+l)2(62)

=
1

2

∑
i,j

[∑
l

wi,j(xi+l − yj+l)2

]
=

1

2

∑
i,j

[∑
l

wi−l,j−l(xi − yj)2

]

=
1

2

∑
i,j

[∑
l

wi−l,j−l

]
(xi − yj)2 =

1

2

∑
i,j

w̄i,j(xi − yj)2.

For all i ∈ [p1]× [p2], studying the first optimality conditions gives

(63)
∂F (x, y)

∂xi
= 0⇔

∑
j

w̄i,j(xi − yj) = 0⇔ xi =

∑
j w̄i,jyj∑
j w̄i,j

.
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Appendix B. Proof of Theorem 20. Before turning to the proof of this theorem, let us
introduce a lemma.

Lemma 22. For all y, let x̂(y) be a solution of

x̂(y) ∈ argmin
x

F (y − Φx) +G(x),(64)

with F , G two convex functions and G being 1-homogeneous. Then for all ε ∈ [0, 1], the
following holds:

(65) (1− ε)x̂(y) ∈ argmin
x

F (y − εΦx̂(y)− Φx) +G(x).

Proof. Note that if G is a convex and 1-homogeneous function, then G is subadditive; i.e.,
G(a) + G(b) > G(a + b). Next, assume that, for some ε ∈ [0, 1], (65) does not hold, so that
there exists v such that

F (y − εΦx̂(y)− Φv) +G(v) < F (y − εΦx̂(y)− (1−ε)Φx̂(y)) +G((1−ε)x̂(y))(66)

< F (y − Φx̂(y)) + (1−ε)G(x̂(y)).

It follows that

F (y − εΦx̂(y)− Φv) +G(v) + εG(x̂(y)) < F (y − x̂(y)) +G(x̂(y)).(67)

We also have G(v) + εG(x̂(y)) = G(v) +G(εx̂(y)) > G(v + εx̂(y)), since G is 1-homogeneous
and subadditive. Hence, for w = v + εx̂(y), we get

F (y − Φw) +G(w) < F (y − Φx̂(y)) +G(x̂(y)),(68)

which contradicts x̂(y) ∈ argminF (y − Φx) +G(x) and then concludes the proof.

Proof of Theorem 20. By virtue of Lemma 22 and definition of x̂(y), we have (1−ε)x̂(y) =
x̂(y − εΦx̂(y)) since x̂(y) is supposed to be the unique solution for all y. Now, recall that the
linear Jacobian operator applied to Φx̂(y) is the directional derivative of x̂(y) in the direction
Φx̂(y); then, for almost all y, we get

JΦx̂(y) , lim
ε→0

x̂(y)− x̂(y − εΦx̂(y))

ε
= lim

ε→0

x̂(y)− (1− ε)x̂(y)

ε
= x̂(y),(69)

which concludes the proof.

Appendix C. Proof of Theorem 21. Before turning to the proof of this theorem, let us
introduce a lemma.

Lemma 23. The refitting Rx̂(y) of the `1 analysis regularization x? = x̂(y) is the solution
of the saddle-point problem

(70) min
x̃∈Rp

max
z̃∈Rm

||Φx̃− y||22 + 〈Γx̃, z̃〉 − ιSI (z̃),

where ιSI is the indicator function of the convex set SI = {p ∈ Rm : pI = 0} .
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Proof. As ΦU has full column rank, the refitting of the solution (5) is the unique solution
of the constrained least-square problem (see subsection 3.2)

(71) Rx̂(y) = U(ΦU)+y = argmin
x̃∈Mx̂(y)

||Φx̃− y||22.

We remark that x̃ ∈ Mx̂(y) = Ker[IdtIcΓ] ⇔ (Γx̃)Ic = 0 ⇔ ιSIc
(Γx̃) = 0, where SIc =

{p ∈ Rm : pIc = 0}.
Using Fenchel transform, ιSIc

(Γx̃) = maxz̃ 〈Γx̃, z̃〉 − ι∗SIc
(z̃), where ι∗SIc

is the convex

conjugate of ιSIc
. Observing that ιSI = ι∗SIc

concludes the proof.

Given Lemma 23, replacing Πzk+σΓvk in (47) by the projection onto SI , i.e.,

(72) ΠSI (z̃)Ic = z̃Ic and ΠSI (z̃)I = 0,

leads to the primal-dual algorithm of [7] applied to problem (70) which converges to the
refitted estimator Rx̂(y). It remains to prove that the projection Πzk+σΓvk defined in (47)
converges to ΠSI in finite time.

Proof of Theorem 21. First consider i ∈ I, i.e., |Γx?|i > 0. By assumption on α, |Γx?|i ≥
α > 0. Necessarily, z?i = λ sign(Γx?)i in order to maximize (44). Hence, |z?+σΓx?|i ≥ λ+σα.
Using the triangle inequality shows that

(73) λ+ σα 6 |z? + σΓx?|i 6 |z? − zk|i + σ|Γx? − Γvk|i + |zk + σΓvk|i.

Choose ε > 0 sufficiently small such that σα − ε(1 + σ) > β. From the convergence of the
primal-dual algorithm of [7], the sequence (zk, xk, vk) converges to (z?, x?, x?). Therefore, for
k large enough, |z? − zk|i < ε, |Γx? − Γvk|i < ε, and

(74) |zk + σΓvk|i > λ+ σα− ε(1 + σ) > λ+ β.

Next consider i ∈ Ic, i.e., |Γx?|i = 0, where by definition |z?|i 6 λ. Using again the
triangle inequality shows that

(75) |zk + σΓvk|i 6 |zk − z?|i + σ|Γvk − Γx?|i + |z?|i.

Choose ε > 0 sufficiently small such that ε(1 + σ) < β. As (zk, xk, vk) → (z?, x?, x?), for k
large enough, |zk − z?|i < ε, |Γvk − Γx?|i < ε, and

(76) |zk + σΓvk|i < λ+ ε(1 + σ) 6 λ+ β.

It follows that for k sufficiently large |zk + σΓvk|i 6 λ + β if and only if i ∈ Ic, and hence
Πzk+σKvk(z̃) = ΠSI (z̃). As a result, all subsequent iterations of (47) will solve (70), and hence
from Lemma 23 this concludes the proof of the theorem.
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