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Classes of Nonsmooth Problems

50 Ways of Nonsmoothness ...

Tight optimality conditions, (super-)linear conver-
Smooth = =l y ey (el i

gence to roots of equation systems via linearization

Beautiful optimality and duality theory, but gener-

Convex ] = [ ally sublinear convergence to unconstrained minima
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50 Ways of Nonsmoothness ...
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Sub-Analytic = Function finitely defined with Poussilieux expansion
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Classes of Nonsmooth Problems

50 Ways of Nonsmoothness ...

= - |

Tight optimality conditions, (super-)linear conver-
gence to roots of equation systems via linearization

4

Abs-Smooth =

4

Piecewise Smooth =

4

Global piecewise linear approximation
with uniform second order error

Local piecewise linear approximation
with very local second order error

Sub-Analytic = Function finitely defined with Poussilieux expansion
. Very local superlinear convergence under rank condi-
Semi-Smooth = tions, combinatorics must be resolved for first iterate!
Beautiful optimality and duality theory, but gener-

Convex ] = [ ally sublinear convergence to unconstrained minima
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... and Optimality Conditions

Given: f : R” — R not diff'able everywhere but with suitable properties
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Classes of Nonsmooth Problems

... and Optimality Conditions

Given: f : R" — R not diff'able everywhere but with suitable properties
Generalized derivative concepts required:
o directional derivatives
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... and Optimality Conditions

Given: f : R" — R not diff'able everywhere but with suitable properties

Generalized derivative concepts required:

o directional derivatives
necessary optimality condition /(x; d) > 0 for all d € R"

o Clarke generalized gradient
F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990

Of(x) := conv{ lim V£(x) ‘ i+ x, VF(x;) exists} = conv{d"f(x

1—00

)}
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Classes of Nonsmooth Problems

... and Optimality Conditions

Given: f : R” — R not diff'able everywhere but with suitable properties

Generalized derivative concepts required:
o directional derivatives
necessary optimality condition f'(x; d) > 0 for all d € R"

o Clarke generalized gradient
F. Clarke: Optimization and Nonsmooth Analysis, SIAM, 1990
necessary optimality condition 0 € 9 f(x)

e Mordukhovich subgradient 9" f(x)
T. Rockafellar, R. Wets: Variational Analysis, Springer, 1998
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Classes of Nonsmooth Problems

Is This Really Necessary?

Theorem (Rademacher)

If the function f : R" — R is locally Lipschitz continuous then f is almost
everywhere differentiable.
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Classes of Nonsmooth Problems

Is This Really Necessary?

Theorem (Rademacher)

If the function f : R" — R is locally Lipschitz continuous then f is almost
everywhere differentiable.

Obvious idea: Use smooth optimization methods, e.g., quasi-Newton

M. Giirbiizbalaban, M.L. Overton / Nonlinear Analysis 75(2012) 1282-1289

Nesterov—Chebyshev—Rosenbrock, first variant Nesterov—Chebyshev—Rosenbrock, second variant
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Classes of Nonsmooth Problems

Lyris®

Is This Really Necessary?

Theorem (Rademacher)

If the function f : R" — R is locally Lipschitz continuous then f is almost
everywhere differentiable.

Obvious idea: Use smooth optimization methods, e.g., steepest descent

)
R )
X=(9,-3) L

oo

Example by Hiriart-Urruty and Lemaréchal
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Classes of Nonsmooth Problems

Current (= Black Box) Approaches for “oee’
Nonsmooth Optimization

@ Use methods for smooth problems
may fail, see slide before, no convergence theory

@ Subgradient method
very (1) slow convergence

@ Bundle methods
lots of parameters, erratic convergence behaviour
involves oracle

@ Semi-smooth Newton methods
only local convergence

@ Derivative-free methods
no structure exploitation,
difficult when number of optimization variables large
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Classes of Nonsmooth Problems

Lessons learned

@ various concepts for nonsmoothness
@ various concepts for generalized derivatives

@ resulting in various optimality conditions,
usually difficult to verify

@ many important applications, e.g., machine learning!!

@ no out-of-the-shelf solution algorithm
structure exploitation indispensable
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The Class of Abs-smooth Functions

Where are we?

