Nonsmooth differential calculus and optimization, the conservative gradient approach

EDOUARD PAUWELS (IRIT, TOULOUSE 3, FRANCE)

joint work with Jérôme Bolte

RYAN BOUSTANY, TÂM LÊ, SWANN MARX, BÉATRICE PESQUET-POPESCU, ANTONIO SILVETI-FALLS, SAMUEL VAITER

Journées MOA, Nice, (Octobre, 2022)

ullet $f:\mathbb{R}^p o \mathbb{R}$ differentiable expressed as

 $f = g_L \circ \ldots \circ g_1$ with g_i "elementary" differentiable.

- $f: \mathbb{R}^p \to \mathbb{R}$ differentiable expressed as
 - $f = g_1 \circ \ldots \circ g_1$ with g_i "elementary" differentiable.
- backprop: efficient algorithm to compute derivatives with the chain rule.

In the smooth world BP outputs: backprop $f = \text{Jac } g_1 \circ ... \circ \text{Jac } g_1 = \nabla f^T$

- $f: \mathbb{R}^p o \mathbb{R}$ differentiable expressed as $f = g_L \circ \ldots \circ g_1$ with g_i "elementary" differentiable.
- backprop: efficient algorithm to compute derivatives with the chain rule. In the smooth world BP outputs: $\frac{1}{2} \operatorname{backprop} f = \operatorname{Jac} g_L \circ \ldots \circ \operatorname{Jac} g_1 = \nabla f^T$
- Baur-Strassen: Computing cost $(f, \nabla f) \leq 5$ Computing cost (f) instead of the naive Computing cost $(f, \nabla f) \leq p$ Computing cost (f)

- $f: \mathbb{R}^p \to \mathbb{R}$ differentiable expressed as $f = g_1 \circ \ldots \circ g_1$ with g_i "elementary" differentiable.
- backprop: efficient algorithm to compute derivatives with the chain rule. In the smooth world BP outputs: $\frac{\text{backprop } f = \text{Jac } g_L \circ ... \circ \text{Jac } g_1 = \nabla f^T}{\text{backprop } f}$
- Baur-Strassen: Computing cost $(f, \nabla f) \leq 5$ Computing cost (f) instead of the naive Computing cost $(f, \nabla f) < p$ Computing cost (f)
- Essential element in modern AI / deep learning:

- $f: \mathbb{R}^p \to \mathbb{R}$ differentiable expressed as $f = g_1 \circ \ldots \circ g_1$ with g_i "elementary" differentiable.
- backprop: efficient algorithm to compute derivatives with the chain rule. In the smooth world BP outputs: $\frac{\text{backprop } f = \text{Jac } g_L \circ ... \circ \text{Jac } g_1 = \nabla f^T}{\text{backprop } f}$
- Baur-Strassen: Computing cost $(f, \nabla f) \leq 5$ Computing cost (f) instead of the naive Computing cost $(f, \nabla f) < p$ Computing cost (f)
- Essential element in modern AI / deep learning:

Nonsmoothness is needed: $g_i = relu$, sort, maxpool, implicit layers

Plan

- Non-smooth backpropagation
- Pailure of nonconvex nonsmooth calculus
- Conservative gradients and Jacobians
- 4 Compositional conservative calculus
- 5 Optimization with conservative gradients
- 6 Beyond compositional calculus
- Conclusion

 $F:\mathbb{R}^{p}
ightarrow \mathbb{R}^{q}$ locally Lipschitz

 $F:\mathbb{R}^{p}
ightarrow \mathbb{R}^{q}$ locally Lipschitz, differentiable almost everywhere (Rademacher).

 $F:\mathbb{R}^{p}\to\mathbb{R}^{q} \text{ locally Lipschitz, differentiable almost everywhere (Rademacher)}.$ $\operatorname{Jac}^{c}F(x)=\operatorname{conv}\left\{M\in\mathbb{R}^{p\times q}:\ x^{k}\to x,\ F \text{ diff. at } x_{k},\ \operatorname{Jac}F(x^{k})\to M\right\}$

 $F:\mathbb{R}^{p}\to\mathbb{R}^{q} \text{ locally Lipschitz, differentiable almost everywhere (Rademacher)}.$ $\operatorname{Jac}^{c}F(x)=\operatorname{conv}\left\{M\in\mathbb{R}^{p\times q}:\ x^{k}\to x,\ F \text{ diff. at } x_{k},\ \operatorname{Jac}F(x^{k})\to M\right\}$

 $F:\mathbb{R}^{p} o \mathbb{R}^{q}$ locally Lipschitz, differentiable almost everywhere (Rademacher). $\operatorname{Jac}^{c}F(x)=\operatorname{conv}\left\{M\in\mathbb{R}^{p\times q}:\ x^{k}\to x,\ F \ \text{diff. at}\ x_{k},\ \operatorname{Jac}F(x^{k})\to M\right\}$ Denoted by $\partial^{c}F(x)$ when q=1

 $F: \mathbb{R}^p \to \mathbb{R}^q$ locally Lipschitz, differentiable almost everywhere (Rademacher). $\operatorname{Jac}^c F(x) = \operatorname{conv} \left\{ M \in \mathbb{R}^{p \times q}: \ x^k \to x, \ F \ \text{diff. at} \ x_k, \ \operatorname{Jac} F(x^k) \to M \right\}$ Denoted by $\partial^c F(x)$ when q=1Set valued $\operatorname{Jac}^c F: \mathbb{R}^p \rightrightarrows \mathbb{R}^{q \times p}$

ullet Take $f\colon \mathbb{R}^p o \mathbb{R}$ Lipschitz expressed from elementary blocks g_1,\dots,g_L

$$f = g_L \circ \ldots \circ g_1$$

 $\boxed{\mathsf{Ex}} \ \mathsf{g}_i = \mathrm{relu}, \ \mathsf{sort}, \ \mathsf{maxpool}, \ \mathsf{output} \ \mathsf{of} \ \mathsf{nonsmooth} \ \mathsf{numerical} \ \mathsf{program}.$

ullet Take $f:\mathbb{R}^p o\mathbb{R}$ Lipschitz expressed from elementary blocks g_1,\dots,g_L

$$f = g_L \circ \ldots \circ g_1$$

 $[\mathsf{Ex}] \ g_i = \mathrm{relu}, \ \mathsf{sort}, \ \mathsf{maxpool}, \ \mathsf{output} \ \mathsf{of} \ \mathsf{nonsmooth} \ \mathsf{numerical} \ \mathsf{program}.$

• Nonsmooth backprop is formal chain rule:

 $\operatorname{backprop}_f \in \operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1$

ullet Take $f:\mathbb{R}^p o\mathbb{R}$ Lipschitz expressed from elementary blocks g_1,\dots,g_L

$$f = g_L \circ \ldots \circ g_1$$

 $\mathsf{Ex} \mid g_i = \mathrm{relu}, \mathsf{sort}, \mathsf{maxpool}, \mathsf{output} \mathsf{ of} \mathsf{ nonsmooth} \mathsf{ numerical} \mathsf{ program}.$

• Nonsmooth backprop is formal chain rule:

$$\operatorname{backprop}_f \in \operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1$$

• backprop $_f: \mathbb{R}^p \to \mathbb{R}^p$ is a selection in the set valued field $\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1 \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$.

• Take $f: \mathbb{R}^p \to \mathbb{R}$ Lipschitz expressed from elementary blocks g_1, \dots, g_L

$$f = g_L \circ \ldots \circ g_1$$

 $\mathsf{Ex} \mid g_i = \mathsf{relu}, \mathsf{sort}, \mathsf{maxpool}, \mathsf{output} \mathsf{ of nonsmooth numerical program}.$

• Nonsmooth backprop is formal chain rule:

$$\operatorname{backprop}_f \in \operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1$$

- backprop $f: \mathbb{R}^p \to \mathbb{R}^p$ is a selection in the set valued field $\operatorname{Jac}^{c} g_{1} \circ \ldots \circ \operatorname{Jac}^{c} g_{1} : \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}.$
- This is what common is done in:

• Take $f: \mathbb{R}^p \to \mathbb{R}$ Lipschitz expressed from elementary blocks g_1, \ldots, g_L

$$f = g_L \circ \ldots \circ g_1$$

 $\mathsf{Ex} \mid g_i = \mathsf{relu}, \mathsf{sort}, \mathsf{maxpool}, \mathsf{output} \mathsf{ of nonsmooth numerical program}.$

• Nonsmooth backprop is formal chain rule:

$$\operatorname{backprop}_f \in \operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1$$

- backprop $f: \mathbb{R}^p \to \mathbb{R}^p$ is a selection in the set valued field $\operatorname{Jac}^{c} g_{1} \circ \ldots \circ \operatorname{Jac}^{c} g_{1} : \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}.$
- This is what common is done in:

But what does backprop output? What sort of gradient could it be?

