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Mean Field Games (MFG) study

Games = each agent controls her state in order to minimize a proper cost which depends
on the other agents’ positions

with infinitely many agents = having individually a negligible influence on the global system
(Ref: Aumann (’64), Schmeidler (’73), Hildenbrand (’74), Mas-Colell (’84), ...)

Early references:

– Heterogeneous agent models in economy
(Aiyagari (’94), Bewley (’86), Krusell-Smith (’98),...)

– Early works by Lasry-Lions (2005) and Huang-Caines-Malhamé (2005)
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A class of N−player games

Fix N ∈ N, N ≥ 2 the number of players: N large; fix T > 0, time horizon.

Fix i ∈ {1, . . . ,N}. Player i wants to minimize over her control (αi
t ) the quantity

JN,i (αi , (αj )j 6=i ) := E

[∫ T

0

(
1
2 |α

i
t |

2 + F (,mN,i
X t

)
)

dt + G(,mN,i
XT

)

]

where
d = α

j
t dt +

√
2dW j

t , X j
0 = x j

0, ,

the (xk
0 )k≥0 being i.i.d. initial conditions and (W k )k≥0 being independent Brownian

motions of dimension d : W i is proper noise to i .

, are interaction costs.

Nash equilibria (After Nash (’51)): We say that ᾱ = (ᾱ1, . . . , ᾱN ) is a Nash Equilibrium if

JN,i (ᾱi , (ᾱ)j 6=i ) ≤ JN,i (αi , (ᾱ)j 6=i ) ∀αi , ∀i.
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From the Nash system to the equilibrium trajectories

When players play closed-loop controls: ᾱi
t = ᾱi (t ,X 1

t , . . . ,X
N
t ), the value function

vN,i : initial states (t , x) = (t , x1, . . . , xN ) 7→ equilibrium cost vN,i (t , x)

satisfies the Nash system:

(Nash)


−∂t vN,i (t , x)− LN,i

(
x ,D2

xx vN,i (t , x),
(
Dx vN,j (t , x)

)
j

)
= 0 in [0,T ]× (Rd )N ,

vN,i (T , x) = G(xi ,m
N,i
x ) in (Rd )N .

We denote by X N
t = (X N,1

t , . . . ,X N,N
t ) the “optimal trajectories" of the N−player game:

they solve the system of N coupled stochastic differential equations (SDE):

dX N,i
t = −Dxi v

N,i (t ,X N
t )dt +

√
2dW i

t , t ∈ [0,T ].

Aim: We are interested in the behavior, as N →∞, of the (vN,i ) and of the (X N,i ).
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Expected limit: the Mean Field Game

“The master equation":
By symmetry property, the solution (vN,i )i of the Nash system can be written in the form

vN,i (t , x) = V N(t , x i ,mN,i).
I The (formal) limit U of V N is expected to satisfy the Master equation.
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The master equation

The master equation is a (backward) nonlinear nonlocal transport PDE set on [0,T ]× P(Rd ).

The unknown is U = U(t , x ,m) : [0,T ]× Rd × P(Rd )→ R.

The equation reads
−∂t U − L

(
x ,m,D(x,m)U(t , x ,m),D2

(x,m)U(t , x ,m)
)

= 0,
in (0,T )× Rd × P(Rd ),

U(T , x ,m) = G(x ,m) in Rd × P(Rd ).

where

Dm, D2
mm, ... are derivatives on the space P(Rd ): explained later,

L is expected to be the asymptotic form of LN in the Nash system.

“Goal of the MFG theory"

Analysis of the various MFG formulations and equilibria (including master equation).

Derive these models from the Nash system as N →∞ (mean field limit). Classical
solutions to the master equation give the rate (Cardliaguet, D., Lasry, Lions).

F. Delarue Weak solutions to the master equation of potential mean field gamesICM 2022 6 / 15



The master equation

The master equation is a (backward) nonlinear nonlocal transport PDE set on [0,T ]× P(Rd ).

The unknown is U = U(t , x ,m) : [0,T ]× Rd × P(Rd )→ R.