Tight optimality conditions, (super-)linear conver-

Smooth = gence to roots of equation systems via linearization
1]
v
Abs-Smooth = Global piecewise linear approximation
"~ with uniform second order error
1l
v

Piecewise Smooth

4

Local piecewise linear approximation
with very local second order error

Sub-Analytic = Function finitely defined with Poussilieux expansion
. Very local superlinear convergence under rank condi-
Semi-Smooth = tions, combinatorics must be resolved for first iterate!
Beautiful optimality and duality theory, but gener-

Convex ] = [ ally sublinear convergence to unconstrained minima
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The Class of Abs-smooth Functions

Our Class of Functions

Definition (C4.(IR") Functions)

For any d € N, the set of functions f : R" — R,y = f(x), defined by an
abs-smooth form
= F(x,z]z]),
y = olx2),

with F € C4(R"+5 R*) and ¢ € CY(R"*%,R), such that z is
determined only by the values of z;, 1 < j < i, is denoted by C4 _(R").

eeeeeeeeeeeeeeeeeeeeeeeee
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The Class of Abs-smooth Functions

Our Class of Functions

Definition (C4.(IR") Functions)

For any d € N, the set of functions f : R" — R,y = f(x), defined by an
abs-smooth form
= F(x,z]z]),
y = ¢lx2),
with F € C4(R"+5 R*) and ¢ € CY(R"*%,R), such that z is
determined only by the values of z;, 1 < j < i, is denoted by C4 _(R").
An element f € CY(R™"+s R®) for d > 1 is called abs-smooth.

The components z;, 1 < i <'s, of z are called switching variables.
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The Class of Abs-smooth Functions

Abs-smooth Example Problems

Exact /; penalty functions
Reformulation of constrained optimization problem

minf(x) st ¢(x)=0,i€&, «c(x)>0,ieZ
X
as unconstrained optimization problem with ¢;-penalty

00 1) = F()+ ()| + 1Y max{0, —ci(x)}

€& i€T

eeeeeeeeeeeeeeeeeeeeeeeee
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Local models may vyield piecewise linear optimization problem

F. Liers, M. Merkert: Structural Investigation of Piecewise Linearized Flow Problems. 2016

Machine Learning nonsmooth activation functions like RelLu
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The Class of Abs-smooth Functions

The Half-pipe Function

f:R%2 =R, f(x,x)

max(x2 — max(xg, 0),0)

=308 — 3 (Ga+bal) + 16 — 3 (a+bal) )

Berlin Mathematics Research
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The Class of Abs-smooth Functions

The Half-pipe Function

f:R? = R, f(x1,x) = max(x3 — max(xg,0),0)

=308 = 3 Oa +bal) + 15 = 3 (a + xal) )

has the abs-smooth form

71 = x

n = X —L10a+lzl) ie., z=F(x,z,|z|)
7z = |z

y = ¢x2)=3(2+2)

eeeeeeeeeeeeeeeeeeeeeeeee
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The Class of Abs-smooth Functions

eUEER\‘\é
Definition (Piecewise Smooth (PS), Piecewise Linear (PL))
Let D CR" beopenand f;: D — R™ i=1,..., k with kK € N be given.

o f:D — R™is called continuous selection of the collection fi, ..., fx
on the set U C D if f is continuous on U and

f(x) € {A(x),..., fu(x)} Vx € U.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012
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The Class of Abs-smooth Functions

2
Definition (Piecewise Smooth (PS), Piecewise Linear (PL))
Let D CR" beopenand f;: D — R™ i=1,..., k with kK € N be given.

o f:D — R™is called continuous selection of the collection f;,
on the set U C D if f is continuous on U and

R
f(x) € {A(x),..., fu(x)} Vx € U.

o f:D — R™is called PC"-function with r € NU {oco} if for every
x € D there exists an open neighboorhood U C D, such that f is a
continuous selection of fi,...,fy on U and f; € C"(D),1 < i < k.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012
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Definition (Piecewise Smooth (PS), Piecewise Linear (PL))
Let D CR" beopenand f;: D — R™ i=1,..., k with kK € N be given.

o f:D — R™is called continuous selection of the collection fi, ..., fx
on the set U C D if f is continuous on U and

f(x) € {A(x),...,fk(x)} Vx € U.
o f:D — R™is called PC"-function with r € NU {oco} if for every

x € D there exists an open neighboorhood U C D, such that f is a
continuous selection of fi,...,fy on U and f; € C"(D),1 < i < k.

