Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References

On the computation of the B-differential of the Min C-function for the balanced linear complementarity problem

Baptiste Plaquevent-Jourdain, with Jean-Pierre Dussault, Université de Sherbrooke Jean Charles Gilbert, INRIA Paris

October, 13 2022

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		00000000	000000
Outlin	е				

- 2 Underlying problem
- 3 Sign vectors
- 4 Subproblems by optimization

5 Doorways

Overview •0000	Underlying problem 0000000	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
Plan					

- 2 Underlying problem
- 3 Sign vectors
- 4 Subproblems by optimization

5 Doorways

Overview 00000	Underlying problem	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000
Form	of the proble	ems			

Complementarity problems [CPS92; FP03]	
$0 \leq F(x) ot G(x) \geq 0 \ \Leftrightarrow orall i, F_i(x) \geq 0, G_i(x) \geq 0, F_i(x)G_i(x) = 0$	(1)
Where $F, G : \mathbb{R}^n \to \mathbb{R}^n$ are smooth. Affine case:	
$F(x) \equiv Ax + a, \ G(x) \equiv Bx + b, \ A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^n$ $0 \le (Ax + a) \perp (Bx + b) \ge 0$	(2)

 $\begin{array}{l} \mathsf{Remark:} \ u \geq 0, v \geq 0, uv = 0 \Leftrightarrow \min(u, v) = 0 \\ (1) \Leftrightarrow \forall \ i, H_i(x) := \min(F_i(x), G_i(x)) = 0 \Leftrightarrow H(x) = 0 \end{array}$

Overview 0●000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
Form	of the proble	ems			

Complementarity problems [CPS92; FP03] $0 \le F(x) \perp G(x) \ge 0$ $\Leftrightarrow \forall i, F_i(x) \ge 0, G_i(x) \ge 0, F_i(x)G_i(x) = 0$

Where $F, G : \mathbb{R}^n \to \mathbb{R}^n$ are smooth. Affine case:

 $F(x) \equiv Ax + a, \ G(x) \equiv Bx + b, \ A, B \in \mathbb{R}^{n \times n}, a, b \in \mathbb{R}^{n}$ $0 \le (Ax + a) \perp (Bx + b) \ge 0$ (2)

Remark: $u \ge 0, v \ge 0, uv = 0 \Leftrightarrow \min(u, v) = 0$ (1) $\Leftrightarrow \forall i, H_i(x) := \min(F_i(x), G_i(x)) = 0 \Leftrightarrow H(x) = 0$ (1)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	Referen
00000					

Reformulation by C-functions

C-functions

$$\varphi(u,v)=0 \Leftrightarrow u \geq 0, v \geq 0, uv=0$$

Examples: minimum, Fischer,... applied componentwise.

Fischer $\varphi_F(u, v) = \sqrt{u^2 + v^2} - (u + v)$ [Fis92]; more differentiable, less linear. φ_F : much work already done [FS97; GK96]

C-functions are nondifferentiable \rightarrow nonsmooth techniques

Nonemaeth equations contact								
00000	0000000	0000	0000000	00000000	000000			
()verview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	Reterences			

Nonsmooth equations - context

For scalar functions: subgradients For systems H(x) = 0: semismooth Newton [QS93]

Generalized derivatives: Bouligand differential

 $\partial_{\mathsf{B}} H(x) = \{ J \in \mathbb{R}^{n \times n} : \exists (x_k)_k \to x, H'(x_k) \text{ exists and } \to J \}$ (3)

Example: $h(x) = \min(-x/2, -x)$, $\partial_B h(0) = \{-1/2, -1\}$. One element $J^0 \in \partial_B H$: technique of [Qi93]

also: Clarke $\partial_C H(x) = \operatorname{conv}(\partial_B H(x)) \ (\rightarrow [-1, -1/2])$

 $|\cdot|'(x) = -1$

 $|\cdot|'(x) = -1/2$

Overview 0000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000		
Main difficulty							

First part of this work

Determine generalized Jacobians of $x \mapsto \min(Ax + a, Bx + b)$

- structure of the Jacobians?
- $|\partial_{\mathsf{B}}H(x)|$? finite but exponential
- how to get them efficiently?

Difficulties already seen previously, for instance [CX11].

