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Abstract. This paper develops a novel framework to compute a projected Generalized Stein
Unbiased Risk Estimator (GSURE) for a wide class of sparsely regularized solutions of inverse
problems. This class includes arbitrary convex data fidelities with both analysis and synthesis
mixed `1 − `2 norms. The GSURE necessitates to compute the (weak) derivative of a solution
w.r.t. the observations. However, as the solution is not available in analytical form but rather
through iterative schemes such as proximal splitting, we propose to iteratively compute the
GSURE by differentiating the sequence of iterates. This provides us with a sequence of
differential mappings, which, hopefully, converge to the desired derivative and allows to compute
the GSURE. We illustrate this approach on total variation regularization with Gaussian noise
to automatically select the regularization parameter.

1. Introduction
This paper focuses on unbiased estimation of the `2-risk of recovering an image f0 ∈ RN

from low-dimensional noisy observations y = Φf0 + w, where w ∼ N (0, σ2IdP ). The linear
bounded imaging operator Φ : RN → Y = RP entails loss of information so that P < N or is
rank-deficient for P = N , and the recovery problem is typically ill-posed.

In the following we denote f(y) ∈ RN the estimator of f0 from the observations y ∈ Y.
More specifically, we consider an estimator f(y) defined as a function of coefficients x(y) ∈ X
(where X is a suitable finite-dimensional Hilbert space) that solves x(y) ∈ argminx∈X E(x, y)
where the set of minimizers is nonempty. Here E(x, y) is an energy functional parameterized
by the observations y ∈ Y. In some cases (e.g. total variation regularization), one directly has
f(y) = x(y), but for sparse regularization in a redundant synthesis dictionary, the latter maps
coefficients x(y) to images f(y). We then make a distinction between f(y) and x(y) in the
following.

This work proposes a versatile approach for unbiased risk estimation in the case where x(y)
is computed by proximal splitting algorithms. These methods have become extremely popular
to solve inverse problems with convex non-smooth regularizations, e.g. those encountered in the
sparsity field.

2. Previous Works
Unbiased Risk Estimation. The SURE [1] is an unbiased `2-risk estimator. For denoising
Φ = Id, it provides an unbiased estimate SURE(y) of the risk E(||f(y) − f0||2) that depends
solely on y, without prior knowledge of f0. This can prove very useful for objective choice of
parameters that minimize the recovery risk of f0. A generalized SURE (GSURE) has been
developed for noise models within the multivariate canonical exponential family [2]. In the
context of inverse problems, this allows to compute the projected risk E(||Π(f(y)− f0)||2) where
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Π is the orthogonal projector on ker(Φ)⊥. Similar GSURE versions have been proposed for
Gaussian noise and special regularizations or/and inverse problems, e.g. [3, 4].

Unbiased Estimation of the Degrees of Freedom. A prerequisite to compute the SURE or
GSURE is an unbiased estimate of the degrees of freedom df(y). Roughly speaking, for
overdetermined linear models, df(y) is the number of free parameters in modeling f(y) from
y. There are situations where df(y) can be estimated in closed-form from f(y). This occurs
e.g. in synthesis `1 regularization, as established in the overdetermined case in [5], and extended
to the general setting in [6]. When no closed-form is available, df(y) can be estimated using
data perturbation and Monte-Carlo integration, see e.g. [7]. Alternatively, an estimate can
be obtained by formally differentiating the sequence of iterates provided by an algorithm that
converges to f(y). As proposed initially by [4] and refined in [8], this allows to compute the
GSURE of sparse synthesis regularization.

3. Differentiating Proximal Splitting Schemes
Due to obvious space limitations, we only describe here the derivative of a primal-dual

proximal splitting algorithm. But the same idea remains valid for other splitting schemes as it
is described in a longer version of this paper [9].

3.1. Proximal Operator
The proximal operator associated to a proper lower semi-continuous (lsc) and convex function

x 7→ G(x, y) is

ProxG(x, y) = argmin
z

1

2
||x− z||2 +G(z, y).