@ A PC’-function is also called piecewise smooth.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012
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The Class of Abs-smooth Functions

Definition (Piecewise Smooth (PS), Piecewise Linear (PL))
Let D CR" beopenand f;: D — R™ i=1,..., k with kK € N be given.

o f:D — R™is called continuous selection of the collection fi, ..., fx
on the set U C D if f is continuous on U and

f(x) € {A(x),...,fk(x)} Vx € U.
o f:D — R™is called PC"-function with r € NU {oo} if for every

x € D there exists an open neighboorhood U C D, such that f is a
continuous selection of fi,...,fy on U and f; € C"(D),1 < i < k.

@ A PC’-function is also called piecewise smooth.

@ A continuous selection f : U — R™ is called piecewise linear if all
elements of the collection fi, ..., fx are affine functions.

S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012

One can show: C% _(R") is a proper subset of the PS functions!
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The Class of Abs-smooth Functions
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Information Gained from C%_(R") Functions

For d > 1 the following matrices and vectors are well defined:
Z = %F(X,Z, |z]) € Re*"
M = @F(x z,|z|) e R®**  strictly lower triangular
L= 6\z| F(x,z,|z|) € R®** strictly lower triangular
a = aap(x,z) e R", b= %gp(x,z) € R®

eeeeeeeeeeeeeeeeeeeeeeeee
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The Class of Abs-smooth Functions
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Information Gained from C% (R") Functions

For d > 1 the following matrices and vectors are well defined:
Z = %F(X7Z, |z]) € Re*"
M = @F(x z,|z|) e R®**  strictly lower triangular

L =3k
a = anp(x,z) € R", b= %gp(x,z) € R®

F(x,z,|z|) € R®** strictly lower triangular

The signature vector and the corresponding diagonal matrix given by

o(x) =sign(z(x)) and X = diag(o(x))
define the active switch set

a=a(x)={1<i<s|oi(x)=0}.

eeeeeeeeeeeeeeeeeeeeeeeee
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The Class of Abs-smooth Functions

< >
Upppyt

Information Gained from C9 _(R") Functions

For d > 1 the following matrices and vectors are well defined:
Z = %F(X7Z, |z]) € Re*"
M = @F(x z,|z|) e R®**  strictly lower triangular

L =3k
a = anp(x,z) € R", b= %gp(x,z) € R®

F(x,z,|z|) € R®** strictly lower triangular

The signature vector and the corresponding diagonal matrix given by
o(x) =sign(z(x)) and X = diag(o(x))
define the active switch set
a=a(x)={1<i<s|oi(x)=0}.
Required derivatives by extended algorithmic differentiation (AD)!

Berlin Matt
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The Class of Abs-smooth Functions

— max(xg,0),0)

max(x;
=308 —30a+xal)+18 —30a+xl))
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The Class of Abs-smooth Functions

f:R* = R, f(x1,x) = max(x3 — max(xi,0),0)
=3 0¢ = 30a+lxl)+ 16 =3 0a+al))
with
a =X 1 0 0 00
Z = X2—%(X1—|—|21|) = /= —% 2X2 s M:O, L= —% 0 0
5 = |z 0 O 010
y = ¢(x,z2)=3(z+2z) = a=0and b=(0, 0.5, 0.5)7

eeeeeeeeeeeeeeeeeeeeeeeeeee
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A Local PL Model for Abs-smooth Functions

Definition (Abs-linear form of abs-smooth f : R” — R at X)
The abs-linear form of f at X is defined by Af(%;.) : R" — R,

HEHEHEIE
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A Local PL Model for Abs-smooth Functions

Definition (Abs-linear form of abs-smooth f : R” — R at X)

The abs-linear form of f at X is defined by Af(%;.) : R" — R,

HEHEHEIE

Suppose f is abs-smooth on D C K C R", D open, K closed and convex.
Then there exists v > 0 such that for all x,x € K

2

[F(x) = AF(%x = %)l = vlIx = %

Berlin Mathematics Research Center
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The Class of Abs-smooth Functions
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A Local PL Model for Abs-smooth Functions

The abs-linear form of f at X is defined by Af(%;.) : R" — R,

HEHEHEIE

Theorem

Suppose f is abs-smooth on D C K C R", D open, K closed and convex.
Then there exists v > 0 such that for all x,x € K

[[f(x) = Af(x;x — %)

= Af(%;.) is local piecewise linear model of second order!