Overview 00000	Underlying problem ●000000	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000
Plan					

- 2 Underlying problem
- 3 Sign vectors
- 4 Subproblems by optimization

5 Doorways

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	○●○○○○○	0000		00000000	000000

 $\partial_B H(x) = \{J : \exists (x_k)_k \to x, H'(x_k) \text{ defined and } \to J\} (x_k)_k = ?$

H piecewise affine, H' piecewise constant

• $A_{i:} = B_{i:}$, H_i always the same $(A_{i:} \text{ or } B_{i:} \text{ term})$

• $A_{i:x} + a_i < B_{i:x} + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = A_{i:x}$

• $A_{i:}x + a_i > B_{i:}x + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = B_{i:}$

If any holds \Rightarrow H_i differentiable around x. J_i known and the same for all J's

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000		0000	000000	0000000	000000

 $\partial_B H(x) = \{J : \exists (x_k)_k \to x, H'(x_k) \text{ defined and } \to J\} (x_k)_k = ?$

H piecewise affine, H' piecewise constant

• $A_{i:} = B_{i:}$, H_i always the same $(A_{i:} \text{ or } B_{i:} \text{ term})$

• $A_{i:x} + a_i < B_{i:x} + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = A_{i:x}$

• $A_{i:x} + a_i > B_{i:x} + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = B_{i:x}$

If any holds \Rightarrow H_i differentiable around x. J_i known and the same for all J's

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000		0000	000000	0000000	000000

 $\partial_B H(x) = \{J : \exists (x_k)_k \to x, H'(x_k) \text{ defined and } \to J\} (x_k)_k = ?$

H piecewise affine, H' piecewise constant

- $A_{i:} = B_{i:}$, H_i always the same $(A_{i:} \text{ or } B_{i:} \text{ term})$
- $A_{i:x} + a_i < B_{i:x} + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = A_{i:x}$
- $A_{i:x} + a_i > B_{i:x} + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = B_{i:x}$

If any holds \Rightarrow H_i differentiable around x. J_i known and the same for all J's

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000		0000	000000	0000000	000000

 $\partial_B H(x) = \{J : \exists (x_k)_k \to x, H'(x_k) \text{ defined and } \to J\} (x_k)_k = ?$

H piecewise affine, H' piecewise constant

- $A_{i:} = B_{i:}$, H_i always the same $(A_{i:} \text{ or } B_{i:} \text{ term})$
- $A_{i:x} + a_i < B_{i:x} + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = A_{i:x}$
- $A_{i:x} + a_i > B_{i:x} + b_i \Rightarrow$ true for x_k close to $x H'_i(x) = B_{i:x}$

If any holds \Rightarrow H_i differentiable around x. J_i known and the same for all J's

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	00●0000	0000		00000000	000000

Affine functions are equal on hyperplanes that pass through x.

In red, blue and black are some hyperplanes and their normal vectors. In magenta, points of the form $x + t_k d$, $t_k \searrow 0$. They stay in a "region", so J is constant: sequences can be reduced to points.

Overview 00000	Underlying problem 000●000	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000

|I(x)| = m hyperplanes, $H_i = v_i^{\perp}, v_i^{\top} = B_{i:} - A_{i:}$ rest = connected sets (regions) on + or - side of every H_i .

Fundamental question

 $\begin{array}{l} \text{given } v_i := (B_{i:} - A_{i:})^1 \\ \text{find all } s = (s_1, \dots, s_m) \in \{\pm 1\}^m, \\ \text{s.t.} \ \exists \ d_s, \forall \ i \in [1:m], s_i v_i^\mathsf{T} d_s > 0 \end{array}$

2^m linear feasibility pbs to solve... How to improve?

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		00000000	000000

|I(x)| = m hyperplanes, $H_i = v_i^{\perp}, v_i^{\top} = B_{i:} - A_{i:}$ rest = connected sets (regions) on + or - side of every H_i .

Fundamental question

$$\begin{aligned} \text{given } v_i &:= (B_{i:} - A_{i:})^\mathsf{T} \\ \text{find all } s &= (s_1, \dots, s_m) \in \{\pm 1\}^m, \\ \text{s.t. } \exists \ d_s, \forall \ i \in [1:m], s_i v_i^\mathsf{T} d_s > 0 \end{aligned}$$

2^m linear feasibility pbs to solve... How to improve?

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		00000000	000000

|I(x)| = m hyperplanes, $H_i = v_i^{\perp}, v_i^{\top} = B_{i:} - A_{i:}$ rest = connected sets (regions) on + or - side of every H_i .

Fundamental question

$$\begin{array}{l} \text{given } v_i := (B_{i:} - A_{i:})^\mathsf{T} \\ \text{find all } s = (s_1, \ldots, s_m) \in \{\pm 1\}^m, \\ \text{s.t. } \exists \ d_s, \forall \ i \in [1:m], s_i v_i^\mathsf{T} d_s > 0 \end{array}$$

 2^m linear feasibility pbs to solve... How to improve?