Plan

- Non-smooth backpropagation
- 2 Failure of nonconvex nonsmooth calculus
- Conservative gradients and Jacobians
- 4 Compositional conservative calculus
- Optimization with conservative gradients
- 6 Beyond compositional calculus
- Conclusion

$$\operatorname{relu}(t) = \max\{0,t\} \qquad \operatorname{relu}_2(t) = \operatorname{relu}(-t) + t \qquad \operatorname{relu}_3(t) = 1/2(\operatorname{relu}(t) + \operatorname{relu}_2(t))$$

$$\operatorname{relu}(t) = \max\{0, t\}$$
 $\operatorname{relu}_2(t) = \operatorname{relu}(-t) + t$ $\operatorname{relu}_3(t) = 1/2(\operatorname{relu}(t) + \operatorname{relu}_2(t))$
Then $\operatorname{relu} = \operatorname{relu}_2 = \operatorname{relu}_3$.

$$\operatorname{relu}(t) = \max\{0, t\} \qquad \operatorname{relu}_2(t) = \operatorname{relu}(-t) + t \qquad \operatorname{relu}_3(t) = 1/2(\operatorname{relu}(t) + \operatorname{relu}_2(t))$$

Then $relu = relu_2 = relu_3$.

ullet TensorFlow (TF) set ${\color{blue} {\rm backprop}}\,{\rm relu}(0)=0.$ TF's gives

 $backprop relu_2(0) = 1$ and $backprop relu_3(0) = 1/2$.

$$\operatorname{relu}(t) = \max\{0, t\} \qquad \operatorname{relu}_2(t) = \operatorname{relu}(-t) + t \qquad \operatorname{relu}_3(t) = 1/2(\operatorname{relu}(t) + \operatorname{relu}_2(t))$$

Then $relu = relu_2 = relu_3$.

ullet TensorFlow (TF) set ${\color{blue} {\rm backprop}}\,{\rm relu}(0)=0.$ TF's gives

 $backprop relu_2(0) = 1$ and $backprop relu_3(0) = 1/2$.

• Artifacts: zero(x) = relu2(x) - relu(x) = 0.

$$\operatorname{relu}(t) = \max\{0, t\} \qquad \operatorname{relu}_2(t) = \operatorname{relu}(-t) + t \qquad \operatorname{relu}_3(t) = 1/2(\operatorname{relu}(t) + \operatorname{relu}_2(t))$$

Then $relu = relu_2 = relu_3$.

• TensorFlow (TF) set $backprop \operatorname{relu}(0) = 0$. TF's gives

 $backprop relu_2(0) = 1$ and $backprop relu_3(0) = 1/2$.

• Artifacts: zero(x) = relu2(x) - relu(x) = 0.

• Actually $s \times zero = 0$ and $\frac{backprop}{s \times zero}(0) = s \in \mathbb{R}$ arbitrary

$$\operatorname{relu}(t) = \max\{0, t\} \qquad \operatorname{relu}_2(t) = \operatorname{relu}(-t) + t \qquad \operatorname{relu}_3(t) = 1/2(\operatorname{relu}(t) + \operatorname{relu}_2(t))$$

Then $relu = relu_2 = relu_3$.

• TensorFlow (TF) set backprop relu(0) = 0. TF's gives

 $backprop relu_2(0) = 1$ and $backprop relu_3(0) = 1/2$.

• Artifacts: zero(x) = relu2(x) - relu(x) = 0.

- Actually $s \times zero = 0$ and backprop $[s \times zero](0) = s \in \mathbb{R}$ arbitrary
- Spurious critical point: identity(x) := x zero(x) = x but backprop identity(0) = 0

No convexity, no calculus: $g_1 \colon \mathbb{R}^p \to \mathbb{R}$, $g_2 \colon \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_1+g_2)\subset\partial^{c}g_1+\partial^{c}g_2.$$

No convexity, no calculus: $g_1 \colon \mathbb{R}^p \to \mathbb{R}$, $g_2 \colon \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_{1}+g_{2})\subset\partial^{c}g_{1}+\partial^{c}g_{2}.$$

• holds with equality if g_1 and g_2 are continuously differentiable.

No convexity, no calculus: $g_1 : \mathbb{R}^p \to \mathbb{R}$, $g_2 : \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^c(g_1+g_2)\subset\partial^cg_1+\partial^cg_2.$$

- holds with equality if g_1 and g_2 are continuously differentiable.
- holds with equality if g_1 and g_2 are convex.

No convexity, no calculus: $g_1 : \mathbb{R}^p \to \mathbb{R}$, $g_2 : \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_{1}+g_{2})\subset\partial^{c}g_{1}+\partial^{c}g_{2}.$$

- holds with equality if g_1 and g_2 are continuously differentiable.
- holds with equality if g_1 and g_2 are convex.
- holds with equality if g_1 and g_2 are subdifferentially regular.

No convexity, no calculus: $g_1 : \mathbb{R}^p \to \mathbb{R}$, $g_2 : \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_1+g_2)\subset\partial^{c}g_1+\partial^{c}g_2.$$

- holds with equality if g_1 and g_2 are continuously differentiable.
- holds with equality if g_1 and g_2 are convex.
- holds with equality if g_1 and g_2 are subdifferentially regular.
- no equality in general: $g: x \mapsto |x|$

$$\partial^{c}(g-g) = \partial^{c}(x \mapsto 0) = \{0\} \subset \quad \partial^{c}(g) + \partial^{c}(-g) = \quad \begin{cases} 0 & \text{if } x \neq 0 \\ [-2,2] & \text{if } x = 0 \end{cases}.$$

No convexity, no calculus: $g_1: \mathbb{R}^p \to \mathbb{R}$, $g_2: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_1+g_2)\subset\partial^{c}g_1+\partial^{c}g_2.$$

- holds with equality if g_1 and g_2 are continuously differentiable.
- holds with equality if g_1 and g_2 are convex.
- holds with equality if g_1 and g_2 are subdifferentially regular.
- no equality in general: $g: x \mapsto |x|$

$$\partial^{c}(g-g) = \partial^{c}(x \mapsto 0) = \{0\} \subset \quad \partial^{c}(g) + \partial^{c}(-g) = \quad \begin{cases} 0 & \text{if } x \neq 0 \\ [-2,2] & \text{if } x = 0 \end{cases}.$$

Deep learning: no convexity, no smoothness. Calculus rules?

No convexity, no calculus: $g_1 : \mathbb{R}^p \to \mathbb{R}$, $g_2 : \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_1+g_2)\subset\partial^{c}g_1+\partial^{c}g_2.$$

- holds with equality if g_1 and g_2 are continuously differentiable.
- holds with equality if g_1 and g_2 are convex.
- holds with equality if g_1 and g_2 are subdifferentially regular.
- no equality in general: $g: x \mapsto |x|$

$$\partial^{c}(g-g) = \partial^{c}(x \mapsto 0) = \{0\} \subset \quad \partial^{c}(g) + \partial^{c}(-g) = \quad \begin{cases} 0 & \text{if } x \neq 0 \\ [-2,2] & \text{if } x = 0 \end{cases}.$$

Deep learning: no convexity, no smoothness. Calculus rules?

• backprop: selection in enlarged "subgradient", artifacts

No convexity, no calculus: $g_1 : \mathbb{R}^p \to \mathbb{R}$, $g_2 : \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_1+g_2)\subset\partial^{c}g_1+\partial^{c}g_2.$$

- holds with equality if g_1 and g_2 are continuously differentiable.
- holds with equality if g_1 and g_2 are convex.
- ullet holds with equality if g_1 and g_2 are subdifferentially regular.
- no equality in general: $g: x \mapsto |x|$

$$\partial^{c}(g-g) = \partial^{c}(x \mapsto 0) = \{0\} \subset \quad \partial^{c}(g) + \partial^{c}(-g) = \quad \begin{cases} 0 & \text{if } x \neq 0 \\ [-2,2] & \text{if } x = 0 \end{cases}.$$

Deep learning: no convexity, no smoothness. Calculus rules?

- backprop: selection in enlarged "subgradient", artifacts
- Non uniqueness: Different programs may implement the same function.

No convexity, no calculus: $g_1: \mathbb{R}^p \to \mathbb{R}$, $g_2: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz.

$$\partial^{c}(g_1+g_2)\subset\partial^{c}g_1+\partial^{c}g_2.$$

- holds with equality if g_1 and g_2 are continuously differentiable.
- holds with equality if g_1 and g_2 are convex.
- holds with equality if g_1 and g_2 are subdifferentially regular.
- no equality in general: $g: x \mapsto |x|$

$$\partial^{c}(g-g) = \partial^{c}(x \mapsto 0) = \{0\} \subset \quad \partial^{c}(g) + \partial^{c}(-g) = \quad \begin{cases} 0 & \text{if } x \neq 0 \\ [-2,2] & \text{if } x = 0 \end{cases}.$$

Deep learning: no convexity, no smoothness. Calculus rules?

- backprop: selection in enlarged "subgradient", artifacts
- Non uniqueness: Different programs may implement the same function.
- Stochastic approximation: $\partial^c \left(\frac{1}{n} \sum_{i=1}^n \ell_i \right) \subset \frac{1}{n} \sum_{i=1}^n \partial^c \ell_i$.

Plan

- Non-smooth backpropagation
- Pailure of nonconvex nonsmooth calculus
- 3 Conservative gradients and Jacobians
- 4 Compositional conservative calculus
- 5 Optimization with conservative gradients
- 6 Beyond compositional calculus
- Conclusion

Conservative gradients / Jacobians in a nutshell

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- J_F: $\mathbb{R}^n \to \mathbb{R}^m$ has none or multiple conservative Jacobians $J_F: \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_F if m = 1 for conservative gradients.
- If conservative Jacobians exist. F is called path-differentiable.
- Solve calculus issue: compatible with compositional calculus rules
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^n \to \mathbb{R}^m$ has none or multiple conservative Jacobians $J_F: \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_F if m = 1 for conservative gradients.
- If conservative Jacobians exist, F is called path-differentiable
- Solve calculus issue: compatible with compositional calculus rules
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^n \to \mathbb{R}^m$ has none or multiple conservative Jacobians $J_F: \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_F if m = 1 for conservative gradients.
- If conservative Jacobians exist, F is called **path-differentiable**.

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^n \to \mathbb{R}^m$ has none or multiple conservative Jacobians $J_F: \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_F if m = 1 for conservative gradients.
- If conservative Jacobians exist, F is called **path-differentiable**.
- Solve calculus issue: compatible with compositional calculus rules

- Objects akin to Clarke's subgradient / Jacobian (for locally Lipschitz functions).
- Lipschitz $F: \mathbb{R}^n \to \mathbb{R}^m$ has none or multiple conservative Jacobians $J_F: \mathbb{R}^n \rightrightarrows \mathbb{R}^{m \times n}$. Notation D_F if m = 1 for conservative gradients.
- If conservative Jacobians exist, F is called **path-differentiable**.
- Solve calculus issue: compatible with compositional calculus rules
- Conservative gradients have a minimizing behavior similar to subgradients in optimization.