A. Griewank. On stable piecewise linearization and generalized AD, OMS, 2013 Berin athematcs Research Center
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The Optimization of PL Functions

Observations

Even min ¢(x) with PL convex ¢ not easy:

@ Global minimization is NP-hard

o Steepest descent with exact line
search may fail

@ Zeno behaviour possible,
i.e., solution trajactory with infinite
number of direction changes in a
finite amount
of time

J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis
and Minimization Algorithms |, Springer, 1993

A. Walther Nonsmooth Optimization via Abs-Linearization
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The Optimization of PL Functions

Representations of PL Functions

There are many choices
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The Optimization of PL Functions

Representations of PL Functions
There are many choices, e.g.,

Theorem (Max-Min representation of PL functions)

For each PL f : R" — R with selection functions f;(x) = aJTx + b,
1 < j < k, there exist index sets M; C {1,...,k}, 1 <i <, such that

f(x) = max mina/ x + b; .
1<i<ljeM; I

e.g., S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012
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The Optimization of PL Functions
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Representations of PL Functions ...

There are many choices, e.g.,

Theorem (Max-Min representation of PL functions)

For each PL f : R" — R with selection functions f;(x) = aJTx + b,
1 < j < k, there exist index sets M; C {1,...,k}, 1 <i <, such that

f(x) = max mina/ x + b; .
1<i<ljeM; J

e.g., S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012
Then, it follows from
min(v,u) = (v+u—|v—u|)/2 and
max(v,u) = (v+u+|v—u|)/2,
that each PL function is in C4 _(R") and has an abs-linear form!
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Representations of PL Functions ...

There are many choices, e.g.,

Theorem (Max-Min representation of PL functions)

For each PL f : R" — R with selection functions f;(x) = aJTX + b,
1 < j < k, there exist index sets M; C {1,...,k}, 1 <i <, such that

f(x) = max mina/ x + b; .
1<i<ljeM; J

e.g., S. Scholtes: Introduction to Piecewise Differentiable Equations, Springer, 2012
Then, it follows from
min(v,u) = (v+u—|v—u|)/2 and
max(v,u) = (v+u+|v—u|)/2,
that each PL function is in C4 _(R") and has an abs-linear form!

Berlin Mathematics Res

= Exploit abs-linear form for optimization! o
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The Optimization of PL Functions
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Signature Domaines

Definition ((Extended) Signature domain)

For a fixed 0 € {—1,0,1}* and f € C4(R") , we define
. = {x €R" | sgn(z(x) = 7} C P, = {x € R | T2(x) = |2(x)]}

P, is called signature domain and P, extended signature domain

eeeeeeeeeeeeeeeeeeeeeeeee

cnons: MATHE
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The Optimization of PL Functions

Signature Domaines

Definition ((Extended) Signature domain)
For a fixed 0 € {—1,0,1}* and f € C4(R") , we define

P, ={x€R"|sgn(z(x)) =0} C P, = {x eR" | Xz(x) = |z(x)|} -

P, is called signature domain and P, extended signature domain.

o the signature domains form a disjoint decomposition of R"
o for a PL function f

o each signature domain P, is a polyhedron and
o f is linear on P,

Berlin Mathematics Res
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The Optimization of PL Functions

Signature Domaines

Definition ((Extended) Signature domain)

For a fixed 0 € {—1,0,1}* and f € C4(R") , we define

» = {x € R"| sgn(z(x)) = 0} C P, = {x € R" | Zz(x)

= [z()I} -

P, is called signature domain and P, extended signature domain

o the signature domains form a disjoint decomposition of R"
o for a PL function f

o each signature domain P, is a polyhedron and
o f is linear on P,

Algorihmic idea: Minimize PL function on P,, choose next P; carefully
A. Walther Nonsmooth Optimization via Abs-Linearization

Berlin Mathematics Res
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The Optimization of PL Functions

Example: A Nesterov-Rosenbrock functio

2 <
03]511\‘\

n

Anal: Theory, 2012

The Nesterov-Rosenbrock function
n—1
FIRT R, F(x)=3%pa—1] + Y |xi —2/x| +1]
i=1
has 2"~1 Clarke-stationary points!
h Chebysh: k functions, Nonli

M. Giirbiizbalaban, M. Overton, On Nesterov's

A. Walther Nonsmooth Optimization via Abs-Linearization 18 /30
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The Optimization of PL Functions
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Example: A Nesterov-Rosenbrock function