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
	0000000				

Magenta points : + side of every hyperplane. Their J is $J_i = A_i$: [+ $\Leftrightarrow A_i$:, - $\Leftrightarrow B_i$:]. However, $J_1 = A_1$:, $J_2 = A_2$:, $J_3 = B_3$: is impossible: it means being over the blue, right to the red but southwest to the black.

Overview 00000	Underlying problem	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000

From literature - 1

Algebraic approach: arrangement of hyperplanes

No easy answer: combinatorial problem, well-studied. Deeper considerations, objects of smaller dimension. Difficult : Möbius function, oriented matroids, lattice theory... Various examples: [Zas75; AW81; CS95; Sta07]

Our case: "central", $x \in \bigcap H_i$. Formula [AM17]:

$$\begin{aligned} |\partial_B H(x)| &= \sum_{T \subset \{H_i, i \in [1:m]\}} (-1)^{|T|-n+\dim(\bigcap H_t, t \in T)} \\ &= \sum_{\mathcal{V} \subset \{v_1, \dots, v_m\}} (-1)^{|\mathcal{V}|-\operatorname{rank}(\mathcal{V})} \end{aligned}$$

no very clear interpretation, and which Jacobian matrices?

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	00000●0	0000		00000000	000000

From literature - 1

Algebraic approach: arrangement of hyperplanes

No easy answer: combinatorial problem, well-studied. Deeper considerations, objects of smaller dimension. Difficult : Möbius function, oriented matroids, lattice theory... Various examples: [Zas75; AW81; CS95; Sta07]

Our case: "central", $x \in \bigcap H_i$. Formula [AM17]:

$$egin{aligned} |\partial_B \mathcal{H}(x)| &= \sum_{T \subset \{\mathcal{H}_i, i \in [1:m]\}} (-1)^{|\mathcal{T}| - n + \dim(\bigcap \mathcal{H}_t, t \in \mathcal{T})} \ &= \sum_{\mathcal{V} \subset \{\mathcal{V}_1, ..., \mathcal{V}_m\}} (-1)^{|\mathcal{V}| - \mathrm{rank}(\mathcal{V})} \end{aligned}$$

no very clear interpretation, and which Jacobian matrices?

Franz literature 0	Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
	Erom	litaratura 0				

There exists a strong and different hypothesis \rightarrow different results. Arbitrary case also exists.

Multiple algorithms exist, operating on various angles / situations.

- dimensional recursive sweeping by hyperplanes [BN82]
- ordering of the regions into search [Sle98]
- [RČ18]...

Overview 00000	Underlying problem	Sign vectors ●000	Subproblems by optimization	Doorways 00000000	References 000000
Plan					

- 2 Underlying problem
- 3 Sign vectors
- 4 Subproblems by optimization

5 Doorways

Overview 00000	Underlying problem	Sign vectors 0●00	Subproblems by optimization	Doorways 00000000	References 000000
Frame	ework				

Given *m* vectors, $V = [v_1, \ldots, v_m] \in \mathbb{R}^{n \times m}$ Up to 2^m elements to compute, likely less. Element \equiv signs of a feasible system: how to determine the *s*'s? Some easy cases:

- *n* or $m \in \{1,2\}$ (in fact, rank(V) = 1,2)
- $\operatorname{rank}(V) = 2$: 2*m* elements
- $\operatorname{rank}(V) = m (2^m \operatorname{sign} \operatorname{vectors})$

Full rank case: observed in [CX11]

Overview 00000	Underlying problem	Sign vectors 0●00	Subproblems by optimization	Doorways 00000000	References 000000
Frame	work				

Given *m* vectors, $V = [v_1, \ldots, v_m] \in \mathbb{R}^{n \times m}$ Up to 2^m elements to compute, likely less. Element \equiv signs of a feasible system: how to determine the *s*'s? Some easy cases:

- *n* or $m \in \{1, 2\}$ (in fact, rank(V) = 1, 2)
- rank(V) = 2: 2*m* elements
- $\operatorname{rank}(V) = m (2^m \operatorname{sign} \operatorname{vectors})$

Full rank case: observed in [CX11]

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
		0000			

If all sign vectors are found for (v_1, \ldots, v_{k-1}) : for (v_1, \ldots, v_k) ?