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz,

$$heta_{k+1} = heta_k - lpha_k v_k \qquad \Leftrightarrow \qquad rac{ heta_{k+1} - heta_k}{lpha_k} \in -\partial^c f(heta_k)$$
 $v_k \in \partial^c f(heta_k).$

$$f \colon \mathbb{R}^p o \mathbb{R}$$
 locally Lipschitz, $f(\theta_{k+1}) \le f(\theta_k)$?
$$\theta_{k+1} = \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k)$$
$$v_k \in \partial^c f(\theta_k).$$

$$f \colon \mathbb{R}^p o \mathbb{R}$$
 locally Lipschitz, $f(\theta_{k+1}) \le f(\theta_k)$?
$$\theta_{k+1} = \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k).$$

Chain rule along Lipschitz curves (Brézis, Valadier).

Hypothesis: Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in \partial^c f(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

$$f \colon \mathbb{R}^p o \mathbb{R}$$
 locally Lipschitz, $f(\theta_{k+1}) \le f(\theta_k)$?
$$\theta_{k+1} = \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k)$$
$$v_k \in \partial^c f(\theta_k).$$

Chain rule along Lipschitz curves (Brézis, Valadier).

Hypothesis: Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in \partial^c f(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0,1]$,

$$f \colon \mathbb{R}^p o \mathbb{R}$$
 locally Lipschitz, $f(\theta_{k+1}) \le f(\theta_k)$?
$$\theta_{k+1} = \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k).$$

Chain rule along Lipschitz curves (Brézis, Valadier).

Hypothesis: Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in \partial^{\mathrm{c}}f(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0,1]$,

Under the carpet: $\alpha_k \to 0$, small step limit \to solutions to the differential inclusion.

$$f \colon \mathbb{R}^p o \mathbb{R}$$
 locally Lipschitz, $f(\theta_{k+1}) \le f(\theta_k)$?
$$\theta_{k+1} = \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k).$$

Chain rule along Lipschitz curves (Brézis, Valadier).

Hypothesis: Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$

$$egin{aligned} rac{d}{dt}f(\gamma(t)) &= \langle v, \dot{\gamma}(t) \rangle & \forall v \in \partial^c f(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1] \ &= -\|\dot{\gamma}(t)\|^2, \qquad ext{a.e.} \quad t \in [0,1] \end{aligned}$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0,1]$,

Under the carpet: $\alpha_k \to 0$, small step limit \to solutions to the differential inclusion.

$$f \colon \mathbb{R}^p o \mathbb{R}$$
 locally Lipschitz, $f(\theta_{k+1}) \le f(\theta_k)$?
$$\theta_{k+1} = \theta_k - \alpha_k v_k \qquad \Leftrightarrow \qquad \frac{\theta_{k+1} - \theta_k}{\alpha_k} \in -\partial^c f(\theta_k).$$

Chain rule along Lipschitz curves (Brézis, Valadier). Hypothesis: Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$

$$egin{aligned} rac{d}{dt}f(\gamma(t)) &= \langle v, \dot{\gamma}(t) \rangle & \forall v \in \partial^c f(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1] \ &= -\|\dot{\gamma}(t)\|^2, \qquad ext{a.e.} \quad t \in [0,1] \end{aligned}$$

Suppose: $\dot{\gamma}(t) \in -\partial^c f(\gamma(t))$ for almost all $t \in [0,1]$, then $t \mapsto f(\gamma(t))$ decreases, strictly if $0 \notin \partial^c f(\gamma(t))$.

Under the carpet: $\alpha_k \to 0$, small step limit \to solutions to the differential inclusion.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

• $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- ullet $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a *tame* locally Lipschitz function ("generic" in applications),

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a tame locally Lipschitz function ("generic" in applications),

piecewise polynomial.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a *tame* locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a *tame* locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Borwein-Moors (2000), Loewen-Wang (2000): Let f be a typical/generic 1-Lipschitz function (in sup norm), then

- $\partial^c f$ is the unit ball everywhere (no chain rule, no subgradient algorithm).
- local minimizers are dense: there is a local minimizer arbitrarily close to any argument.

Let f be a *tame* locally Lipschitz function ("generic" in applications),

- piecewise polynomial.
- semi-algebraic.
- definable.

Davis et .al. 2019, Bolte et. al. 2007: Subgradient projection formula implies chain rule along Lipschitz curves.

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D: \mathbb{R}^p \rightrightarrows \mathbb{R}^p$,

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D: \mathbb{R}^p \rightrightarrows \mathbb{R}^p$,

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in D(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$, closed graph, non empty valued, locally bounded,

$$rac{d}{dt}f(\gamma(t)) = \langle v,\dot{\gamma}(t)
angle \qquad orall v \in D(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$, closed graph, non empty valued, locally bounded,

For any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in D(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

f is path differentiable, D is a conservative gradient for f (could be many).
 Conservative Jacobians defined similarly

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$, closed graph, non empty valued, locally bounded,

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in D(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

- f is path differentiable, D is a conservative gradient for f (could be many).
 Conservative Jacobians defined similarly
- Gradient a.e.: $D(x) = {\nabla f(x)}$ for almost all $x \in \mathbb{R}^p$.

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$, closed graph, non empty valued, locally bounded,

$$\frac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad \forall v \in D(\gamma(t)), \qquad \text{a.e.} \quad t \in [0, 1]$$

- f is path differentiable, D is a conservative gradient for f (could be many).
 Conservative Jacobians defined similarly
- Gradient a.e.: $D(x) = \{\nabla f(x)\}\$ for almost all $x \in \mathbb{R}^p$.
- Minimal convex conservative gradient: $\partial^c f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^p$.

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$, closed graph, non empty valued, locally bounded,

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad orall v \in D(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

- f is path differentiable, D is a conservative gradient for f (could be many).
 Conservative Jacobians defined similarly
- Gradient a.e.: $D(x) = \{\nabla f(x)\}\$ for almost all $x \in \mathbb{R}^p$.
- Minimal convex conservative gradient: $\partial^c f(x) \subset \operatorname{conv}(D(x))$ for all $x \in \mathbb{R}^p$.
- Fermat rule: $0 \in \text{conv}(D(x))$ for all local minima $x \in \mathbb{R}^p$.

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$, closed graph, non empty valued, locally bounded,

$$rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in D(\gamma(t)), \qquad ext{a.e.} \quad t \in [0,1]$$

- f is path differentiable, D is a conservative gradient for f (could be many).
 Conservative Jacobians defined similarly
- Gradient a.e.: $D(x) = \{\nabla f(x)\}\$ for almost all $x \in \mathbb{R}^p$.
- Minimal convex conservative gradient: $\partial^c f(x) \subset \text{conv}(D(x))$ for all $x \in \mathbb{R}^p$.
- Fermat rule: $0 \in \text{conv}(D(x))$ for all local minima $x \in \mathbb{R}^p$.
- Equivalent caracterization: f is path-differentiable, if and only if ∂f^c is conservative.

Summary:

- Clarke's subdifferential / Jacobian not compatible with differential calculus.
- Chain rule along Lipschitz curves ensures optimization behavior.

Definition [Conservative gradient] (Bolte-Pauwels 2019):

 $f: \mathbb{R}^p \to \mathbb{R}$ locally Lipschitz

 $D \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$, closed graph, non empty valued, locally bounded,

$$\frac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad \forall v \in D(\gamma(t)), \qquad \text{a.e.} \quad t \in [0, 1]$$

- f is path differentiable, D is a conservative gradient for f (could be many). Conservative Jacobians defined similarly
- Gradient a.e.: $D(x) = \{\nabla f(x)\}\$ for almost all $x \in \mathbb{R}^p$.
- Minimal convex conservative gradient: $\partial^c f(x) \subset \text{conv}(D(x))$ for all $x \in \mathbb{R}^p$.
- Fermat rule: $0 \in \text{conv}(D(x))$ for all local minima $x \in \mathbb{R}^p$.
- Equivalent caracterization: f is path-differentiable, if and only if ∂f^c is conservative.
- Tame functions are path-differentiable (generic in applications): chain rule for ∂^c .