The Nesterov-Rosenbrock function

n—1
FIRT R, F(x)=3%pa—1] + Y |xi —2/x| +1]
i=1

has 2"~1 Clarke-stationary points!

h Chebysh k functions, Nonli Anal: Theory, 2012

M. Giirbiizbalaban, M. Overton, On Nesterov's

Mo = o= o=
L-un | G-ny |/ @
1= -
T2
0 i
-1 o=(-1,-1,-1) ¥o = o= .
| (1,-1,-1) | (1,1,-1)
-1 0 1
. EerhnMamemancsResearchcen(ev+
18 /30 GdR MOA 2022 M ATH
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The Optimization of PL Functions

Signature Optimal Point

Hence, consider for fixed o € {—1,0,1}°

min a'x+b'z
xER", z€Rs

st. z=c+Zx+Mz+L¥z,
0=(—|X])z, 0<%z,

for the signature matrix £ = diag(o).

Berlin Mathematics Research Center
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The Optimization of PL Functions

Signature Optimal Point

Hence, consider for fixed o € {—1,0,1}°

. 1
min a'x+bTz+ x"Qx
xER",ZERS 2

st. z=c+Zx+Mz+L¥z,
0=(—|X])z, 0<%z,

for the signature matrix = diag(c) and a positive definite matrix Q.
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The Optimization of PL Functions

Signature Optimal Point

Hence, consider for fixed o € {—1,0,1}°

. 1
min a'x+bTz+ x"Qx
xER",ZERS 2

st. z=c+Zx+Mz+L¥z,
0=(—|X])z, 0<%z,

for the signature matrix = diag(c) and a positive definite matrix Q.

Definition (Signature optimal point)

Consider a fixed signature vector o € {—1,0,1}*. A minimizer x, € P,
of the original optimization problem restricted to P, is called signature
optimal point of the original optimization problem.

Berlin Mathematics Research Center
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The Optimization of PL Functions

Required Regularity Condition

Definition (LIKQ)

Let a PL function f : R" — R and a signature vector o € {—1,0,1}° be
given. We say that the linear independence kink qualification (LIKQ) is
satisfied at a point x, € R” if the active Jacobian

J(x) = VZ5(x) = (¢ V27 (x)) ., € RI**"

has full row rank |a|, which requires in particular that |o| > s — n.

Berlin Mathematics Research Center
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The Optimization of PL Functions

UM
B ME,
Tyris®

< aa
Upppyt

Necessary and sufficient optimality condition

Theorem

Let a PL function f : R" — R and a signature vector o € {—1,0,1}° be
given. Assume that x, is signature optimal and that LIKQ holds at x .
Then x, is a local minimizer of f if and only if there exist Lagrange
multipliers A € R?®, such that

0=a +b"|Z|Z-ATP]P,Z  and  |P.(b+)\)|<—P,L"X

with Z = (ly = M — LX) *Z, L = (ly = M — LX) 'L and P, = (¢ )ica.

Berlin Mathematics Research Center
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The Optimization of PL Functions
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Necessary and sufficient optimality condition

Let a PL function f : R" — R and a signature vector o € {—1,0,1}° be
given. Assume that x, is signature optimal and that LIKQ holds at x .
Then x, is a local minimizer of f if and only if there exist Lagrange
multipliers A € R?®, such that

0=a +b"|Z|Z-ATP]P,Z  and  |P.(b+)\)|<—P,L"X
with Z = (ly = M — LX) *Z, L = (ly = M — LX) 'L and P, = (¢ )ica.

No combinatorics involved, can be verified in polynomial time!

A. Griewank, A. Walther: Finite convergence of an active signature method to local minima of
piecewise linear functions. OMS, 2019

Berlin Mathematics Res
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The Optimization of PL Functions

Active Signature Method (ASM)

= Optimization of unconstrained, piecewise linear functions
@ minimization over a sequence of polyhedra
@ new optimality conditions that can be verified in polynomial time
@ corresponding adapted QP solver on each polyhedron
@ convergence in finitely many steps

For the first time convergence to local minimizers!!