With one more vector

• Given (v_1, \ldots, v_{k-1}) ; v_k ; $\mathcal{S}_{k-1} \subseteq \{\pm 1\}^{k-1}$

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
		0000			

If all sign vectors are found for (v_1, \ldots, v_{k-1}) : for (v_1, \ldots, v_k) ?

With one more vector

• Given (v_1, \ldots, v_{k-1}) ; v_k ; $\mathcal{S}_{k-1} \subseteq \{\pm 1\}^{k-1}$

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
		0000			

If all sign vectors are found for (v_1, \ldots, v_{k-1}) : for (v_1, \ldots, v_k) ?

- Given (v_1, \ldots, v_{k-1}) ; v_k ; $\mathcal{S}_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in \mathcal{S}_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1: k-1], s_i v_i^{\mathsf{T}} d_s^{k-1} > 0$

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
		0000			

If all sign vectors are found for (v_1, \ldots, v_{k-1}) : for (v_1, \ldots, v_k) ?

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in \mathcal{S}_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1: k-1], s_i v_i^T d_s^{k-1} > 0$
- $v_k^\mathsf{T} d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^\mathsf{T} d_s^{k-1} > 0 \\ s_i v_i^\mathsf{T} d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^\mathsf{T} d > 0 \\ s_i v_i^\mathsf{T} d > 0 \end{cases}? \to \mathsf{opt}$

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
		0000			

If all sign vectors are found for (v_1, \ldots, v_{k-1}) : for (v_1, \ldots, v_k) ?

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in S_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^T d_s^{k-1} > 0$ • $v_k^T d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^T d_s^{k-1} > 0 \\ s_i v_i^T d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^T d > 0 \\ s_i v_i^T d > 0 \end{cases} ? \to \text{opt}$ • $v_k^T d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^T d_s^{k-1} > 0 \\ s_i v_i^T d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^T d > 0 \\ s_i v_i^T d > 0 \end{cases} ? \to \text{opt}$

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
		0000			

If all sign vectors are found for (v_1, \ldots, v_{k-1}) : for (v_1, \ldots, v_k) ?

- Given $(v_1, ..., v_{k-1})$; v_k ; $S_{k-1} \subseteq \{\pm 1\}^{k-1}$
- $\forall s = (s_1, \dots, s_{k-1}) \in \mathcal{S}_{k-1}$, we know d_s^{k-1} s.t. : $\forall i \in [1:k-1], s_i v_i^T d_s^{k-1} > 0$ • $v_k^T d_s^{k-1} > 0 \Rightarrow \begin{cases} +v_k^T d_s^{k-1} > 0 \\ s_i v_i^T d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} -v_k^T d > 0 \\ s_i v_i^T d > 0 \end{cases} ? \rightarrow \text{opt}$ • $v_k^T d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^T d_s^{k-1} > 0 \\ s_i v_i^T d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^T d > 0 \\ s_i v_i^T d > 0 \end{cases} ? \rightarrow \text{opt}$ • $v_k^T d_s^{k-1} < 0 \Rightarrow \begin{cases} -v_k^T d_s^{k-1} > 0 \\ s_i v_i^T d_s^{k-1} > 0 \end{cases} \checkmark, \begin{cases} +v_k^T d > 0 \\ s_i v_i^T d > 0 \end{cases} ? \rightarrow \text{opt}$ • $v_k^T d_s^{k-1} = 0 \Rightarrow \text{both systems } \checkmark \text{ by perturbation}$

Overview 00000	Underlying problem	Sign vectors 000●	Subproblems by optimization	Doorways 00000000	References 000000

Illustration of the method

Magenta: added hyperplane. Some of the regions, top right and bottom left ones, are split by H_4 . Equivalently, the (k - 1)-systems corresponding to these regions have their two offshoot systems feasible.

Overview 00000	Underlying problem 0000000	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000
Plan					

- 2 Underlying problem
- 3 Sign vectors
- 4 Subproblems by optimization

5 Doorways

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000		0000	0 00000	00000000	000000

- vectors v_1, \ldots, v_{k-1} and associated signs $s = (s_1, \ldots, s_{k-1})$
- d_s^{k-1} s.t. $\forall i \in [1:k-1], s_i v_i^{\top} d_s > 0$
- $\operatorname{sign}(v_k^{\mathsf{T}} d_s^{k-1}) v_k^{\mathsf{T}} d_s^{k-1}$ already > 0
- feasible with $s_k = -\text{sign}(v_k^{\mathsf{T}} d_s)$? [new d?]