A function for which ProxG(x, y) can be computed in closed-form is dubbed simple. A distinctive
property of ProxG(·, y) that plays a central role in the sequel is that its is a 1-Lipschitz mapping.
When y is fixed, we will denote ProxG(x) instead of ProxG(x, y) to lighten the notation.

The Legendre-Fenchel conjugate of G is G∗(z, y) = maxx〈x, z〉 −G(x, y). A useful proximal
calculus rule is Moreau’s identity: x = ProxτG∗(x, y) + τ ProxG/τ (x/τ, y), τ > 0 .

3.2. Primal-Dual Splitting
Proximal splitting schemes can be used to solve the large class of variational problems

x(y) ∈ argmin
x∈X

E(x, y) = H(x, y) +G(Kx, y) , (1)

where both x 7→ H(x, y) and u 7→ G(u, y) are proper, lsc, convex and simple functions, and
K : X → U is a bounded linear operator.

The primal-dual relaxed Arrow-Hurwicz algorithm as proposed in [10] to solve (1) reads

u(`+1) = ProxσH∗(U (`)) where U (`) = u(`) + σKx̃(`),

x(`+1) = ProxτG(X(`)) where X(`) = x(`) − τK∗u(`),
x̃(`+1) = x(`+1) + θ(x(`+1) − x(`))

(2)

where u(`) ∈ U , x(`) ∈ X and x̃(`) ∈ X . The parameters σ > 0, γ > 0 are chosen such that
σγ||K||2 < 1, and θ ∈ [0, 1] to ensure convergence of x(`) toward a global minimizer of (1). θ=0
corresponds to the Arrow-Hurwitz algorithm, and for θ = 1 a convergence rate of O(1/`) was
established on the restricted duality gap [10].
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For any vector δ ∈ Y, our goal is to compute the derivatives ξ(`) = ∂x(`)(y)[δ], υ(`) =

∂u(`)(y)[δ] and ξ̃(`) = ∂x̃(`)(y)[δ]. Using the chain rule, the sequence of derivatives then reads

υ(`+1) = H(`)
1 (Υ(`)) +H(`)

2 (δ) where Υ(`) = υ(`) + σKξ̃(`),

ξ(`+1) = G(`)1 (Ξ(`)) + G(`)2 (δ) where Ξ(`) = ξ(`) − τK∗υ(`),
ξ̃(`+1) = ξ(`+1) + θ(ξ(`+1) − ξ(`))

(3)

where we have defined the following linear mappings for k = 1, 2 with ∂k the derivative w.r.t. the
k-th argument

H(`)
k (·) = ∂k ProxσH∗(U (`), y)[·] and G(`)k (·) = ∂k ProxτG(X(`), y)[·].

3.3. Discussion on convergence issues
One has to be aware that given that the proximal mappings are not necessarily differentiable

everywhere, its differential is actually set-valued. Therefore, one should appeal to involved tools
from non-smooth analysis to make the above statements rigorous. We prefer not to delve into
these technicalities for the lack of space.

Another major issue is to theoretically ensure the existence of a proper sequence ξ(`) that
converges toward ∂x(y)[δ]. Regarding existence, ProxG(·, y) is a 1-Lipschitz mapping of its first
argument. Furthermore, in all the considered application, ProxG(x, ·) is also Lipschitz with
respect to its second argument. If one starts at an appropriate initialization, by induction,
y 7→ x(`)(y) is also Lipschitz, hence differentiable almost everywhere. As far as convergence
is concerned, this remains an open question in the general case, and we believe this would
necessitate intricate arguments from non-smooth and variational analysis. This is left to future
research.

4. Risk Estimator
Projected GSURE. Recall that Π = Φ∗(ΦΦ∗)+Φ is the orthogonal projector on ker(Φ)⊥ =
Im(Φ∗), where + stands for the Moore-Penrose pseudo-inverse. Let µ(y) = Πf(y) the projected
estimator of Πf0. While f(y) is not necessarily uniquely defined, we assume that µ(y) is
unambiguously defined as a single-valued mapping of the observation y. This can be ensured
under a strict convexity condition on H or G in (1) (see e.g. example (5)).