The equation reads
−∂t U − L

(
x ,m,D(x,m)U(t , x ,m),D2

(x,m)U(t , x ,m)
)

= 0,
in (0,T )× Rd × P(Rd ),

U(T , x ,m) = G(x ,m) in Rd × P(Rd ).

where

Dm, D2
mm, ... are derivatives on the space P(Rd ): explained later,

L is expected to be the asymptotic form of LN in the Nash system.

“Goal of the MFG theory"

Analysis of the various MFG formulations and equilibria (including master equation).

Derive these models from the Nash system as N →∞ (mean field limit). Classical
solutions to the master equation give the rate (Cardliaguet, D., Lasry, Lions).

F. Delarue Weak solutions to the master equation of potential mean field gamesICM 2022 6 / 15



The master equation

The master equation is a (backward) nonlinear nonlocal transport PDE set on [0,T ]× P(Rd ).

The unknown is U = U(t , x ,m) : [0,T ]× Rd × P(Rd )→ R.

The equation reads
−∂t U − L

(
x ,m,D(x,m)U(t , x ,m),D2

(x,m)U(t , x ,m)
)

= 0,
in (0,T )× Rd × P(Rd ),

U(T , x ,m) = G(x ,m) in Rd × P(Rd ).

where

Dm, D2
mm, ... are derivatives on the space P(Rd ): explained later,

L is expected to be the asymptotic form of LN in the Nash system.

“Goal of the MFG theory"

Analysis of the various MFG formulations and equilibria (including master equation).

Derive these models from the Nash system as N →∞ (mean field limit). Classical
solutions to the master equation give the rate (Cardliaguet, D., Lasry, Lions).

F. Delarue Weak solutions to the master equation of potential mean field gamesICM 2022 6 / 15



Derivatives in the space of measures

We consider 2 notions of derivatives of a map U : P(Rd )→ R:

The directional derivative
see, e.g., Dawson, Kolokoltsov, Mischler-Mouhot

The intrinsic derivative
see, e.g., Otto, Ambrosio-Gigli-Savaré, Albeverio-Kondratiev-Röckner, Lions

Derivatives

A map U : P(Rd )→ R is C1 if the limit

exists, is continuous and bounded.
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Detour (1) : Optimal control of large particle systems

Objective is to study master equation by using connection with control...

... requires a detour: cooperative instead of competitive models. In MFG theory,
players are in competition. What about a cooperative version?

We are interested in the optimal control of large particle systems of the form

min
(αN,i )i=1,...,N

E

[∫ T

0

( 1
N

N∑
i=1

1
2 |α

N,i
t |

2 + F
(
mN

XN
t

))
dt + G

(
mN

XN
T

)]

main differences with MFG...:
I cost to the society: we look for a true minimizer,

I F ,G : P → R are energy costs on the whole state of the population.

... but similar questions: behavior of the value functions and of the optimal trajectories as
N → +∞.

Here, the value function VN is defined by:

VN (0, xN
0 ) := inf

(αN,i )i=1,...,N

E

[∫ T

0

( 1
N

N∑
i=1

1
2 |α

N,i
t |

2 + F
(
mN

XN
t

))
dt + G

(
mN

XN
T

)]
,

when X N,i
0 = xN,i

0 .
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Detour (2) : Mean field control

The mean field limit: Following Carmona, D., Lachapelle (’14), Lacker (’17) and Djete-Possamaï-Tan (’19), the
limit problem as N → +∞ is expected to be (a weak solution of) an optimal control
problem of a McKean-Vlasov type

inf
(αt )t

E
[∫ T

0

(
1
2 |αt |2 + F

(
L(Xt |W 0)

))
dt + G

(
L(XT |W 0)

)]
where

dXt = αt dt +
√

2dWt ,

a.k.a. mean field control.

See also Kolokoltsov (’12) and Cecchin (’21) for finite state space problems, Gangbo-Mayorga-Swiech (’21) for a HJ
approach, Bayraktar et al. (’18) and Djete (’19) for various equivalent formulations

Value function (at time t = 0)

U(0,m0) = inf
α

E
[∫ T

0

(
1
2 |αt |2 + F

(
L(Xt )

))
dt + G

(
L(XT )

)]

I If smooth, it is a classical solution of related Hamilton-Jacobi equation on the space
of probability measures.