Linear optimization formulation

$$\exists d, \text{s.t.} \begin{cases} s_k v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0, \quad i \in [1:k-1] \\ \Leftrightarrow \begin{cases} \inf & -s_k v_k^{\mathsf{T}} d \\ \text{s.t.} & s_i v_i^{\mathsf{T}} d > 0, \quad i \in [1:k-1] \end{cases} \text{ unbounded } ? \end{cases}$$
(4)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000		0000	000000	00000000	000000

- vectors v_1, \ldots, v_{k-1} and associated signs $s = (s_1, \ldots, s_{k-1})$
- d_s^{k-1} s.t. $\forall i \in [1:k-1], s_i v_i^{\top} d_s > 0$
- $\operatorname{sign}(v_k^{\mathsf{T}} d_s^{k-1}) v_k^{\mathsf{T}} d_s^{k-1}$ already > 0
- feasible with $s_k = -\text{sign}(v_k^{\mathsf{T}} d_s)$? [new d?]

Linear optimization formulation

$$\exists d, \text{s.t.} \begin{cases} s_k v_k^{\mathsf{T}} d > 0 \\ s_i v_i^{\mathsf{T}} d > 0, \quad i \in [1:k-1] \\ \Leftrightarrow \begin{cases} \inf & -s_k v_k^{\mathsf{T}} d \\ \text{s.t.} & s_i v_i^{\mathsf{T}} d > 0, \quad i \in [1:k-1] \end{cases} \text{ unbounded } ? \end{cases}$$
(4)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		00000000	000000

Hypothesis for step k - 1: $s_i v_i^{\mathsf{T}} d > 0 \rightarrow \text{known}$

 $\begin{cases} \inf -\mathbf{s}_k \mathbf{v}_k^{\mathsf{T}} d \\ \mathbf{s}_i \mathbf{v}_i^{\mathsf{T}} d \ge 0 \ \forall \ i \\ ||d|| \le D \end{cases}$

 $arphi_{\mu}(d) = -s_k v_k^{\mathsf{T}} d - \mu \sum \log(s_i v_i^{\mathsf{T}} d) - \mu \log((D^2 - ||d||^2)/2)$

- interior point technique
- bound constraint
- finite solution
- objective sign only
- IP proof in progress (NL constraint)

Overview 00000	Underlying problem	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000

Hypothesis for step k - 1: $s_i v_i^{\mathsf{T}} d > 0 \rightarrow \text{known}$

 $\begin{cases} \inf -\mathbf{s}_k \mathbf{v}_k^{\mathsf{T}} d \\ \mathbf{s}_i \mathbf{v}_i^{\mathsf{T}} d \ge 0 \ \forall \ i \\ ||d|| \le D \end{cases}$

 $\varphi_{\mu}(\boldsymbol{d}) = -\boldsymbol{s}_{k}\boldsymbol{v}_{k}^{\mathsf{T}}\boldsymbol{d} - \mu \sum \log(\boldsymbol{s}_{i}\boldsymbol{v}_{i}^{\mathsf{T}}\boldsymbol{d}) - \mu \log((D^{2} - ||\boldsymbol{d}||^{2})/2)$

- interior point technique
- bound constraint
- finite solution
- objective sign only
- IP proof in progress (NL constraint)
| Overview
00000 | Underlying problem | Sign vectors
0000 | Subproblems by optimization | Doorways
00000000 | References
000000 |
|-------------------|--------------------|----------------------|-----------------------------|----------------------|----------------------|
| | | | | | |
| Study | of the iterat | ivo cubor | oblom 3 | | |

Study of the iterative subproblem - 3

Bound constraint \Rightarrow finite solution \Rightarrow dual problem Dual = projection \leftrightarrow quadratic problem (QP)

Interior points

bounded domain: constraint $||d|| \leq D$ [homogeneity]. \rightarrow framework of [Nes22]: complexity result (polynomial, constants depend on solution)

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000			
Theoretical bound								

- Upper bound of efficiency?
- Default: next iteration can double, or "much less"
- Size / complexity of subproblems also increase.

 $\mathcal{B} = \min(2^m - 2^r, (m - r)|\mathcal{S}|), \quad |\mathcal{S}| = |\partial_B|$

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		00000000	000000
Theor	atical bound				

- Upper bound of efficiency?
- Default: next iteration can double, or "much less"
- Size / complexity of subproblems also increase.

 $\mathcal{B} = \min(2^m - 2^r, (m - r)|\mathcal{S}|), \quad |\mathcal{S}| = |\partial_B|$

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
Theor	etical bound				

- Upper bound of efficiency?
- Default: next iteration can double, or "much less"
- Size / complexity of subproblems also increase.