Plan

- Non-smooth backpropagation
- Failure of nonconvex nonsmooth calculus
- 3 Conservative gradients and Jacobians
- 4 Compositional conservative calculus
- 5 Optimization with conservative gradients
- 6 Beyond compositional calculus
- Conclusion

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i = 1, \dots, n$. Then $D = \sum_i \partial^c h_i$ is conservative for $f = \sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i = 1, \dots, n$

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \bigcap_i E_i$, we have $\lambda(E^c) = \lambda(\bigcup_i E_i^c) = 0$

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$rac{\partial}{\partial t} f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t)
angle \quad orall v_i \in \partial^c f_i(\gamma(t)), \qquad orall i = 1, \ldots, n. \ \ \sum_{i=1}^n rac{\partial}{\partial t} f_i(\gamma(t)) = \sum_{i=1}^n \langle v_i, \dot{\gamma}(t)
angle = \left\langle \sum_{i=1}^n v_i, \dot{\gamma}(t)
ight
angle \quad orall v_i \in \partial^c f_i(\gamma(t)), \, orall i = 1, \ldots, n.$$

$$rac{d}{dt}\sum_{i=1}^n f_i(\gamma(t)) = rac{d}{dt}f(\gamma(t)) = \langle
u, \dot{\gamma}(t)
angle \qquad orall v \in \sum_{i=1}^n \partial^c f_i(\gamma(t)) = D(\gamma(t)).$$

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1,\ldots,n$. Then $D=\sum_i \partial^c f_i$ is conservative for $f=\sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i=1,\ldots,n$

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \bigcap_i E_i$, we have $\lambda(E^c) = \lambda(\bigcup_i E_i^c) = 0$

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$egin{aligned} rac{\partial}{\partial t}f_i(\gamma(t)) &= \langle v_i,\dot{\gamma}(t)
angle & orall v_i \in \partial^c f_i(\gamma(t)), & orall i = 1,\dots,n. \ \ \sum_{i=1}^nrac{d}{dt}f_i(\gamma(t)) &= \sum_{i=1}^n \langle v_i,\dot{\gamma}(t)
angle &= \left\langle \sum_{i=1}^n v_i,\dot{\gamma}(t)
ight
angle & orall v_i \in \partial^c f_i(\gamma(t)), \, orall i = 1,\dots,n. \end{aligned}$$

$$rac{d}{dt}\sum_{i=1}^n f_i(\gamma(t)) = rac{d}{dt}f(\gamma(t)) = \langle v, \hat{\gamma}(t)
angle \qquad orall v \in \sum_{i=1}^n \partial^c f_i(\gamma(t)) = D(\gamma(t)).$$

Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1,\ldots,n$. Then $D=\sum_i \partial^c f_i$ is conservative for $f=\sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i = 1, \dots, n$,

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \bigcap_i E_i$, we have $\lambda(E^c) = \lambda(\bigcup_i E_i^c) = 0$

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$egin{aligned} & rac{\partial}{\partial t}f_i(\gamma(t)) = \langle v_i,\dot{\gamma}(t)
angle & orall v_i \in \partial^c f_i(\gamma(t)), & orall i = 1,\ldots,n. \ & \sum_{i=1}^n rac{\partial}{\partial t}f_i(\gamma(t)) = \sum_{i=1}^n \langle v_i,\dot{\gamma}(t)
angle = \left\langle \sum_{i=1}^n v_i,\dot{\gamma}(t)
ight
angle & orall v_i \in \partial^c f_i(\gamma(t)), \, orall i = 1 \end{aligned}$$

 $\frac{d}{dt}\sum_{i=1}^n f_i(\gamma(t)) = \frac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad \forall v \in \sum_{i=1}^n \partial^c f_i(\gamma(t)) = D(\gamma(t)).$

Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1,\ldots,n$. Then $D=\sum_i \partial^c f_i$ is conservative for $f=\sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i=1,\ldots,n$,

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \cap_i E_i$, we have $\lambda(E^c) = \lambda(\cup_i E_i^c) = 0$.

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$rac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall i = 1, \dots, n.$$
 $rac{d}{dt}f_i(\gamma(t)) = \sum_{i=1}^n \langle v_i, \dot{\gamma}(t) \rangle = \left\langle \sum_{i=1}^n v_i, \dot{\gamma}(t) \right\rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \ \forall i = 1, \dots, n.$

 $rac{d}{dt}\sum_{i=1}^n f_i(\gamma(t)) = rac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t)
angle \qquad orall v \in \sum_{i=1}^n \partial^c f_i(\gamma(t)) = D(\gamma(t)).$

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1,\ldots,n$. Then $D=\sum_i \partial^c f_i$ is conservative for $f=\sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i = 1, \dots, n$,

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \cap_i E_i$, we have $\lambda(E^c) = \lambda(\cup_i E_i^c) = 0$.

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall i = 1, \dots, n.$$

$$\sum_{i=1}^n \frac{d}{dt}f_i(\gamma(t)) = \sum_{i=1}^n \langle v_i, \dot{\gamma}(t) \rangle = \left\langle \sum_{i=1}^n v_i, \dot{\gamma}(t) \right\rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \ \forall i = 1, \dots, n.$$

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1,\ldots,n$. Then $D=\sum_i \partial^c f_i$ is conservative for $f=\sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i = 1, \dots, n$,

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \cap_i E_i$, we have $\lambda(E^c) = \lambda(\cup_i E_i^c) = 0$.

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall i = 1, \dots, n.$$

$$\sum_{i=1}^n \frac{d}{dt}f_i(\gamma(t)) = \sum_{i=1}^n \langle v_i, \dot{\gamma}(t) \rangle = \left\langle \sum_{i=1}^n v_i, \dot{\gamma}(t) \right\rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \ \forall i = 1, \dots$$

$$\frac{d}{dt}\sum_{i=1}^n f_i(\gamma(t)) = \frac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad \forall v \in \sum_{i=1}^n \partial^c f_i(\gamma(t)) = D(\gamma(t)).$$

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1,\ldots,n$. Then $D=\sum_i \partial^c f_i$ is conservative for $f=\sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i = 1, \dots, n$,

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \cap_i E_i$, we have $\lambda(E^c) = \lambda(\cup_i E_i^c) = 0$.

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$egin{aligned} rac{d}{dt}f_i(\gamma(t)) &= \langle v_i, \dot{\gamma}(t)
angle & orall v_i \in \partial^c f_i(\gamma(t)), & orall i = 1, \ldots, n. \ \sum_{i=1}^n rac{d}{dt}f_i(\gamma(t)) &= \sum_{i=1}^n \langle v_i, \dot{\gamma}(t)
angle &= \left\langle \sum_{i=1}^n v_i, \dot{\gamma}(t)
ight
angle & orall v_i \in \partial^c f_i(\gamma(t)), \ orall i = 1, \ldots
ight. \end{aligned}$$

$$\frac{d}{dt}\sum_{i=1}^n f_i(\gamma(t)) = \frac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad \forall v \in \sum_{i=1}^n \partial^c f_i(\gamma(t)) = D(\gamma(t)).$$

Conservative calculus example: finite sums

Conservative (outer) sum rule (Bolte-Pauwels 2019):

 $f_i \colon \mathbb{R}^p \to \mathbb{R}$ path differentiable (locally Lipschitz), for $i=1,\ldots,n$. Then $D=\sum_i \partial^c f_i$ is conservative for $f=\sum_i f_i$.

Fix any Lipschitz curve $\gamma \colon [0,1] \mapsto \mathbb{R}^p$, for any $i = 1, \dots, n$,

$$\frac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall t \in E_i, \quad \lambda(E_i^c) = 0$$

Set $E = \bigcap_i E_i$, we have $\lambda(E^c) = \lambda(\bigcup_i E_i^c) = 0$.

Inversion of quantifiers: for all t in E, $t \in E_i$ for all i = 1, ..., n, that is

$$rac{d}{dt}f_i(\gamma(t)) = \langle v_i, \dot{\gamma}(t) \rangle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \qquad \forall i = 1, \dots, n. \ \sum_{i=1}^n rac{d}{dt}f_i(\gamma(t)) = \sum_{i=1}^n \langle v_i, \dot{\gamma}(t) \rangle = \left\langle \sum_{i=1}^n v_i, \dot{\gamma}(t) \right
angle \qquad \forall v_i \in \partial^c f_i(\gamma(t)), \ \forall i = 1, \dots$$

$$\frac{d}{dt}\sum_{i=1}^n f_i(\gamma(t)) = \frac{d}{dt}f(\gamma(t)) = \langle v, \dot{\gamma}(t) \rangle \qquad \forall v \in \sum_{i=1}^n \partial^c f_i(\gamma(t)) = D(\gamma(t)).$$

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \Rightarrow -\partial^{c} \text{relu}(-x) - \partial^{c} \text{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Artifacts:
$$zero(x) = relu(-x) - relu(x) + x = 0$$
. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma \colon [0,1] \to \mathbb{R}$ Lipschitz, differentiable *a.e.*,

Need to check $\frac{d}{dt} zero(\gamma(t)) = \gamma'(t) \times D(\gamma(t)) = 0$ for almost all t. Suppose γ differentiable at t:

- $\gamma(t) \neq 0$: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.
- $\gamma(t) = 0$, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.
- $\gamma(t) = 0$, $\gamma'(t) \neq 0$:
- ullet the set $\{t\in[0,1],\,\gamma(t)=0,\gamma'(t)
 eq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma \colon [0,1] \to \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{dt} \mathrm{zero}(\gamma(t)) = \gamma'(t) \times D(\gamma(t)) = 0$ for almost all t.

Suppose y differentiable at t.

•
$$\gamma(t) \neq 0$$
: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) \neq 0$:

ullet the set $\{t\in[0,1],\,\gamma(t)=0,\gamma'(t)
eq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma\colon [0,1]\to \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{dt}\mathrm{zero}(\gamma(t))=\gamma'(t)\times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t:

•
$$\gamma(t) \neq 0$$
: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) \neq 0$:

ullet the set $\{t\in[0,1],\ \gamma(t)=0,\gamma'(t)
eq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma\colon [0,1]\to \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{dt}\mathrm{zero}(\gamma(t))=\gamma'(t)\times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t:

•
$$\gamma(t) \neq 0$$
: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) \neq 0$:

ullet the set $\{t\in[0,1],\,\gamma(t)=0,\gamma'(t)
eq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma\colon [0,1]\to \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{dt}\mathrm{zero}(\gamma(t))=\gamma'(t)\times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t:

•
$$\gamma(t) \neq 0$$
: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) \neq 0$:

ullet the set $\{t\in[0,1],\,\gamma(t)=0,\gamma'(t)
eq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma\colon [0,1]\to \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{dt}\mathrm{zero}(\gamma(t))=\gamma'(t)\times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t:

- $\gamma(t) \neq 0$: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.
- $\gamma(t) = 0$, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.
- $\gamma(t) = 0$, $\gamma'(t) \neq 0$:
- the set $\{t \in [0,1], \, \gamma(t) = 0, \gamma'(t) \neq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma\colon [0,1]\to \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{dt}\mathrm{zero}(\gamma(t))=\gamma'(t)\times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t:

- $\gamma(t) \neq 0$: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.
- $\gamma(t) = 0$, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.
- $\gamma(t) = 0$, $\gamma'(t) \neq 0$:
- the set $\{t \in [0,1], \, \gamma(t) = 0, \gamma'(t) \neq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma\colon [0,1]\to \mathbb{R}$ Lipschitz, differentiable a.e., Need to check $\frac{d}{dt}\mathrm{zero}(\gamma(t))=\gamma'(t)\times D(\gamma(t))=0$ for almost all t. Suppose γ differentiable at t:

- $\gamma(t) \neq 0$: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.
- $\gamma(t) = 0$, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.
- $\gamma(t) = 0$, $\gamma'(t) \neq 0$: for some $\epsilon > 0$, $\gamma(s) \neq 0$ for $s \neq t$ and $s \in (t \epsilon, t + \epsilon)$.
- the set $\{t \in [0,1], \ \gamma(t) = 0, \gamma'(t) \neq 0\}$ is denumerable (zero measure).