2 <
03]511\‘\
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The Optimization of PL Functions

Active Signature Method (ASM)

= Optimization of unconstrained, piecewise linear functions
@ minimization over a sequence of polyhedra
@ new optimality conditions that can be verified in polynomial time
@ corresponding adapted QP solver on each polyhedron
@ convergence in finitely many steps

4’.
Lyris®

For the first time convergence to local minimizers!!

Example: Nesterov-Rosenbrock function (2"~! Clarke-stationary points!)

w2 R"— R, ¢(x) :% |x1 — 1] + Zi:l _— [xip1 — 2|xi| 4 1]

Berlin Mathematics Research Center
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The Optimization of PL Functions O

Active Signature Method (ASM) i

= Optimization of unconstrained, piecewise linear functions
@ minimization over a sequence of polyhedra
@ new optimality conditions that can be verified in polynomial time
@ corresponding adapted QP solver on each polyhedron
@ convergence in finitely many steps

2 <
Yppryt

For the first time convergence to local minimizers!!
Example: Nesterov-Rosenbrock function (2"~! Clarke-stationary points!)
) 1
2 R"= R, o(x)=7|xx—1] + Zi:l,...,nfl Xiy1 — 2|x;] + 1]

Iterations numbers:

n 1 2 3 4 5 6 7 8 9 10
ASM+QP 2 4 8 16 32 64 128 256 512 1024
HANSO 3|61 494* | 1341% | 25217 329* 357* 326 307" 515
MPBNGC 3 | 52 | 9859 9978 | 3561 | 4166 | 2547 | 1959 | 9420" | 9807"

= stop at non-optimal, stationary point

A. Griewank, A. Walther: Finite convergence of an active signature method to local mlnlma of
piecewise linear functions. OMS, 2019
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The Optimization of PL Functions

The Constrained Case |

First, we consider PL constraints, i.e.,
Xeﬂg,i?eks a'x+b'z
st. 0=g+Ax+ Bz+ Clz|,
0>h+Dx+Ez+ F|z|,
z=c+Zx+ Mz + L|z|,

Hence, target function might still be unbounded.

Berlin Mathematics Research Center
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The Optimization of PL Functions

The Constrained Case |

First, we consider PL constraints, i.e.,
xeﬂ@,izneRs alx+b'z
st. 0=g+ Ax+ Bz+ C|z|,
0>h+Dx+Ez+ F|z|,
z=c+Zx+ Mz + L|z|,

Hence, target function might still be unbounded.

@ generalization of LIKQ and optimality conditions possible
yields Constrained Active Signature Method (CASM)

@ same convergence results

PhD thesis of T. Kreimeier
T. Kreimeier, A. Walther und A. Griewank: An active signature method for constrained abs-linear

minimization. In revision.

Berlin Mathematics Research
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The Optimization of PL Functions

Robust gas network optimization

Here: Uncertainties in demand and in the physical parameters
Leads to PL constrained problem in inner loop of bundle method

Test instance GasLibl134, i.e., the Greek gas network

T. Kreimeier, M. Kuchlbauer, F. Liers, M. Stingl, A. Walther: Towards the Solution of Robust Gas
Network Optimization Problems Using the Constrained Active Signature Method, INOC 2022

Berlin Mathematics Research Center
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The Optimization of PL Functions

Results for Subproblem

2500 2500
2000 2000
. 3
2 1500 < 1500
S >
5 5
= =1
2 1000 2 1000
S
s I
500 500 —gl_obal optimum
s {_0pt1 f_opt2 | |[====t_opt3 = \vithout warm start
e yall | || val2 | ||====f val3 === ith warm start
0 0 . . n : n
300 600 300 300 1000 2000 3000 4000 5000
Iteration Iteration Iteration

Iteration

Berlin Mathematics Research Center
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The Optimization of PL Functions

Results for Subproblem of GasLib-134 Foapn®

2500 2500
2000 2000
. 3
g 1500 g 1500
g S
2 1000 2 1000
S
@ =]
T8
500 500 === global optimum
e f_OPLL f_Opt2 | |[m===f_opt3 = \vithout warm start
e f_yall | ||m—f val2 | |====f val3 s With warm start
0 0 . . : n ;
300 600 300 300 1000 2000 3000 4000 5000
Iteration Iteration Iteration \teration
relaxation 1. 2. 3.
variables n 534
equal. const. m 230
inequal. const. p 784
switching variables s 737 1107 1985
rows/columns
P / 3022 3762 5518
of eq. system Berin Mathematics Research Center
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The Optimization of PL Functions

The Constrained Case |l

Second, we consider

min a'x+b'z
xeC,zeRs

stz=c+ Zx+ Mz+ L|z|,

for a convex, closed, and polyhedral feasible set C.