Let µ0(y) = Φ∗(ΦΦ∗)+y the maximum likelihood estimator. By generalizing the projected
GSURE of [3] to any linear operator Φ, we have

GSURE(y) =||µ0(y)− µ(y)||2 − σ2 tr((ΦΦ∗)+) + 2σ2 div((ΦΦ∗)+Φf(y))

where div(g)(y) = tr(∂g(y)) is the divergence of the mapping g : Y → Y. Under weak
differentiability of y 7→ µ(y), one can prove that the GSURE is an unbiased estimate of the
risk on Im(Φ∗), i.e. Ew(GSURE(y)) = Ew(||Πf0 − µ(y)||2) .

Iterative Numerical Computation. One of the bottlenecks in calculating the GSURE(y) is to
efficiently compute the divergence term. Using the Jacobian trace formula of the divergence, it
can be easily seen that

div((ΦΦ∗)+Φf(y)) = Ez(〈∂f(y)[z], µ0(z)〉) ≈ 1

k

k∑
i=1

〈∂f(y)[zi], µ0(zi)〉 (4)

where z ∼ N (0, IdP ) and zi are k realizations of z. Since f(y) and its iterates f (`)(y) are defined
as explicit functions of x(y) and x(`)(y) (see Section 5 for a detailed example), the GSURE(y)
can in turn be iteratively estimated by plugging ∂x(`)(y)[zi] provided by (3) into (4).
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Figure 1. (a) Projected risk and its GSURE estimate1 (b) y. (c) f(y) at the optimal λ.

5. Numerical Results
Total variation regularization of linear inverse problems amounts to solving

f(y) ∈ argmin
f

1

2
||Φf − y||2 + λ||∇f ||1 , (5)

where ∇f ∈ RN×2 is a discrete gradient. The `1 − `2 norm of a vector field t = (ti)
N
i=1 ∈ RN×2,

with ti ∈ R2, is defined as ||t||1 =
∑

i ||ti||. Problem (5) is a special instance of (1) letting x = f ,
H(x, y) = 0,∀(x, y) and

K(x) = (Φx,∇x) and ∀u = (s, t) ∈ RP × RN×2, G(u, y) =
1

2
||s− y||2 + λ||t||1 .

Separability of G in s and t entails that

ProxτG(u, y) = ((1− τ)s+ τy, Tλτ (t)) ,

where Tρ, ρ > 0, is the component-wise `1 − `2 soft-thresholding, defined for i = 1, . . . , N as

Tρ(t)i = max(0, 1− ρ/||ti||)ti and ∂Tρ(t)[δt]i =

{
0 if ||ti|| 6 ρ
δt,i − ρ

||ti||Pti(δt,i) otherwise
,

where Pα is the orthogonal projector on α⊥ for α ∈ R2, and Tρ(t)i although not differentiable
on the sphere {ti : ||ti|| = ρ}, is directionally differentiable there. Therefore

∂1 ProxτG(u, y)[δs, δt] = ((1− τ)δs, ∂Tλτ (δt)) and ∂2 ProxτG(u, y)[δy] = (τδy, 0) .

Fig. 1 depicts an application of our GSURE to adjust the value of λ optimizing the recovery
for a deblurring problem, where Φ ∈ RN×N is a convolution matrix (Gaussian kernel of width
2 px), σ = 10 (for an image f0 with a range [0, 255]). For each value of λ in the tested range,
GSURE(y) is computed for a single realization of y using (4) with k = 4 realizations zi.

1

References
[1] Stein C 1981 The Annals of Statistics 9 1135–1151
[2] Eldar Y C 2009 IEEE Transactions on Signal Processing 57 471–481
[3] Pesquet J C, Benazza-Benyahia A and Chaux C 2009 IEEE Transactions on Signal Processing 57 4616–4632
[4] Vonesch C, Ramani S and Unser M 2008 ICIP (IEEE) pp 665–668
[5] Zou H, Hastie T and Tibshirani R 2007 The Annals of Statistics 35 2173–2192
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