Artifacts: zero(x) = relu(-x) - relu(x) + x = 0. $(relu(t) = max\{0, t\})$.

Calculus,

$$D: x \rightrightarrows -\partial^{c} \mathrm{relu}(-x) - \partial^{c} \mathrm{relu}(x) + \partial^{c}(x) = \begin{cases} 0 - 1 + 1 = 0 & x > 0 \\ -1 + 0 + 1 = 0 & x < 0 \\ [-1, 0] - [0, 1] + 1 = [-1, 1] & x = 0. \end{cases}$$

Chain rule intuition: $\gamma \colon [0,1] \to \mathbb{R}$ Lipschitz, differentiable *a.e.*,

Need to check $\frac{d}{dt} \operatorname{zero}(\gamma(t)) = \gamma'(t) \times D(\gamma(t)) = 0$ for almost all t.

Suppose γ differentiable at t:

•
$$\gamma(t) \neq 0$$
: $\gamma'(t) \times D(\gamma(t)) = \gamma'(t) \times 0 = 0$. Suppose in addition $\gamma(t) = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) = 0$: $\gamma'(t) \times D(\gamma(t)) = 0 \times [-1, 1] = 0$.

•
$$\gamma(t) = 0$$
, $\gamma'(t) \neq 0$: for some $\epsilon > 0$, $\gamma(s) \neq 0$ for $s \neq t$ and $s \in (t - \epsilon, t + \epsilon)$.

• the set $\{t \in [0,1], \gamma(t) = 0, \gamma'(t) \neq 0\}$ is denumerable (zero measure).

ullet Take $f\colon \mathbb{R}^p o \mathbb{R}$ Lipschitz expressed from elementary blocks g_1,\dots,g_L ,

$$f = g_L \circ \ldots \circ g_1$$

 $|\mathsf{Ex}| g_i = \mathrm{relu}, \mathsf{sort}, \mathsf{maxpool}, \mathsf{output} \mathsf{of} \mathsf{nonsmooth} \mathsf{numerical} \mathsf{program}.$

ullet Take $f\colon \mathbb{R}^p o\mathbb{R}$ Lipschitz expressed from elementary blocks g_1,\ldots,g_L ,

$$f = g_L \circ \ldots \circ g_1$$

 $[\mathsf{Ex}] \ \mathsf{g}_i = \mathrm{relu}, \ \mathsf{sort}, \ \mathsf{maxpool}, \ \mathsf{output} \ \mathsf{of} \ \mathsf{nonsmooth} \ \mathsf{numerical} \ \mathsf{program}.$

• Nonsmooth backprop is formal chain rule:

$$\mathrm{backprop}_f \in \mathrm{Jac}^c g_L \circ \ldots \circ \mathrm{Jac}^c g_1$$

ullet Take $f:\mathbb{R}^p o\mathbb{R}$ Lipschitz expressed from elementary blocks g_1,\ldots,g_L ,

$$f = g_L \circ \ldots \circ g_1$$

 $|\mathsf{Ex}| g_i = \mathrm{relu}, \mathsf{sort}, \mathsf{maxpool}, \mathsf{output} \mathsf{ of nonsmooth numerical program}.$

• Nonsmooth backprop is formal chain rule:

$$\operatorname{backprop}_f \in \operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1$$

• Conservative chain rule: if g_1, \ldots, g_L are path differentiable, then the set valued field $\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1 \colon \mathbb{R}^p \rightrightarrows \mathbb{R}^p$ is conservative for f.

• Take $f: \mathbb{R}^p \to \mathbb{R}$ Lipschitz expressed from elementary blocks g_1, \dots, g_L ,

$$f = g_L \circ \ldots \circ g_1$$

 $\mathsf{Ex} \mid g_i = \mathrm{relu}$, sort, maxpool, output of nonsmooth numerical program.

• Nonsmooth backprop is **formal chain rule**:

$$\mathrm{backprop}_f \in \mathrm{Jac}^c g_L \circ \ldots \circ \mathrm{Jac}^c g_1$$

- Conservative chain rule: if g_1, \ldots, g_L are path differentiable, then the set valued field $\operatorname{Jac}^{c} g_{l} \circ \ldots \circ \operatorname{Jac}^{c} g_{1} : \mathbb{R}^{p} \rightrightarrows \mathbb{R}^{p}$ is conservative for f.
- Widespread "conservative gradients oracles":

Plan

- Non-smooth backpropagation
- Pailure of nonconvex nonsmooth calculus
- Conservative gradients and Jacobians
- 4 Compositional conservative calculus
- Optimization with conservative gradients
- 6 Beyond compositional calculus
- Conclusion

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := \mathsf{g}_{ extsf{L}} \circ \ldots \circ \mathsf{g}_1(heta)$$

Assumption

ullet g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := \mathsf{g}_{\mathtt{L}} \circ \ldots \circ \mathsf{g}_1(heta)$$

Assumption:

ullet g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := g_L \circ \ldots \circ g_1(\theta)$$

Assumption:

 \bullet g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_0 \in \mathbb{R}^p$, $(\alpha_k)_{k \in \mathbb{N}}$ positive sequence

$$\frac{\theta_{k+1} - \theta_k}{\alpha_k} = \operatorname{backprop} \ell(\theta_k) \in (\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1)(\theta_k).$$

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := \mathsf{g}_{\mathtt{L}} \circ \ldots \circ \mathsf{g}_1(heta)$$

Assumption:

• g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_0 \in \mathbb{R}^p$, $(\alpha_k)_{k \in \mathbb{N}}$ positive sequence

$$\frac{\theta_{k+1} - \theta_k}{\alpha_k} = \operatorname{backprop} \ell(\theta_k) \in (\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1)(\theta_k).$$

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k \to 0$.
- Accumulation points satisfy $0 \in \operatorname{conv} \left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1} \right) (\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^c \ell(\theta)$
- ullet Same result for any definable conservative gradient instead of $\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1$.

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := \mathsf{g}_{\mathtt{L}} \circ \ldots \circ \mathsf{g}_1(heta)$$

Assumption:

• g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_0 \in \mathbb{R}^p$, $(\alpha_k)_{k \in \mathbb{N}}$ positive sequence

$$\frac{\theta_{k+1} - \theta_k}{\alpha_k} = \operatorname{backprop} \ell(\theta_k) \in (\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1)(\theta_k).$$

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k \to 0$.
- Accumulation points satisfy $0 \in \operatorname{conv} \left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1}\right)(\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^c \ell(\theta)$.
- ullet Same result for any definable conservative gradient instead of $\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1$.

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := g_L \circ \ldots \circ g_1(\theta)$$

Assumption:

g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_0 \in \mathbb{R}^p$, $(\alpha_k)_{k \in \mathbb{N}}$ positive sequence

$$\frac{\theta_{k+1} - \theta_k}{\alpha_k} = \operatorname{backprop} \ell(\theta_k) \in (\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1)(\theta_k).$$

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k \to 0$.
- Accumulation points satisfy $0 \in \operatorname{conv} \left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1}\right)(\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^c \ell(\theta)$.
- Same result for any definable conservative gradient instead of $\operatorname{Jac}{}^c g_L \circ \ldots \circ \operatorname{Jac}{}^c g_1$.

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := g_L \circ \ldots \circ g_1(\theta)$$

Assumption:

 \bullet g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_0 \in \mathbb{R}^p$, $(\alpha_k)_{k \in \mathbb{N}}$ positive sequence

$$\frac{\theta_{k+1} - \theta_k}{\alpha_k} = \operatorname{backprop} \ell(\theta_k) \in (\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1)(\theta_k).$$

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k \to 0$.
- Accumulation points satisfy $0 \in \operatorname{conv} \left(\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1 \right) (\theta)$
- For "most" such sequences, accumulation points are Clarke critical $0 \in \partial^c \ell(\theta)$.
- $\bullet \ \, {\sf Same \ result \ for \ any \ definable \ conservative \ gradient \ instead \ of \ } {\rm Jac}^{\, c}g_L \circ \ldots \circ {\rm Jac}^{\, c}g_1. \\$

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{n} \sum_{i=1}^n g_{i,L} \circ \ldots \circ g_{i,1}(\theta)$$

Qualitatively similar results under appropriate assumptions

• **Subsampling:** at step k sample $i_k \subset \{1, ..., n\}$ uniformly at random.

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^{c} g_{i_k,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i_k,1} \right) (\theta_k).$$

• Incremental: cycle through each element of the sum, for $i=1,\ldots,r$

$$\theta_{k,i+1} \in \theta_{k,i} - \alpha_k \left(\operatorname{Jac}^{c} g_{i,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i,1} \right) (\theta_{k,i}).$$

- Step size: scalar adaptive step size (adagrad).
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{n} \sum_{i=1}^n g_{i,L} \circ \ldots \circ g_{i,1}(\theta)$$

Qualitatively similar results under appropriate assumptions.