I Example for smoothness: if F and G are convex on the space of measures.
(Cardaliaguet-D.-Lasry-Lions (’19))
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Back to MFG: Potential games

Mean field control: Following Carmona, D., Lachapelle (’14), Lacker (’17) and Djete-Possamaï-Tan (’19), the
limit problem as N → +∞ is expected to be (a weak solution of) an optimal control
problem of a McKean-Vlasov type

inf
(αt )t

E
[∫ T

0

(
1
2 |αt |2 + F

(
L(Xt )

))
dt + G

(
L(XT )

)]
where

dXt = αt dt +
√

2dWt .

I Value function (at time t = 0)

U(0,m0) = inf
α

E
[∫ T

0

(
1
2 |αt |2 + F

(
L(Xt )

))
dt + G

(
L(XT )

)]
Potential MFG. Consider MFG with

DmF(m, y) = ∂y F (y ,m), DmG(m, y) = ∂y G(y ,m).

I Minimizers of the mean field control problem are equilibria of the MFG!

I Link with the master equation: When F and G are convex, then F and G are
monotone and the solution U of the master equation is given by (β = 0)

∂x U(t , x ,m) = DmU(t ,m, x) (Cardaliaguet-D.-Lasry-Lions (’19)).
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Outside convexity/monotonicity

Without convexity, smoothness of U may be lost, even if the data of smooth: U may not be
a classical sense, but is ‘not so far’.
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Outside convexity/monotonicity

Theorem 6 (Cardaliaguet-Souganidis (’22))

Under regularity assumptions on the data (but no convexity), the map U is globally Lipschitz
continuous on [0,T ]× P and there exists an open and dense subset O on which U is of class
C1. Moreover U satisfies in a classical sense in O the Hamilton-Jacobi equation:

−∂tU(t ,m)−
∫
Rd

div(DmU(t ,m, y))m(dy) +

∫
Rd

1
2 |DmU(t ,m, y)|2m(dy) = F(m).
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Rd

div(DmU(t ,m, y))m(dy) +

∫
Rd

1
2 |DmU(t ,m, y)|2m(dy) = F(m).

HJ at many many points: uniqueness can be forced by requiring more on the solution.

F. Delarue Weak solutions to the master equation of potential mean field gamesICM 2022 11 / 15



Outside convexity/monotonicity

Theorem 6 (Cardaliaguet-Souganidis (’22))

Under regularity assumptions on the data (but no convexity), the map U is globally Lipschitz
continuous on [0,T ]× P and there exists an open and dense subset O on which U is of class
C1. Moreover U satisfies in a classical sense in O the Hamilton-Jacobi equation:
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∫
Rd

div(DmU(t ,m, y))m(dy) +

∫
Rd

1
2 |DmU(t ,m, y)|2m(dy) = F(m).

Theorem 7 (Cecchin-D. (’22))

Under regularity assumptions on the data (but no convexity) and in the periodic setting, there
exists a probability measure P on P1 with full support such that U is the unique globally Lipschitz
and displacement semi-concave that ‘solves’ Leb⊗ P almost everywhere the HJ equation.
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Theorem 7 (Cecchin-D. (’22))

Under regularity assumptions on the data (but no convexity) and in the periodic setting, there
exists a probability measure P on P1 with full support such that U is the unique globally Lipschitz
and displacement semi-concave that ‘solves’ Leb⊗ P almost everywhere the HJ equation.

Displacement convexity: convexity along geodescis in the space of probability measures.

Use of semi-concavity: reminiscent of HJ in finite dimension, Kruzkov (’60), Douglis (’61)

There is a form of Rademacher theorem that ensures that derivatives exist almost surely.

The almost everywhere formulation of the HJ equation requires some care: the equation is
formulated on finite dimensional slices obtained by truncating the Fourier expansion of m.

In finite dimension, connection between semi-concave solutions to HJ equations and
viscosity solutions, see Lions (’82) .

Analysis of viscosity solutions is not straightforward, see Burzoni et al’ (’20), Conforti et al (’21), Cosso
et al. (’22).
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Connection with N-player system

Theorem 8 (Cardaliaguet.-Daudin-Jackson-Souganidis (’22))

Under regularity assumptions on the data (but no convexity), there exists γ ∈ (0, 1] (depending
only on d) and C > 0 (depending on the data) such that, for any (t , x) ∈ [0,T ]× (Rd )N ,

∣∣∣VN (t , x)− U(t ,mN
x )
∣∣∣ ≤ CN−γ

(
1 +

1
N

N∑
i=1

|xi |2
)
.

