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Problem setting: Stochastic Gradient Descent (SGD)

nélIiR% f(x) = B [F(x,8)] or Eqopll(z,s)] s = {features, label}

At every iteration, independently sample & and form our stochastic gradient ¢ = VF (x4, &)

then iterate ( Elg] = Vf(x¢) under mild conditions )
Li+1 = Tt — NtY

After T iterations, pick y such that ||V f(y)]|? is small

y € span{(z¢)/_; }.e.g., y = 7
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Problem setting: Stochastic Gradient Descent (SGD)

IlélIiRI}L f(x) = B [F(x,8)] or Eqopll(z,s)] s = {features, label}

At every iteration, independently sample & and form our stochastic gradient ¢ = VF (x4, &)
then iterate

LTt4+1 = Tt — 1ty : -
Technical assumptions

» F(-, &) is differentiable a.s.
After T iterations, pick y such that |V f(y)||? is small " minimizers exist
> V fis Lipschitz continuous
- feCt
- E[IV/(@) - gl?] < 0°
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Problem setting: Stochastic Gradient Descent (SGD)

;relliRr}L f(x) = B [F(x,8)] or Eqopll(z,s)] s = {features, label}

Machine learning example: empirical risk minimization (ERM)

Example: consider a data set S := (s;)"_, ~ D". The empirical risk
IS
1 n
flz) = — > lx, 5) = By [0(2, 50)].
- = )
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empirical

Problem setting: learning

aer 1 iid
« = . " — __ 6 , S S S’I’L o i ;L_ ~ ID)’n
Empirical risk fn(x) o ;:1: (z, s:) or (8i)iz1

s = {features, label}
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Problem setting: learning

© 1 - n 1 n
Empirical risk fa(z) = n Zé(w» si) SorS,=/(s)r ~ D
(training error) i=1 s = {features, label}

def
True risk foo(x) = Esp|l(z, 5)] o°
(testing error)
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Problem setting: learning

aer 1 iid
iri i n — t(x, s S Sn = (5 ?— ~ D"
Empirical risk fn(x) o ; (z, s:) or (8i)iz1

s = {features, label}

True risk foo(T) = Espll(z,s)]

No big deal? Strong law of large numbers says:

Va (a.s.),nli)ngo fo() = foo(x)

.. but fails if z depends on n, e.g., z = x(5,),e.g.,x € argmin f,(x)
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Problem setting: learning
Empirical risk folz) = ! Zf(a’:, s;) SorS,=1(s)r S pr
s s = {features, label}

True risk foo (QZ’) = Ksop [g(xv S)]

No big deal? Strong law of large numbers says:

Va (a.s.),nli_{IgO fo(x) = foolx)

.. but fails if z depends on n, e.g., z = x(5,),e.g.,x € argmin f,(x)

Toy example: f, : [0,1] = R, fo(z)=2", f, 50

A A A

1=

n>1

]
0 '1>
X
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Problem setting: learning

© 1 - n 11 n
Empirical risk fn(z) = i Zf(fl?, s;) S orS,=(8;)i- <D
i=1 s = {features, label}

True risk foo (33’) = Ksop [g(x7 S)]

No big deal? Strong law of large numbers says:

Va (a.s.),nli_{I;O fo() = foo(x)

.. but fails if z depends on n, e.g., z = x(5,),e.g.,x € argmin f,(x)

Toy example: f, : [0,1] = R, fo(z)=2", f, 50

T n =1 T n =2 T n>1
1
> fa(xa) = = >
Ty = 1/\/5 ~ .707 Ln = —l/m
—> S —t—> >
1 0 1 0
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SGD has been analyzed since the 50's. What's new?