• **Subsampling:** at step k sample $i_k \subset \{1, ..., n\}$ uniformly at random.

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^{c} g_{i_k,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i_k,1} \right) (\theta_k).$$

• Incremental: cycle through each element of the sum, for i = 1, ..., n

$$\theta_{k,i+1} \in \theta_{k,i} - \alpha_k \left(\operatorname{Jac}^{c} g_{i,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i,1} \right) (\theta_{k,i}).$$

- **Step size:** scalar adaptive step size (adagrad)
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{n} \sum_{i=1}^n g_{i,L} \circ \ldots \circ g_{i,1}(\theta)$$

Qualitatively similar results under appropriate assumptions.

• **Subsampling:** at step k sample $i_k \subset \{1, \dots, n\}$ uniformly at random.

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^c g_{i_k,L} \circ \ldots \circ \operatorname{Jac}^c g_{i_k,1} \right) (\theta_k).$$

• Incremental: cycle through each element of the sum, for $i=1,\ldots,r$

$$\theta_{k,i+1} \in \theta_{k,i} - \alpha_k \left(\operatorname{Jac}^{c} g_{i,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i,1} \right) (\theta_{k,i}).$$

- **Step size:** scalar adaptive step size (adagrad)
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{n} \sum_{i=1}^n g_{i,L} \circ \ldots \circ g_{i,1}(\theta)$$

Qualitatively similar results under appropriate assumptions.

• **Subsampling:** at step k sample $i_k \subset \{1, ..., n\}$ uniformly at random.

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^c g_{i_k,L} \circ \ldots \circ \operatorname{Jac}^c g_{i_k,1} \right) (\theta_k).$$

• **Incremental:** cycle through each element of the sum, for i = 1, ..., n

$$\theta_{k,i+1} \in \theta_{k,i} - \alpha_k \left(\operatorname{Jac}^{c} g_{i,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i,1} \right) (\theta_{k,i}).$$

- **Step size:** scalar adaptive step size (adagrad)
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{n} \sum_{i=1}^n g_{i,L} \circ \ldots \circ g_{i,1}(\theta)$$

Qualitatively similar results under appropriate assumptions.

• **Subsampling:** at step k sample $i_k \subset \{1, ..., n\}$ uniformly at random.

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^c g_{i_k,L} \circ \ldots \circ \operatorname{Jac}^c g_{i_k,1} \right) (\theta_k).$$

• **Incremental:** cycle through each element of the sum, for i = 1, ..., n

$$\theta_{k,i+1} \in \theta_{k,i} - \alpha_k \left(\operatorname{Jac}^{c} g_{i,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i,1} \right) (\theta_{k,i}).$$

- Step size: scalar adaptive step size (adagrad).
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

$$\min_{\theta \in \mathbb{R}^p} \ell(\theta) := \frac{1}{n} \sum_{i=1}^n g_{i,L} \circ \ldots \circ g_{i,1}(\theta)$$

Qualitatively similar results under appropriate assumptions.

• **Subsampling:** at step k sample $i_k \subset \{1, ..., n\}$ uniformly at random.

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^c g_{i_k,L} \circ \ldots \circ \operatorname{Jac}^c g_{i_k,1} \right) (\theta_k).$$

• Incremental: cycle through each element of the sum, for $i=1,\ldots,n$

$$\theta_{k,i+1} \in \theta_{k,i} - \alpha_k \left(\operatorname{Jac}^{c} g_{i,L} \circ \ldots \circ \operatorname{Jac}^{c} g_{i,1} \right) (\theta_{k,i}).$$

- Step size: scalar adaptive step size (adagrad).
- Algorithms: discretization of continuous time dynamics with Lyapunov functions (second order INNA, Castera et.al. 2019).

In a nutshell

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian.
- Exist for the majority of applications.
- Compatible with compositional calculus rules
- Have a minimizing behavior similar to subgradients in optimization.

Conservative gradients / Jacobians:

- Objects akin to Clarke's subgradient / Jacobian.
- Exist for the majority of applications.
- Compatible with compositional calculus rules
- Have a minimizing behavior similar to subgradients in optimization.

Despite differential calculus artifacts, optimization works with nonsmooth autodiff:

Plan

- Non-smooth backpropagation
- Failure of nonconvex nonsmooth calculus
- Conservative gradients and Jacobians
- 4 Compositional conservative calculus
- 5 Optimization with conservative gradients
- 6 Beyond compositional calculus
- Conclusion

Abstract integrals (with Bolte, Le, 2021)

```
 \begin{split} &f\colon \mathbb{R}^p\times\mathbb{R}^m\to\mathbb{R}\\ &\mu \text{ measure on } \mathbb{R}^m,\ f(x,\cdot)\ \mu\text{-integrable for all } x.\\ &F\colon x\mapsto \int_{\mathbb{R}^m}f(x,s)d\mu(s). \end{split}
```

$$\begin{split} &f\colon \mathbb{R}^p\times\mathbb{R}^m\to\mathbb{R}\\ &\mu \text{ measure on } \mathbb{R}^m,\ f(x,\cdot)\ \mu\text{-integrable for all } x.\\ &F\colon x\mapsto \int_{\mathbb{R}^m} f(x,s)d\mu(s). \end{split}$$

Inversion integral / derivative:

$$x \mapsto f(x,s)$$
, smooth, for all s ,
$$\forall (x,s), \ \|\nabla_x f(x,s)\| \le \kappa(s)$$

for $\kappa: \mathbb{R}^m \to \mathbb{R}_+$, μ integrable.

Gradient of F

$$x \mapsto \int_{\mathbb{R}^m} \nabla f(x,s) d\mu(s)$$

```
f \colon \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}
\mu measure on \mathbb{R}^m, f(x,\cdot) \mu-integrable for all x.
F \colon x \mapsto \int_{\mathbb{R}^m} f(x,s) d\mu(s).
```

Inversion integral / derivative:

$$x\mapsto f(x,s)$$
, **smooth**, for all s , $\forall (x,s), \, \|\nabla_x f(x,s)\| \leq \kappa(s)$ for $\kappa:\mathbb{R}^m \to \mathbb{R}_+$, μ integrable.

Gradient of F

$$x \mapsto \int_{\mathbb{R}^m} \nabla f(x,s) d\mu(s)$$

 $f \colon \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}$ μ measure on \mathbb{R}^m , $f(x,\cdot)$ μ -integrable for all x. $F \colon x \mapsto \int_{\mathbb{R}^m} f(x,s) d\mu(s).$

Inversion integral / derivative:

$$x\mapsto f(x,s)$$
, smooth, for all s ,

$$\forall (x,s), \|\nabla_x f(x,s)\| \leq \kappa(s)$$

for $\kappa : \mathbb{R}^m \to \mathbb{R}_+$, μ integrable.

Gradient of F

$$x \mapsto \int_{\mathbb{R}^m} \nabla f(x,s) d\mu(s)$$

Nonsmooth inversion:

 $x \mapsto f(x, s)$, path-differentiable,

$$\forall (x,s), \forall v \in \partial_x^c f(x,s), \quad \|v\| \le \kappa(s)$$

for $\kappa : \mathbb{R}^m \to \mathbb{R}_+$, μ integrable.

Conservative gradient of *F*

$$x \Longrightarrow \int_{\mathbb{R}^m} \partial_x^c f(x,s) d\mu(s).$$

 $f \colon \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}$ μ measure on \mathbb{R}^m , $f(x,\cdot)$ μ -integrable for all x. $F \colon x \mapsto \int_{\mathbb{R}^m} f(x,s) d\mu(s).$

Inversion integral / derivative:

$$x \mapsto f(x,s)$$
, smooth, for all s , $\forall (x,s), \|\nabla_x f(x,s)\| \le \kappa(s)$

for $\kappa : \mathbb{R}^m \to \mathbb{R}_+$, μ integrable.

Gradient of F

$$x \mapsto \int_{\mathbb{R}^m} \nabla f(x,s) d\mu(s)$$

Nonsmooth inversion:

 $x \mapsto f(x, s)$, path-differentiable,

$$\forall (x,s), \forall v \in \partial_x^c f(x,s), \quad \|v\| \le \kappa(s)$$

for $\kappa : \mathbb{R}^m \to \mathbb{R}_+$, μ integrable.

Conservative gradient of *F*

$$x
ightharpoonup \int_{\mathbb{R}^m} \partial_x^c f(x,s) d\mu(s).$$

Applications: Stochastic optimization, chain rule for parametric integrals (assumption).