The proof is based on semiconcavity estimates on VN and on concentration inequalities.

Moreover, Theorem 6 yields to (quantitative) propagation of chaos for the optimal
trajectories.
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Connection with the master equation for MFG

Theorem 9 (Cecchin-D. (’22))

Within the framework of Theorem 7, the function Ū : (t , x ,m) 7→
δU
δm

(t ,m, x) is the unique

solution, in a ‘weak sense’, of

(M̄ )


−∂t Ū −∆Ū + 1

2 |Dx Ū|2 +

∫
Td

DmŪ(·, y) · Dx Ūm(dy)

−
∫
Td

Tr
(
D2

ymŪ
)
(·, y)m(dy) = F (x ,m) + C(t ,m).

Equation (M̄) is the centred version of the master equation: C(t ,m) guarantees that
Ū(t , x ,m, ·) has zero mean w.r.t. m.

Equation (M̄) is also
δ

δm
HJ

Any weak solution derives from a potential: uniqueness requires the potential to be
semi-concave. This is a generalization of Kruzkov (’67) in finite dimension.

Integration by parts for weak solution is understood on finite dimensional slices obtained by
truncating the Fourier expansion of m and by using the fact that δ

δm identifies with the
derivatives w.r.t. (m̂k )k :

δ̂

δm

k

= ∂m̂k .
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−
∫
Td

Tr
(
D2

ymŪ
)
(·, y)m(dy) = F (x ,m) + C(t ,m).

Equation (M̄) is the centred version of the master equation: C(t ,m) guarantees that
Ū(t , x ,m, ·) has zero mean w.r.t. m.

Equation (M̄) is also
δ

δm
HJ

Any weak solution derives from a potential: uniqueness requires the potential to be
semi-concave. This is a generalization of Kruzkov (’67) in finite dimension.

Integration by parts for weak solution is understood on finite dimensional slices obtained by
truncating the Fourier expansion of m and by using the fact that δ

δm identifies with the
derivatives w.r.t. (m̂k )k :

δ̂

δm

k

= ∂m̂k .

F. Delarue Weak solutions to the master equation of potential mean field gamesICM 2022 13 / 15



Notion of a.e. solution

Using Fourier analysis

Use periodic setting by working on P(Td ) and

φ(m), m ∈ P(Td ) ⇒ φ
((

m̂k)
k

)
, m̂k =

∫
Td

ei2πk·x dm(x)

Derivative δφ/δm is the same as derivative with respect to Fourier coefficients:

∂
m̂k/m̂kφ = ̂(δφ/δm)

−k

Good point because spaces generated by finite number of Fourier modes is stable by the
heat equation which is the characteristic equation of the operator(

φ : P(Td )→ R
)
7→
∫
Td

Tr (∂y∂µφ(m)(y)) dm(y)

Rademacher’s theorem

We can find P a probability measure with full support such any Lipschitz function on P(Td )

with respect to the total variation distance is differentiable a.e. in the directions m̂k/m̂k for
k ∈ Nd \ {0}.

F. Delarue Weak solutions to the master equation of potential mean field gamesICM 2022 14 / 15



Reformulation of HJ

Value function is Lipschitz, so rewrite HJ as

∂tU(t ,m)−
∑

k

4π2|k |2m̂k∂m̂kU(t ,m)− 2π2
∫ ∣∣∑

k

k∂m̂kU(t ,m)ei2πk·y ∣∣2dm(y)

+ F(m) = 0

Formally, uniqueness is to expand [U1 − U2](t , µt ) along

∂tµt (x) + divx

[(
∂µφ

)(
t , µt

)
(x)µt (x)

]
−∆xµt (x) = 0

Use semi-concavity

U
(
t ,L(X + Y )

)
+ U

(
t ,L(X − Y )

)
− 2U

(
t ,L(X)

)
≤ CE

[
|Y |2

]
If the initial value of µ0 is random with absolute law w.r.t. to P, then µt also has absolute
law w.r.t. to P: does not see the singular points of V1 − V2
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