We're not assuming convexity, so just looking for a stationary point

@mple of typical theorem. Assuming: \

© Vfis BLipschitz continuous, fis bounded below (wlog, nonnegative)

° El|lg:ll’] < M+ M'||Vf(x)||® (eg., iterates are bounded, or f is Lipschitz)
then

f(z1)

th E
en T

O Fixed stepsize: 0<n<

BM’

T
=% wmﬁ} < nBM +2

t=1

o o0
O Decaying stepsize: Znt = 00, an < 00, e.g.,ny =1/t
t=1 t=1

then liminf E [||Vf(z7)]|?] =0
T— o0

K (and limit exists under additional smoothness assumptw

Bottou, Curtis, Nocedal, SIAM Review 2018
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More existing results

e Bertsekas and Tsitsiklis 2000:

P (zy — @ such that Vf(z) =0) = 1. “almost sure” convergence

e Ghadimi and Lan 2013:
convergence in mean

E[IVf®)]?] < OQog(T)/VT).

aka L! convergence

e Sebbouh et al 2021:

P ({n[lq{l] IV f(z)|* = 0(1/T0'5_6)> = 1. “almost sure” w/ rate
c

... and many other results and with different assumptions.

What about something concrete like P (|Vf(y)||* <€) >1—4§ ?
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Outline

Analyze SGD.

@: Robustness: allow heavier tailed noise, derive high probability bounds

Assumptions: gradient Lipschitz, function Lipschitz, allow sub-Weibull noise

2. Learning/generalization/

Assumptions: gradient Lipschitz, PL inequality, only sub-Gaussian noise
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New assumptions

Allow noise to be heavier tailed [beyond sub-Gaussian]

Example: consider a data set S := (s;).; ~ D". The empirical risk A
IS
1 n
= > U, 85) = By [(z, 7).
- — Y
1 & 1 o
f(z) = n Z (z,s:) ~ A Z (z » Sih) )e———minibatch approximation

=1

By CLT, the error in minibatch approximation converges in distribution to a Gaussian as b — o
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New assumptions

Allow noise to be heavier tailed [beyond sub-Gaussian]

But empirically, noise is not Gaussian for small b
Panigrahi et al. (2019) looked at Resnetl8 with CIFAR10 and MNIST data sets and found:

> Noise is Gaussian for b = 4096
> Noise is not Gaussian for b = 32

> Noise starts Gaussian then (after some epochs) becomes non-Gaussian for b = 256

Also, purposefully having heavier tail noise may help SGD find models that generalize well
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Heavier-tailed noise: sub-Weibull distribution

punchline: like sub-Gaussian but heavier tailed
X is o-sub-Gaussian if

P(|X|>z)<2exp(—2°/c%).
X is o-sub-Weibull(9) if (Vladimirova et al 2020)
P(IX| > 2) < 2exp (~(2/0)"7).

Sub-Gaussian is § = 1/2. Sub-exponential is § = 1.

1.0 —— theta=0.5 0.06 —— theta = 0.5
—— theta = 0.75 —— theta = 0.75
—— theta =1 0.05 A —— theta=1
0.8 1 . —— theta = 1.5 ’ —— theta = 1.5
sub-Gaussian ' N
—— theta =2 & 0.04 —— theta =2
'7‘\; 0.6 A '/%
< X 0.03
T 0.4- &
0.02 1 thetax=2
0.2 1 0.01
— sub- sian
0.0 - 0.00
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00 2.00 225 250 275 3.00 325 3.50 3.75 4.00
X X

Mariia Vladimirova, Stéphane Girard, Hien Nguyen, and Julyan Arbel, Sub-Weibull distributions: Generalizing
sub-Gaussian and sub-exponential properties to heavier tailed distributions, Stat 9 (2020), no. 1, 318.
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High probability

What about something concrete like P (||V f(y)||> <€) >1—6 ?
aka P (|Vf (@)l > ¢) <0

Using a result like
E[[IVf(y)l*] <O (log(T)/\/T) (y chosen after T iterations of SGD)

we can use Markov's inequality E[X]

a

J (X is a non-negative r.v.)