 $\mathcal{B} = \min(2^m - 2^r, (m - r)|\mathcal{S}|), \quad |\mathcal{S}| = |\partial_B|$

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
Theor	etical bound				

- Upper bound of efficiency?
- Default: next iteration can double, or "much less"
- Size / complexity of subproblems also increase.

 $\mathcal{B} = \min(2^m - 2^r, (m - r)|\mathcal{S}|), \quad |\mathcal{S}| = |\partial_B|$

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
Theore	etical bound				

- Upper bound of efficiency?
- Default: next iteration can double, or "much less"
- Size / complexity of subproblems also increase.

 $\mathcal{B} = \min(2^m - 2^r, (m - r)|\mathcal{S}|), \quad |\mathcal{S}| = |\partial_B|$ (5)

Overview 00000	Underlying problem	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000

Distance to the bound - 1

Number of problems solved for n = 7, $m \in [5: 14]$, r = 3

Overview 00000	Underlying problem	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000

Distance to the bound - 2

Number of problems solved for n = 7, $m \in [5: 14]$, r = 3, 5, 7

Overview 00000	Underlying problem 0000000	Sign vectors	Subproblems by optimization	Doorways ●0000000	References 000000
Plan					

- 2 Underlying problem
- 3 Sign vectors
- 4 Subproblems by optimization

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		0●000000	000000

Other illustration

Equivalent problems/representations

- Arrangement of hyperplanes with nonempty intersection
- Given some vectors, does reverting them yield a pointed cone
- How many pairs of convex subsets a set of points generate?
- Systems of inequations [chosen]
- Orthants having nonempty intersection with a null space

Linear algebra / convex analysis / combinatorics...

Overview	Underlying _I
00000	

roblem Sig oc Subproblems by optimization 0000000

Doorways 0000000 References 000000

B-differential of the merit function - 1

Setting and result

$$\theta(x) := \frac{1}{2} ||H(x)||^2$$

Differentiable case: $\nabla \theta = \nabla H \times H$; result:

$$\partial_{B}\theta(x) = \partial_{B}H(x)^{\mathsf{T}} \times H(x)$$

[⊆] $J \in \partial_B H(x) \to \exists x_k, H'(x_k) \to J$; so $\nabla H(x_k)H(x_k) \to J^T H$. [⊇] $v \in \partial_B \theta(x)$; if H is also differentiable on x_k , same thing. Otherwise, no " $\nabla H(x_k)$ ".

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 000●0000	References 000000

- subsequence: $[1:n] = I \cup I^c$: $H_i, i \in I$ non-differentiable
- $\theta = \sum_{I^c} + \sum_{I}$, so \sum_{I} differentiable

• Taylor expansion of $\sum_{l} \Rightarrow d \mapsto \sum_{l} H_{i}^{k} \min(A_{i:}d, B_{i:}d)$ linear in d

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 000●0000	References 000000

- subsequence: $[1:n] = I \cup I^c$: $H_i, i \in I$ non-differentiable
- $\theta = \sum_{I^c} + \sum_{I}$, so \sum_{I} differentiable

• Taylor expansion of $\sum_{l} \Rightarrow d \mapsto \sum_{l} H_{i}^{k} \min(A_{i:}d, B_{i:}d)$ linear in d

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 000●0000	References 000000

- subsequence: $[1:n] = I \cup I^c$: $H_i, i \in I$ non-differentiable
- $\theta = \sum_{I^c} + \sum_{I}$, so \sum_{I} differentiable
- Taylor expansion of \sum_{I}

 $\Rightarrow d \mapsto \sum_{l} H_{i}^{k} \min(A_{i:}d, B_{i:}d) \quad \text{linear in } d$

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 000●0000	References 000000

- subsequence: $[1:n] = I \cup I^c$: $H_i, i \in I$ non-differentiable
- $\theta = \sum_{I^c} + \sum_{I}$, so \sum_{I} differentiable
- Taylor expansion of $\sum_{l} \Rightarrow d \mapsto \sum_{l} H_{i}^{k} \min(A_{i:}d, B_{i:}d)$ linear in d

 Overview
 Underlying problem
 Sign vectors
 Sub

 00000
 0000000
 0000
 0000

Subproblems by optimization

Doorways 0000●000 References 000000

B-differential of the merit function - 3

 $H_1 = \min(0, t) + 1$

 $H_2 = \min(0, -t) + 1$

 $H_3=\min(0,-2t)-1$

up: the sum of coefficients \times minima is linear; down: θ is differentiable

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 000000●0	References 000000

A word about the nonlinear setting

 $\mathcal{L}_{x}H(z) = \min(F(x) + F'(x)(z - x), G(x) + G'(x)(z - x))$ In general, we have $\partial_{B}(\mathcal{L}_{x}(H))(x) \subsetneq \partial_{B}H(x)$.