 $F: \mathbb{R}^m \to \mathbb{R}^m$ Lipschitz

$$\frac{d}{dt}X(t,\theta) = F(X(t,\theta))$$
$$X(0) = \theta \in \mathbb{R}^m.$$

$$F: \mathbb{R}^m \to \mathbb{R}^m$$
 Lipschitz

$$\frac{d}{dt}X(t,\theta) = F(X(t,\theta))$$
$$X(0) = \theta \in \mathbb{R}^m.$$

Sensitivity equation:

F, smooth.

$$\frac{d}{dt}M(t,\theta) = \operatorname{Jac} F(X(t,\theta))M(t,\theta)$$

$$M(0) = I \in \mathbb{R}^{m \times m}.$$
(1)

 $\theta \mapsto X(t,\theta)$ is smooth, Jacobian

$$\theta \mapsto M(t,\theta)$$
, s.t. M solution to (1).

$$F: \mathbb{R}^m \to \mathbb{R}^m$$
 Lipschitz

$$\frac{d}{dt}X(t,\theta) = F(X(t,\theta))$$
$$X(0) = \theta \in \mathbb{R}^m.$$

Sensitivity equation:

F, smooth.

$$\frac{d}{dt}M(t,\theta) = \operatorname{Jac} F(X(t,\theta))M(t,\theta)$$
$$M(0) = I \in \mathbb{R}^{m \times m}.$$
 (1)

 $\theta \mapsto X(t,\theta)$ is smooth, Jacobian

$$\theta \mapsto M(t,\theta)$$
, s.t. M solution to (1).

$$F \colon \mathbb{R}^m \to \mathbb{R}^m$$
 Lipschitz

$$\frac{d}{dt}X(t,\theta) = F(X(t,\theta))$$
$$X(0) = \theta \in \mathbb{R}^m.$$

Sensitivity equation:

F, smooth.

$$\frac{d}{dt}M(t,\theta) = \operatorname{Jac} F(X(t,\theta))M(t,\theta)$$

$$M(0) = I \in \mathbb{R}^{m \times m}.$$
(1)

 $\theta \mapsto X(t,\theta)$ is smooth, Jacobian:

$$\theta \mapsto M(t,\theta)$$
, s.t. M solution to (1).

$$F: \mathbb{R}^m \to \mathbb{R}^m$$
 Lipschitz

$$\frac{d}{dt}X(t,\theta) = F(X(t,\theta))$$
$$X(0) = \theta \in \mathbb{R}^m.$$

Sensitivity equation:

F, smooth.

$$\frac{d}{dt}M(t,\theta) = \operatorname{Jac} F(X(t,\theta))M(t,\theta)$$

$$M(0) = I \in \mathbb{R}^{m \times m}.$$
 (1)

 $\theta \mapsto X(t,\theta)$ is smooth, Jacobian:

$$\theta \mapsto M(t,\theta)$$
, s.t. M solution to (1).

Nonsmooth sensitivity equation:

F, path differentiable.

$$\frac{d}{dt}M(t,\theta) \in \operatorname{Jac}^{c}F(X(t,\theta))M(t,\theta)$$

$$M(0) = I \in \mathbb{R}^{m \times m}.$$
(2)

Conservative jacobian of $\theta \mapsto X(t,\theta)$

$$\theta \rightrightarrows \{M(t,\theta), \forall M \text{ solution to (2).}\}$$

$$F \colon \mathbb{R}^m \to \mathbb{R}^m$$
 Lipschitz

$$\frac{d}{dt}X(t,\theta) = F(X(t,\theta))$$
$$X(0) = \theta \in \mathbb{R}^m.$$

Sensitivity equation:

F, smooth.

$$\frac{d}{dt}M(t,\theta) = \operatorname{Jac} F(X(t,\theta))M(t,\theta)$$

$$M(0) = I \in \mathbb{R}^{m \times m}.$$
(1)

 $\theta \mapsto X(t,\theta)$ is smooth, Jacobian:

$$\theta \mapsto M(t,\theta)$$
, s.t. M solution to (1).

Nonsmooth sensitivity equation:

F, path differentiable.

$$\frac{d}{dt}M(t,\theta) \in \operatorname{Jac}^{c}F(X(t,\theta))M(t,\theta)$$

$$M(0) = I \in \mathbb{R}^{m \times m}.$$
(2)

Conservative jacobian of $\theta \mapsto X(t,\theta)$

$$\theta \rightrightarrows \{M(t,\theta), \forall M \text{ solution to (2).}\}$$

Applications: Neural ODE, adjoint method, optimization under ODE constraints.

 $F:\mathbb{R}^n imes\mathbb{R}^m o\mathbb{R}^m$ Lipschitz and $F(\hat{ heta},\hat{x})=0$

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$$
 Lipschitz and $F(\hat{\theta}, \hat{x}) = 0$

Classical implicit differentiation:

F smooth, assume

$$[A, B] = \operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text{ invertible.}$$

Solutions to $F(\theta,x)=0$ locally parametrized by $G:U\to\mathbb{R}^n$, smooth:

$$F(\theta, G(\theta)) = 0$$

Implicit jacobian of G

$$\theta \to -B^{-1}A : [A, B] = \operatorname{Jac} F(\theta, G(\theta)).$$

$$F: \mathbb{R}^n \times \mathbb{R}^m o \mathbb{R}^m$$
 Lipschitz and $F(\hat{\theta}, \hat{x}) = 0$

Classical implicit differentiation:

F smooth, assume

$$[A, B] = \operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text{ invertible.}$$

Solutions to $F(\theta,x)=0$ locally parametrized by $G:U\to\mathbb{R}^n$, smooth:

$$F(\theta, G(\theta)) = 0.$$

Implicit jacobian of G

$$\theta \to -B^{-1}A : [A, B] = \operatorname{Jac} F(\theta, G(\theta)).$$

$$F:\mathbb{R}^n imes\mathbb{R}^m o\mathbb{R}^m$$
 Lipschitz and $F(\hat{ heta},\hat{x})=0$

Classical implicit differentiation:

F smooth, assume

$$[A, B] = \operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text{ invertible.}$$

Solutions to $F(\theta,x)=0$ locally parametrized by $G:U\to\mathbb{R}^n$, smooth:

$$F(\theta, G(\theta)) = 0.$$

Implicit jacobian of G:

$$\theta \to -B^{-1}A : [A, B] = \operatorname{Jac} F(\theta, G(\theta)).$$

$$F:\mathbb{R}^n imes\mathbb{R}^m o\mathbb{R}^m$$
 Lipschitz and $F(\hat{ heta},\hat{x})=0$

Classical implicit differentiation:

F smooth, assume

$$[A, B] = \operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text{ invertible.}$$

Solutions to $F(\theta,x)=0$ locally parametrized by $G:U\to\mathbb{R}^n$, smooth:

$$F(\theta, G(\theta)) = 0.$$

Implicit jacobian of G:

$$\theta \to -B^{-1}A : [A, B] = \operatorname{Jac} F(\theta, G(\theta)).$$

Nonsmooth implicit differentiation:

F path differentiable, assume

$$\forall [A, B] \in \operatorname{Jac}^{c} F(\hat{\theta}, \hat{x}), \quad B \text{ invertible.}$$

Solutions locally parametrized by G: $U \to \mathbb{R}^n$, path-differentiable:

$$F(\theta, G(\theta)) = 0.$$

Implicit conservative jacobian for G:

$$heta
ightrightarrows \left\{ -B^{-1}A : [A \ B] \in \mathsf{Jac}^{\mathsf{c}}_{\mathsf{F}}(heta, \mathsf{G}(heta))
ight\}.$$

$$F:\mathbb{R}^n imes\mathbb{R}^m o\mathbb{R}^m$$
 Lipschitz and $F(\hat{ heta},\hat{x})=0$

Classical implicit differentiation:

F smooth, assume

$$[A, B] = \operatorname{Jac} F(\hat{\theta}, \hat{x}), \quad B \text{ invertible.}$$

Solutions to $F(\theta,x)=0$ locally parametrized by $G:U\to\mathbb{R}^n$, **smooth:**

$$F(\theta, G(\theta)) = 0.$$

Implicit jacobian of G:

$$\theta \to -B^{-1}A : [A, B] = \operatorname{Jac} F(\theta, G(\theta)).$$

Nonsmooth implicit differentiation:

F path differentiable, assume

$$\forall [A, B] \in \operatorname{Jac}^{c} F(\hat{\theta}, \hat{x}), \quad B \text{ invertible.}$$

Solutions locally parametrized by G: $U \to \mathbb{R}^n$, path-differentiable:

$$F(\theta, G(\theta)) = 0.$$

Implicit **conservative jacobian** for *G*:

$$\theta
ightrightarrows \left\{ -B^{-1}A: [A\ B] \in \mathsf{Jac}^{\mathsf{c}}_{\mathit{F}}(heta, \mathit{G}(heta))
ight\}.$$

Applications: Differentiate G(x) uniquely defined as F(x, G(x)) = 0. parametric optimization, bilevel optimization, implicit modeling, hyperparameter tuning.

$$F:\mathbb{R}^n imes\mathbb{R}^m o\mathbb{R}^m$$
, algorithmic recursion, $x_0(\theta)\in\mathbb{R}^n$
$$x_{k+1}(\theta)=F(\theta,x_k(\theta)).$$

$$F:\mathbb{R}^n imes\mathbb{R}^m o\mathbb{R}^m$$
, algorithmic recursion, $x_0(heta)\in\mathbb{R}^n$

$$x_{k+1}(\theta) = F(\theta, x_k(\theta)).$$

For all
$$\theta$$
, $x \to F(x, \theta)$ is ρ Lipschitz, $\rho < 1$: $x_k(\theta) \underset{k \to \infty}{\to} \bar{x}(\theta)$.

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$$
, algorithmic recursion, $x_0(\theta) \in \mathbb{R}^n$

$$x_{k+1}(\theta) = F(\theta, x_k(\theta)).$$

For all
$$\theta$$
, $x \to F(x, \theta)$ is ρ Lipschitz, $\rho < 1$:

$$x_k(\theta) \underset{k\to\infty}{\longrightarrow} \bar{x}(\theta).$$

Classical asymptotics (Gilbert 92):

F smooth.

Forward jacobian propagation

$$\operatorname{Jac} x_{k+1}(\theta) = B \operatorname{Jac} x_k(\theta) + A$$
$$[A, B] = \operatorname{Jac} F(\theta, x_k(\theta))$$

Limiting jacobian.

$$\operatorname{Jac} x_k(\theta) \underset{k \to \infty}{\longrightarrow} \operatorname{Jac} \bar{x}(\theta)
= (I - B)^{-1} A, [A, B] = \operatorname{Jac} F(\theta, \bar{x}(\theta))$$

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$$
, algorithmic recursion, $x_0(\theta) \in \mathbb{R}^n$

$$x_{k+1}(\theta) = F(\theta, x_k(\theta)).$$

For all
$$\theta$$
, $x \to F(x, \theta)$ is ρ Lipschitz, $\rho < 1$:

$$x_k(\theta) \underset{k \to \infty}{\to} \bar{x}(\theta).$$

Classical asymptotics (Gilbert 92):

F smooth.