[P(XZ&)S
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High probability

What about something concrete like P (||V f(y)||> <€) >1—6 ?
aka P (|Vf (@)l > ¢) <0

Using a result like

E[[IVf(y)l*] <O (log(T)/\/T) (y chosen after T iterations of SGD)
we can use Markov's inequality E[X] _ _
P(X >a)< (X is a non-negative r.v.)
a
to derive:
2 1 b I ”y
Pl|IVfyl* > 5 log(T)/VT ) <6 low probability” result
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High probability

What about something concrete like P (||V f(y)||> <€) >1—6 ?
aka P (|Vf (@)l > ¢) <0

Usual workaround is “probability amplification”: run K independent algorithms,
and pick the best output [sometimes tricky]

1
Via concentration inequalities, can get effectively P <|]Vf(y)]|2 > log (5) log(T)/\/T) <9

“high probability” result
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Research goal

Allowing for heavier-tailed noise (e.g., sub-Weibull with 8 = 1 or even 6 > 1)

can we derive a (single-run) high-probability convergence result?

Yes!
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Recall: 6is the sub-Weibull parameter

Main result

fTheorem [Thm. 12 in Madden, Dall'Anese, B. '21] \
If P (HVf(a:) CVE(z, )| > ) < Zexp(—(r/a)l/e) ¥r > 0, then for T
iterations of SGD with step size n: = ©(1/Vt), we have, w.p. >1— 9,

tmm IV f(x)]]? < Z \/—va o)l

<0 <log(T) log(1/6)20 + log (T /§)™ax{0:0=1}) 10g(1/4)

: ),

\

*Do need to assume function
is Lipschitz if beyond sub-Gaussian
noise unfortunately
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Recall: 6is the sub-Weibull parameter

Main result

Special case of sub-Gaussian (6 = 1) already had results by Li and Orabona "20:

P (m[i;}] IV £ > 9 (log(T/6) 1og<T>/ﬁ) < 0()

te

DO

In addition to generalizing this, we slightly improve it:

P (gg[i;}] IV £l > 9 (log(1/6) 1og<T>/ﬁ) < 0)

*Do need to assume function
is Lipschitz if beyond sub-Gaussian
noise unfortunately
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Technique

Step 1: standard optimization analysis

e \\We can derive

O (D mIvs@)l?) <o) +0 (S m(Viw.e))+0 (D nled?)

where e, = V f(xy) — VF (2, &).

e Define / = a(&p,-..,&). Then (i (Vf(xy),e)) is adapted to (F;) and
E[n(Vf(xe),eq) | Fee1] = 0. h ?

\

Need to condition here since x; is a random variable

&
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Technique

Existing bounds: sub-exponential Martingale Difference Sequence concentration

meorem (Freedman) \

(&) is a martingale difference sequence (MDS) if it is adapted to a
filtration (F;) and E[&; | Fi—1] = 0. Let (V;) be adapted to (F;). Assume
V; > 0 Vi € [n] and, for some A > 0 and f > 0,

E [exp(A&) | Fie1] < exp(f(A)Vie1) Vi € [n].

/

ﬁnterpretation: if £[¢] = 0 then \

E [exp(A€)] < exp(A*V)

YAeR or VA <VL/2
\ sub-Gaussian sub-exponential J
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Technique

Existing bounds: sub-exponential Martingale Difference Sequence concentration

meorem (Freedman) \

(&) is a martingale difference sequence (MDS) if it is adapted to a
filtration (F;) and E[&; | Fi—1] = 0. Let (V;) be adapted to (F;). Assume
V; > 0 Vi € [n] and, for some A > 0 and f > 0,

E[exp(A&) | Fio1] < exp(F(A\)Vii1) Vi € [n].

Then, for all x,v > 0,

k k
P U { £ > x and Z%_l < v} < exp(—Az + f(A)v).
i=1 i=1

\ ke|(n]

This comes from Fan et al 2015 but goes back to Freedman 1975.

S

Xiequan Fan, lon Grama, Quansheng Liu, et al., Exponential inequalities for martingales with applications,
Electronic Journal of Probability 20 (2015).