Blue, red: nonlinear sets $F_i = G_i$.

On the vertical axis (or nearby), "new" and "nonlinear" jacobian matrices appear ($x_k = dots$)

NSC for equality, but technical ("stitching" the manifolds).

The manifolds are smooth but not necessarily hyperplanes anymore

Overview 00000	Underlying problem	Sign vectors 0000	Subproblems by optimization	Doorways 0000000	References 000000
Conclu	usion				
CONCIL	usion				

Results

- ∂_B computed efficiently
- Less subproblems than the theoretical upper bound
- Useable for $\partial_B \theta(x)$

Open questions

- ε -issues ("= 0 ?")
- larger *m*, *r*'s

Thank you for your attention! Any question?

Overview 00000	Underlying problem	Sign vectors 0000	Subproblems by optimization	Doorways 00000000	References 000000
Biblio	graphic elem	ents I			

- [AM17] M. Aguiar and S. Mahajan. Topics in hyperplane arrangements. Vol. 226. Mathematical Surveyx and Monographs. AMS, 2017.
- [AW81] Gerald Alexanderson and John Wetzel. "Arrangements of planes in space". In: *Discrete Mathematics* 34 (Dec. 1981). [doi], pp. 219–240.
- [BN82] Hanspeter Bieri and W. Nef. "A recursive sweep-plane algorithm, determining all cells of a finite division of Rd". In: Computing 28 (Sept. 1982). [doi], pp. 189–198.
- [CPS92] R.W. Cottle, J.-S. Pang, and R.E. Stone. The Linear Complementarity Problem. Academic Press, Boston, 1992.

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
Biblio	oranhic elem	ents II			

- [CS95] Kenneth Clarkson and Peter Shor. "Applications of Random Sampling in Computational Geometry, II". In: Discrete and Computational Geometry 4 (Mar. 1995). [doi], pp. 387–421.
- [CX11] X. Chen and S. Xiang. "Computation of generalized differentials in nonlinear complementarity problems". In: *Computational Optimization and Applications* 50 (2011). [doi], pp. 403–423.
- [Fis92] A. Fischer. "A special Newton-type optimization method". In: Optimization 24 (1992). [doi], pp. 269–284.

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
DILL	1.1.1				

Bibliographic elements III

- [FP03] F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research. Springer, 2003.
- [FS97] F. Facchinei and J. Soares. "A new merit function for nonlinear complementarity problems and a related algorithm". In: SIAM Journal on Optimization 7.1 (1997). [doi], pp. 225–247.
- [GK96] C. Geiger and C. Kanzow. "On the resolution of monotone complementarity problems". In: *Computational Optimization and Applications* 5 (1996), pp. 155–173.

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		00000000	000000

Bibliographic elements IV

- [Nes22] Yurii Nesterov. "Set-Limited Functions and Polynomial-Time Interior-Point Methods". In: *LIDAM discussion Paper CORE* (Mar. 2022).
- [Qi93] L. Qi. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations". In: *Mathematics of Operations Research* 18 (Feb. 1993). [doi], pp. 227–244.
- [QS93] L. Qi and J. Sun. "A nonsmooth version of Newton's method". In: Mathematical Programming 58 (1993). [doi], pp. 353–367.

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 000000
Biblio	graphic elem	ents V			

- [RČ18] Miroslav Rada and Michal Černý. "A New Algorithm for Enumeration of Cells of Hyperplane Arrangements and a Comparison with Avis and Fukuda's Reverse Search". In: SIAM Journal on Discrete Mathematics 32 (Jan. 2018), pp. 455–473. DOI: 10.1137/15M1027930.
- [Sle98] Nora Sleumer. "Output-Sensitive Cell Enumeration in Hyperplane Arrangements.". In: vol. 6. Jan. 1998, pp. 300–309.

[Sta07] Richard Stanley. "An introduction to hyperplane arrangements". In: Oct. 2007, pp. 389–496. ISBN: 9780821837368. DOI: 10.1090/pcms/013/08.

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
00000	0000000	0000		00000000	000000

Bibliographic elements VI

[Zas75]

T. Zaslavsky. "Facing up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes". In: *Memoirs of the American Mathematical Society* 154 (Jan. 1975). [doi].