Forward jacobian propagation:

$$\operatorname{Jac} x_{k+1}(\theta) = B \operatorname{Jac} x_k(\theta) + A$$
$$[A, B] = \operatorname{Jac} F(\theta, x_k(\theta))$$

Limiting jacobian

$$\operatorname{Jac} x_k(\theta) \underset{k \to \infty}{\longrightarrow} \operatorname{Jac} \bar{x}(\theta)$$
$$= (I - B)^{-1} A, [A, B] = \operatorname{Jac} F(\theta, \bar{x}(\theta))$$

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$$
, algorithmic recursion, $x_0(\theta) \in \mathbb{R}^n$

$$x_{k+1}(\theta) = F(\theta, x_k(\theta)).$$

For all
$$\theta$$
, $x \to F(x, \theta)$ is ρ Lipschitz, $\rho < 1$:

$$x_k(\theta) \underset{k \to \infty}{\longrightarrow} \bar{x}(\theta).$$

Classical asymptotics (Gilbert 92):

F smooth.

Forward jacobian propagation:

$$\operatorname{Jac} x_{k+1}(\theta) = B \operatorname{Jac} x_k(\theta) + A$$
$$[A, B] = \operatorname{Jac} F(\theta, x_k(\theta))$$

Limiting jacobian.

$$\begin{aligned} &\operatorname{Jac} x_k(\theta) \underset{k \to \infty}{\to} \operatorname{Jac} \bar{x}(\theta) \\ &= (I - B)^{-1} A, \, [A, B] = \operatorname{Jac} F(\theta, \bar{x}(\theta)) \end{aligned}$$

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$$
, algorithmic recursion, $x_0(\theta) \in \mathbb{R}^n$

$$x_{k+1}(\theta) = F(\theta, x_k(\theta)).$$

For all θ , $x \to F(x, \theta)$ is ρ Lipschitz, $\rho < 1$: $x_k(\theta) \underset{k \to \infty}{\to} \bar{x}(\theta)$.

Classical asymptotics (Gilbert 92):

F smooth.

Forward jacobian propagation:

$$\operatorname{Jac} x_{k+1}(\theta) = B \operatorname{Jac} x_k(\theta) + A$$
$$[A, B] = \operatorname{Jac} F(\theta, x_k(\theta))$$

Limiting jacobian.

$$\begin{aligned} &\operatorname{Jac} x_k(\theta) \underset{k \to \infty}{\to} \operatorname{Jac} \bar{x}(\theta) \\ &= (I - B)^{-1} A, \, [A, B] = \operatorname{Jac} F(\theta, \bar{x}(\theta)) \end{aligned}$$

Nonsmooth unrolling:

F path-differentiable.

Conservative jacobian propagation:

$$D_{k+1}(\theta) = \{BD_k(\theta) + A$$
$$[A, B] \in \operatorname{Jac}^{c} F(\theta, x_k(\theta))\}$$

Limiting conservative jacobian:

$$D_k(\theta) \underset{k \to \infty}{\to} \bar{D}(\theta)$$

$$\supset \left\{ (I - B)^{-1} A, \quad [A, B] \in \operatorname{Jac}^{c} F(\theta, \bar{x}(\theta)) \right\}$$

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$$
, algorithmic recursion, $x_0(\theta) \in \mathbb{R}^n$

$$x_{k+1}(\theta) = F(\theta, x_k(\theta)).$$

For all
$$\theta$$
, $x \to F(x, \theta)$ is ρ Lipschitz, $\rho < 1$:

Classical asymptotics (Gilbert 92):

F smooth.

Forward jacobian propagation:

$$\operatorname{Jac} x_{k+1}(\theta) = B \operatorname{Jac} x_k(\theta) + A$$
$$[A, B] = \operatorname{Jac} F(\theta, x_k(\theta))$$

Limiting jacobian.

$$\begin{aligned} &\operatorname{Jac} x_k(\theta) \underset{k \to \infty}{\to} \operatorname{Jac} \bar{x}(\theta) \\ &= (I - B)^{-1} A, \ [A, B] = \operatorname{Jac} F(\theta, \bar{x}(\theta)) \end{aligned}$$

Nonsmooth unrolling:

F path-differentiable.

Conservative jacobian propagation:

 $x_k(\theta) \underset{k \to \infty}{\longrightarrow} \bar{x}(\theta).$

$$D_{k+1}(\theta) = \{BD_k(\theta) + A$$
$$[A, B] \in \operatorname{Jac}^{c} F(\theta, x_k(\theta))\}$$

Limiting conservative jacobian:

$$egin{aligned} & D_k(heta) & \stackrel{ op}{\longrightarrow} ar{D}(heta) \ & \supset \left\{ (I-B)^{-1}A, \quad [A,B] \in \operatorname{Jac}^c F(heta, ar{x}(heta))
ight\} \end{aligned}$$

Applications: Differentiation of forward-backward, Douglas-Rachford, ADMM).

Plan

- Non-smooth backpropagation
- Pailure of nonconvex nonsmooth calculus
- 3 Conservative gradients and Jacobians
- 4 Compositional conservative calculus
- 5 Optimization with conservative gradients
- 6 Beyond compositional calculus
- Conclusion

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions

- Optimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details.
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks.

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions:

- Optimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details.
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions:

- Optimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details.
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks

Initial motivation an results:

- study nonsmooth automatic differentiation.
- compositional calculus rules: sum, product, composition.
- require chain rule along Lipschitz curves: ubiquitous in applications.
- optimization: qualitative convergence of first order methods.

Extensions:

- Optimization algorithm variations.
- Extensions of conservative calculus.

Not presented

- Proof details.
- Parametric optimality for max structured functions.
- Complexity considerations (with Bolte, Boustany, Pesquet-Popescu)

Thanks.

Composite tame optimization

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := \mathsf{g}_{\mathtt{L}} \circ \ldots \circ \mathsf{g}_1(heta)$$

Assumption:

 \bullet g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_0 \in \mathbb{R}^p$, $(\alpha_k)_{k \in \mathbb{N}}$ positive sequence

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1 \right) (\theta_k).$$

Theorem (Bolte-Pauwels 2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k \to 0$.
- Accumulation points satisfy $0 \in \operatorname{conv} \left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1} \right) (\theta)$
- There is a meagre Lebesgue null set X_0 and finite set $\Lambda \in \mathbb{R}_+$ such that if $\theta_0 \notin X_0$ and $\alpha_k \notin \Lambda$, $k \in \mathbb{N}$, accumulation points are Clarke critical $0 \in \partial^c \ell(\theta)$.

Composite tame optimization

$$\min_{ heta \in \mathbb{R}^p} \ell(heta) := \mathsf{g}_{ extsf{L}} \circ \ldots \circ \mathsf{g}_1(heta)$$

Assumption:

ullet g_i is locally Lipschitz tame (piecewise polynomial, semi-algebraic, definable).

First order algorithm: fix $\theta_0 \in \mathbb{R}^p$, $(\alpha_k)_{k \in \mathbb{N}}$ positive sequence

$$\theta_{k+1} \in \theta_k - \alpha_k \left(\operatorname{Jac}^c g_L \circ \ldots \circ \operatorname{Jac}^c g_1 \right) (\theta_k).$$

Theorem (Bolte-Pauwels 2020):

- Step size condition: $\sum_{k=1}^{+\infty} \alpha_k = +\infty$ and $\alpha_k \to 0$.
- Accumulation points satisfy $0 \in \operatorname{conv} \left(\operatorname{Jac}^{c} g_{L} \circ \ldots \circ \operatorname{Jac}^{c} g_{1} \right) (\theta)$
- There is a meagre Lebesgue null set X_0 and finite set $\Lambda \in \mathbb{R}_+$ such that if $\theta_0 \notin X_0$ and $\alpha_k \notin \Lambda$, $k \in \mathbb{N}$, accumulation points are Clarke critical $0 \in \partial^c \ell(\theta)$.

Semi-algebraic?

Basic set: Solution set of finitely many polynomial inequalities.

Set: Finite union of Basic semi-algebraic sets.

Function, set valued map: Semi-algebraic graph.

Examples: polynomials, square root, quotients, norm, relu, rank . . .

Tarski Seidenberg: first order formula involving semi-algebraic sets

 $\rightarrow \text{semi-algebraic}.$

• gradient / subgradient of semi-algebraic function, partial minima, composition

Tame characterization: stratification, variational projection

Variational stratification: [Bolte-Daniilidis-Lewis (2007)] **Example:** Projection formula .

Tame characterization: stratification, variational projection

Variational stratification: [Bolte-Daniilidis-Lewis (2007)] **Example:** Projection formula $f(x_1, x_2) = |x_1| + |x_2|$.

Tame characterization: stratification, variational projection

Let $D: \mathbb{R}^p \rightrightarrows \mathbb{R}^p$ be a semi-algebraic (or definable), graph closed, locally bounded and $f: \mathbb{R}^p \to \mathbb{R}$, $r \in \mathbb{N}^*$. Then the following are equivalent

- D is a conservative field for f.
- (f,D) has a C' variational stratification: there exists a stratification $\{M_i\}_{i\in I}$ of \mathbb{R}^p such that
 - ▶ The restriction f_{M_i} of f to M_i is C^r for all $i \in I$.
 - ▶ For all $x \in \mathbb{R}^p$, set M_x the active stratum, T_x its tangent space at x.

$$P_{T_x}D(x)=\{\mathrm{grad}\ f_{M_x}(x)\}.$$

Whitney stratification: finite partition of \mathbb{R}^p into C^r embedded manifolds (+ technical condition).

Applies to backprop:

- Morse-Sard condition.
- artefacts are "negligible" in a geometric sense.