David A Freedman, On tail probabilities for martingales, The Annals of Probability (1975), 100-118.
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Technique

Freedman’s inequality from the last slide:

4 E [exp(A&;) | Fio1] < exp(f(A)Vi_1) Vi € [n]. )

Then, for all x,v > 0,

P U {Z&Z:cand ZV; 1 <v} < exp(—Azr + f(N)v).
\ ken] J

Special case:

A2 -
f()\):77 Vi1 =07, 02203, A=x/v
1=1

x> . L .
P E ;> < — maximal) Azuma-Hoeffding inequalit
— U { & > :c} < exp( 5 ) ( ) g Ineq y

v
ke[n] 5
e.g. v =no

(just a fancy version of Hoeffding... Hoeffding is for bounded independent random

variables, we're generalizing to sub-exponential Martingales)

Hoeffd - i
El&] =0, & € [-0/2,0/2) "6 P <§; & > :z:) < exp( QW)

independent
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Recall: 6is the sub-Weibull parameter

Technique

Step 2: generalized generalized Freedman

Nicholas J. A. Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa, Tight analyses for non-smooth
stochastic gradient descent, Conference on learning theory (COLT), 2019, pp. 1579-1613.

Harvey et al. ('19) generalize to “self-normalized” Freedman for MDS

[assuming sub-Gaussian]. We generalize to all sub-Weibull (below, showing just § > 0 case).

/Theorem [Prop. 11 in Madden, Dall'Anese, B. '21] \

Assume (&;) is a MDS, and let (1/;) be adapted to (F;). Assume
0<V;_1<a; (Vi € |n]) and, for some 6 > 1,

E [exp ((ygyi/vi_l)l/e) m-_l} <2 (Vieln]).

1
Then, for all 2,8 >0, § € (0,1), a > 2log(n/§)’ 1 m[aa]cai, and \ € [O, 2—] :
1en 84

k k k
P ] {Zgi >rzandcgy Vij<a) &+ 6} < exp(—Az+2612)+26
1 1=1 1=1

ken]

1=

\where co = (22771 + 2T (20 + 1) +2%T(30 + 1) /3. J

Proof used MGF truncation techniques of Bakhshizadeh at al. 2020
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Outline

Analyze SGD.

1. Robustness: allow heavier tailed noise, derive high probability bounds

Assumptions: gradient Lipschitz, function Lipschitz, allow sub-Weibull noise

@: Learning/generalization/

Assumptions: gradient Lipschitz, PL inequality, only sub-Gaussian noise

Stephen Becker (U. Colorado) High-Probability Bounds and Stability for SGD GdR MOA '22 (Nice, Oct 13 2022) 22



.l = 4|~ INTERPOLANT (DEGREE W)
t a | |ty LINEAR FIT

° DATA

- “'

Old thinking: e ——— ;

0.0 0.2 oy 0.6 0.8 \.0

An algorithm ALGO might be any global minimizer to the ERM problem

Tools: regularization or restrict the complexity of the hypothesis class (VC dimensions)
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m n Y = INTERPOLANT (DEGREE W
t a | |ty LINEAR FIT

DATA

1 1 1 1 ] 1
0.0 0.2 o.u 0.6 0.8 \.O

An algorithm ALGO might be any global minimizer to the ERM problem

or restrict the (VC dimensions)
e.g., take O iterations, then clearly
New th|nk|ng it's insensitive to input...
An algorithm ALGO can be the output of SGD after 7' iterations . but we'll see a tradeoff with

optimization error.

trying to solve the ERM problem. No longer need to assume we found global minimizer

Change the stepsize? Change to using ADAM? etc. Then need new analysis

(either a pro or con, depending on the situation) — TRANING ERROR
~ VALIDATION ERROR

Tools: stability. We'll use “stability” in the way you

ERROR

think we would: a stable algorithm is not overly

sensitive to changes in the input.

