Stable Recovery with Analysis Decomposable Priors


In this paper, we investigate in a unified way the structural properties of solutions to inverse problems. These solutions are regularized by the generic class of semi-norms defined as a decomposable norm composed with a linear operator, the so-called analysis type decomposable prior. This encompasses several well-known analysis-type regularizations such as the discrete total variation (in any dimension), analysis group-Lasso or the nuclear norm. Our main results establish sufficient conditions under which uniqueness and stability to a bounded noise of the regularized solution are guaranteed. Along the way, we also provide a strong sufficient uniqueness result that is of independent interest and goes beyond the case of decomposable norms.

10th International Conference on Sampling Theory and Applications (SampTA 2013)