Berlin Mathematics Research Center
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The Optimization of PL Functions

The Constrained Case |l

Second, we consider

min a'x+b'z
xeC,zeRs
stz=c+ Zx+ Mz+ L|z|,

for a convex, closed, and polyhedral feasible set C.

Existence on minimizers guaranteed!
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The Optimization of PL Functions

The Constrained Case |l

Second, we consider

min a'x+b'z
xeC,zeRs

st.z=c+ Zx+ Mz+ L|z|,

for a convex, closed, and polyhedral feasible set C.
Existence on minimizers guaranteed!

= Use adapted version of ASM!

@ again minimization over sequence of polyhedra
now incorporating additional constraints and Q@ =0
@ optimality conditions like ASM,
can be again verified in polynomial time
@ LP solver on each polyhedron,
here: HiGHS as solver

Berlin Mathemati

h Center
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The Optimization of PL Functions

Again: The Nesterov-Rosenbrock function

We had for the Nesterov-Rosenbrock function

n 1 2 3 4 5 6 7 8 9 10
ASM+QP 2 4 8 16 32 64 128 256 512 1024
HANSO 3|61 4947 | 13417 | 25217 3297 357% 326 307" 515*
MPBNGC 3 | 52 | 9859 9978 | 3561 | 4166 | 2547 | 1959 | 9420 | 9807"
A. Walther
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Again: The Nesterov-Rosenbrock function

We had for the Nesterov-Rosenbrock function

n 1 2 3 4 5 6 7 8 9 10
ASM+QP 2 4 8 16 32 64 128 256 512 1024
HANSO 3|61 494 [ 13417 | 2521 3297 357% 326" 307" 515*
MPBNGC 3 | 52 | 9859 9978 | 3561 | 4166 | 2547 | 1959 | 9420 | 9807"

Introducing additional bounds not interfering with the minimizer, we get

n 1 2 3 4 5 6 7 8 9 10
polyh. 1 8 32 128 512 2048 8192 32768 | 131072 | 524288
aASM 1 2 4 8 16 32 64 128 256 512
splx 0 0 0 0 0 0 0 0 0 0

n 11 12 13 14 15 16 17 18 19 20
aASM 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144 | 524288
splx 0 0 0 0 0 0 0 0 0 0

Berlin Mathematics Research Center
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The Optimization of AS Functions

The Unconstrained Case

The local PL model allows the optimization approach

Xk+1 = Xk + arg min { Af (xi; Ax) + %||Ax||2}
Ax

= Successive Abs-Linear MINimization with a proximal term = SALMIN

Berlin Mathematics Research Center
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The Optimization of AS Functions

Tyris®

The Unconstrained Case

The local PL model allows the optimization approach

Xk+1 = Xk + arg min { Af (xi; Ax) + g||Ax||2}
Ax

= Successive Abs-Linear MINimization with a proximal term = SALMIN
Pros:
@ piecewise linear local model can be generated by AD
@ convergence theory and convergence rates (Griewank, Walther 2019)
@ optimality can be verified in polynomial time using optimality
conditions for the abs-smooth case, see Griewank, Walther (2016)
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The Optimization of AS Functions

The Unconstrained Case
The local PL model allows the optimization approach

Xk+1 = Xk + arg min { Af (xi; Ax) + g||Ax||2}
Ax

2 <+
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= Successive Abs-Linear MINimization with a proximal term = SALMIN

Pros:
@ piecewise linear local model can be generated by AD
@ convergence theory and convergence rates (Griewank, Walther 2019)
@ optimality can be verified in polynomial time using optimality
conditions for the abs-smooth case, see Griewank, Walther (2016)

Cons: For large-scale problems (large s!)
@ computing the abs-linear form is expensive
matrices are usually sparse, but sparsity ignored so far
@ optimization process is slow since inner loop to compute
argminp, (...) stops at every kink

Berlin Mathematics Researc!
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The Optimization of AS Functions