ITERATIONS T
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Bousquet and Elisseef, JMLR, 2002

Sta bl | Ity (tech N icaI def| N ition) Elisseeff, Evgeniou and Pontil, JMLR, 2005

Gefinition Uniformly Stable in Expectation™ \
A randomized algorithm ALGOis ey -uniformly stable if for all datasets Sand S’ (both of size n)

that differ in at most one example,

sup Eyreo [¢(7,5) — (2, 8)] < €gtab, @ = ALGO(S), 2’ = ALGO(S") y

k SES (. ~ _/

*There are many variants, eg. “pointwise” variants

/N

r N\

Earco [((ALGO(S), s) — £(ALGO(S"), 5)] = E¢ [£(ALGO(S, €), s) — £(ALGO(S’,€), )]

¢ represents all the randomness in the algorithm
like a seed for a pseudo-random number generator
ex: initialization, and/or minibatch samples
Recall
1
def
fulz) = — ZK(Q% Si) We can “match” it so that it is the same for both

dof —y U1 runs (i.e., linearity of expectation)
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Bousquet and Elisseef, JMLR, 2002

Sta bl | ityZ USGfU | NEeSS Elisseeff, Evgeniou and Pontil, JMLR, 2005

Gefinition \

A randomized algorithm ALGOis ey, -uniformly stable if for all datasets Sand S’ (both of size n)

that differ in at most one example,

\ sup Eargo [l(2,8) — £(2',5)] < €gtap, @ = ALGO(S), 2" = ALGO(S") J

seS

(Theorem Stable algorithms generalize in expectation \
Assume £(-,-) € [0, M]then if ALGO is e4;,,-uniformly stable, then with probability
at least 1 — 0 (6ver the data and the algorithm's randomness)

GMngstab + M? B o
_ foo(T) < fr(z) + \/ o5 , © = ALGO(S) S| =n j
/

A\ J/

N

€gen
Reasonable for classification

Recall

n Informally, call an algorithm “stable” if Egtap = O(l/n)
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Hardt, Recht and Singer, ICML, 2016

SGD (w/ early stopping) is stable
Gefinition \

A randomized algorithm ALGOis ey, -uniformly stable if for all datasets Sand S’ (both of size n)

that differ in at most one example,

k sup Eppag [(z,s) — £(2', s)] < egtan, @ = ALGO(S), 2’ = ALGO(S")

seS /
Fl'heorem \

Assume £(-, ) € |0, M]then if ALGO is eg4;4p-uniformly stable, then with probability

at least 1 — § (over the data and the algorithm’s randomness)

K foolx) < fr(x) + \/6Mn5;;%+ sz r = ALGO(.S) S| =n j

\ - 7

Egen

ﬁheorem SGD with early stopping is stable (.. hence generalizes) \
Assume (Vs) xz — f(x,s) € [0,1] and is p-Lipschitz and its gradient is 3-Lipschitz.
Then SGD for T iterations with stepsize 7, = ¢/t is uniformly stable in expectation, with

Estab < (26,0 )'BC—HTBCJrl
n — ]_ *Note: if T'< n, then this is not new, since it essentially falls under
stochastic approximation (SA) theory (no duplicate samples)
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Putting it altogether

% E€gen
¢
f00<xT) — foo(CUT) - fn(xT) +fn(33T)
\ - 4 N— o’
ITERATIONS T Of SGD
ﬁheorem Combined SGD bound [Madden, Dall'Anese, B. 2021] )

Theorem 10. Assume {(x,s) € [0, M] for all z and s. Assume £(-,s) is p-Lipschitz and L-smooth for all s.
Assume f is p-PL. Let k = L/p. Assume Vf(x) — g(x,1) is centered and o/ d-sub-Gaussian for all x. Let
b =0b,c=1/(u+ L), and T = O(n/b). Then, T iterations of SGD with n; = ¢/(t + 1) satisfies, w.p. >1—§
over S and (I;) for all § € (0,1/e),

x

( pl/(2r+2) log(1/6) )

. N
u Joolwr) =min ful@) = O\ G oy 75 T gt/ D1 /e D

)

b1 is the number of epochs

1/v/6 isn't “high-probability” but we can boost, and beats usual1l/dbound
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Polyak-t.ojasiewicz inequality
Definition f is 4-PL if (V) %Hv F@)P > (f(x) —min f(2"))

x

popularized by

Strongly convex implies PL... o o _
Karimi, Nutini, Schmidt ‘16

J but there are also non-strongly-convex PL functions
and even non-convex PL functions 1 5
Ex.: f(z) = §\|Ax — b
PL implies stationary points are global minimizers, even if A isn't injective
and gradient descent converges at a linear rate,

but does not prove uniqueness of minimizers

x PL is not closed under nonnegative sums, unlike (strong) convexity
x PL does not play nicely with constraints

For sufficiently wide neural nets, fyis locally -PL with constant u = Q(1/n?)
Allen-Zhu, Li, and Song, 1811.03962 '18 and NeurlPS ‘19
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What's wrong with early-stopping?