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					•00000

Example with hyperplanes

Grey: hyperplanes orthogonal to e_1, e_2, e_3 , red: $(e_1 + e_2)^{\perp}$, blue: $(e_2 + e_3)^{\perp}$

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 0●0000

Sign vectors and directions

S	1	2	3	4	5	6	7	8	9
<i>s</i> ₁	+1	+1	+1	+1	+1	+1	+1	+1	+1
s ₂	+1	+1	+1	-1	-1	-1	-1	-1	-1
s 3	+1	-1	-1	+1	+1	+1	+1	-1	-1
<i>s</i> 4	+1	+1	+1	+1	+1	-1	-1	+1	-1
s 5	+1	+1	-1	+1	-1	+1	-1	-1	-1
d_1	+1	+1	+1	+1	+1	+1/2	+1/2	+1	+1/2
d ₂	+1	+1	+1	-1/2	-3/4	-3/4	-1	-1/2	-1
<i>d</i> ₃	+1	-1/2	-2	+1	+1/2	+1	+1/2	-1/2	-1/2

Table: Sign vectors and associated *d*'s for the configuration $v_1 = e_1, v_2 = e_2, v_3 = e_3, v_4 = e_1 + e_2, v_5 = e_2 + e_3$ - first half

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Sign vectors and directions - symmetric

S	10	11	12	13	14	15	16	17	18
<i>s</i> ₁	-1	-1	-1	-1	-1	-1	-1	-1	-1
s ₂	+1	+1	+1	+1	+1	+1	-1	-1	-1
<i>s</i> 3	+1	+1	-1	-1	-1	-1	+1	+1	-1
<i>S</i> 4	+1	-1	+1	+1	-1	-1	-1	-1	-1
<i>S</i> 5	+1	+1	+1	-1	+1	-1	+1	-1	-1
d_1	-1/2	-1	-1/2	-1/2	-1	-1	-1	-1	-1
d ₂	+1	+1/2	+1	+3/4	+3/4	+1/2	-1	-1	-1
d ₃	+1/2	+1/2	-1/2	-1	-1/2	-1	+2	+1/2	-1

Table: Sign vectors and associated d's for the same configuration as previous table - other half, symmetric

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{+1, +1, +1, +1, +1\}$ (and symmetric $s = \{-1, -1, -1, -1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{-1, +1, +1, +1, +1\}$ (and symmetric $s = \{+1, -1, -1, -1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{-1, +1, -1, +1, +1\}$ (and symmetric $s = \{+1, -1, +1, -1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{-1, +1, +1, -1, +1\}$ (and symmetric $s = \{+1, -1, -1, +1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{-1, +1, -1, -1, +1\}$ (and symmetric $s = \{+1, -1, +1, +1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{-1, -1, -1, -1, +1\}$ (and symmetric $s = \{+1, +1, +1, +1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{-1, -1, +1, -1, +1\}$ (and symmetric $s = \{+1, +1, -1, +1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Previous problem, the convex separation form, $s = \{-1, +1, -1, +1, -1\}$ (and symmetric $s = \{+1, -1, +1, -1, +1\}$)
Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Illustration of the convex pairs

Previous problem, the convex separation form, $s = \{+1, +1, -1, +1, +1\}$ (and symmetric $s = \{-1, -1, +1, -1, -1\}$)

Overview	Underlying problem	Sign vectors	Subproblems by optimization	Doorways	References
					000000

Summary of the equivalent representations

Diagram of the various reformulations

Overview 00000	Underlying problem	Sign vectors	Subproblems by optimization	Doorways 00000000	References 00000●

A word about the nonlinear setting - 2

A condition to get equality

 $\mathcal{V}_i = \{x : F_i(x) = G_i(x)\}$ [hyperplanes \rightarrow smooth manifolds]

$$\begin{cases} \forall \mathbf{v}_{i_0} = \sum \alpha_i \mathbf{v}_i, \exists \mathcal{U} \ni \mathbf{x}, \\ \mathcal{U} \cap \bigcap \mathcal{V}_i \subseteq \mathcal{U} \bigcap \mathcal{V}_{i_0} \end{cases} \Leftrightarrow \partial_B(\mathcal{L}_{\mathbf{x}} H)(\mathbf{x}) = \partial_B H(\mathbf{x}) \end{cases}$$

where \mathcal{U} neighborhood, $\alpha_i \neq 0$, v_i linearly independent.

"Stitching" the manifolds (around x) to avoid "nonlinear holes". If some equations are verified, another also is. But needs to be done for every linear combination...