The Unconstrained Case
The local PL model allows the optimization approach

Xk+1 = Xk + arg min { Af (xi; Ax) + g||Ax||2}
Ax

2 <+
Yppryt

= Successive Abs-Linear MINimization with a proximal term = SALMIN

Pros:
@ piecewise linear local model can be generated by AD
@ convergence theory and convergence rates (Griewank, Walther 2019)
@ optimality can be verified in polynomial time using optimality
conditions for the abs-smooth case, see Griewank, Walther (2016)

Cons: For large-scale problems (large s!)
@ computing the abs-linear form is expensive
matrices are usually sparse, but sparsity ignored so far
@ optimization process is slow since inner loop to compute
argminp, (...) stops at every kink
= Developement of nonsmooth CG method (PhD topic of Franz Bethke)

Berlin Mathematics Researc!

h Center
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The Optimization of AS Functions

Simulation of Gas Networks
by combining Least-Squares Collocation and SALMIN

aggregated classic/generalized gradient calls

Control Valve 17500 4+ SALMIN (total:380) /
& ~« SciPy least squares - orig (total:19022)
_ _ T 15000 { -+« SciPy least squares - norm (total13733) ¢
pL PR 3 7
i L — 77
PR ‘é 10000 e
pL qL = qr = q = Gset PR g 7500 ,—-’"
= L max(~1, min(1, max(— - ¢, min(pz, - pz, g o —
. ® 2500 F__—-——"
min(pr,pr) — Pr, o
P . - —) — o 2 4 6 8 10 12
max(y - (gset = 9),PL = PL PR = Pr))))) time steps [h] within scenario
Circuit symbol, set-point values and Comparison SALMIN vs. SciPy
nonsmooth model solver (transient control valve)
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The Optimization of AS Functions

Simulation of Gas Networks
by combining Least-Squares Collocation and SALMIN

aggregated classic/generalized gradient calls

2 <
03]511\‘\

Control valve 17500 4 ++#+ SALMIN (total:380) /{
% - SciPy least squares - orig (total:19022)
. . & 15000 { -0 sy teost e o et 13733) S
pL Pr E P3
iPo—— 77
PR 2 10000 —r
PL qL = qr = q = Gset Pr g 7500 —
& |
q= %max(~1.min(l.max(—'y - q,min(pr, — pr. é’ 5000 —
L ® 2500 P._——»—-"’
min(pr,pL) — PR, Py
Né . - —D — o 2 6 8 0 2
max(y - (gset = ), P2 — PL, PR — Pr))))) \ime steps (h] within scenorio
Circuit symbol, set-point values and Comparison SALMIN vs. SciPy
nonsmooth model solver (transient control valve)

o faster convergence/better numerical stability than state-of-art solvers
@ applied also to a 70 node extended network derived from GaslLib40
(now including a close to real world compressor station)
T. Kreimeier, H. Sauter, T. Streubel, C. Tischendorf, A. Walther: Solving Least-Squares

Collocated Differential Algebraic Equations by Successive Abs-Linear Minimization - A Case Study
on Gas Network Simulation. TRR 154 preprint, in review

Berlin Mathematics Research Center
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Conclusion and Outlook

Conclusion and Outlook

@ classes of nonsmooth optimization problems and their properties
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Conclusion and Outlook
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@ classes of nonsmooth optimization problems and their properties

@ abs-smooth functions and the local PL model via abs-linearization
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Conclusion and Outlook

Conclusion and Outlook
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@ classes of nonsmooth optimization problems and their properties

@ abs-smooth functions and the local PL model via abs-linearization

@ optimization of PL functions
o algorithmic idea
o convergence results
o numerical results

serves as work horse for nonsmooth optimization

Berlin Mathematics Research Center
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Conclusion and Outlook

Conclusion and Outlook
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@ classes of nonsmooth optimization problems and their properties

@ abs-smooth functions and the local PL model via abs-linearization

@ optimization of PL functions
o algorithmic idea
o convergence results
o numerical results

serves as work horse for nonsmooth optimization

@ optimization of abs-smooth functions without constraints
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A. Walther

Conclusion and Outlook

Conclusion and Outlook
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@ classes of nonsmooth optimization problems and their properties

@ abs-smooth functions and the local PL model via abs-linearization

@ optimization of PL functions
o algorithmic idea
o convergence results
o numerical results

serves as work horse for nonsmooth optimization
@ optimization of abs-smooth functions without constraints

o future work:
optimization of abs-smooth functions with constraints

Thanks to 154

Berlin Matt

in Ma Cente
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