2016
| . _ “In a nutshell, our results establish that:
Train faster, generalize better:
Stability of stochastic gradient descent Any model trained with stochastic gradient method
Moritz Hardt* — Benjamin Recht!  Yoram Singer’ in a reasonable amount of time attains small

February 9, 2016

generalization error.”
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What's wrong with early-stopping?

2016
. | _ In a nutshell, our results establish that:
Train faster, generalize better:
Stability of stochastic gradient descent Any model trained with stochastic gradient method
Moritz Hardt” - Benjamin Recht!  Yoram Singer in a reasonable amount of time attains small
February 9, 2016
——— ——— At "
generalization error.
Math wasn’t wrong... but perhaps not that useful:
2017
UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION “Even optimization on random labels
Mo s ettt of Technology  Goncle B Congle B remains easy. In fact, training time
chiyuan@mit.edu bengio@google.com mrtz@google.com
penjamin eeht vt Vinyas increases only by a small constant factor
University of California, Berkeley G.oogle DeepMind . .. "
A LI — compared with training on the true labels
2021 |

Understanding Deep Learning
(Still) Requires Rethinking
Generalization

By Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals
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Their experiment
Take the CIFAR10 dataset

airplane ﬁ..% » ...=M Now corrupt the data:
automobile E.I.E‘h--‘ rF:r:deOa:]hljba;POi”t, give it a
nd i WSS

o EEUHSEEEEPE S oo > o
e ' 1. —d (N B .
deer MR~ Ny VRS

dog [N EIPIRY o
frog H..-..
horse .n.uln
ship =T FS P
ruck o] s et 155 5 o (] RS e

image credit: https://paperswithcode.com /dataset/cifar-10
Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, ‘09 It's still possible to have 0O training error

10 possible labels, n=60000, 32x32 images .. but cannot beat 10% testing error
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https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Results: test accuracy

Train on CIFAR10 with Inception or AlexNet:
= normal labels
= 75-90% test accuracy
= random labels
= 10% test accuracy
= No learning is possible: test accuracy is l
no better than random guessing 10

10% test accuracy
09k = i mm - LA

(1-accuracy)

So far, this is not surprising

=8 [nception
o=@ AlexNet
e M|P 1x512 |7

00 02 04 06 08 10

label corruption
figure credit: Zhang et al. 2017
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Results: training accuracy

Both normal labels and random labels have 100% training accuracy

..and for the random labels, 2.5 | | | |
convergence is still pretty B—E true labels
quick (maybe 3x slower \
( ) 2.0} Y e—e random labels |-
No useful stability bound for SGD  {h
at 15k steps is possible, since we QI 1.5k i
know learning isn't possible for %
random labels ©
= 1.0
>
.. but this means no useful ©
bounds for true labels either. 0.5
0.0

0 5 10 15 20 25
thousand steps

figure credit: Zhang et al. 2017
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So then what?

ﬁ)efinition Uniformly Stable in Expectation™

that differ in at most one example,

seS

k sup Earco [€(7,8) — £(z', 8)] < Estab,

~

A randomized algorithm ALGOis ey -uniformly stable if for all datasets Sand S’ (both of size n)

r = ALGO(S), ' = ALGO(S")

/

It wasn't just that their early-stopping analysis wasn't tight

Possible fix #1: use a relaxed (non-uniform) notion of stability

Possible fix #2: take another approach (not using stability)

Possible fix #3: change what we mean by “algorithm” and “early stopping”

Stephen Becker (U. Colorado) High-Probability Bounds and Stability for SGD GdR MOA '22 (Nice, Oct 13 2022) 35



Conclusion

» High-probability results are nice to have
o SGD naturally has high-probability results, no need to do probability amplification

o Assumptions are tricky but important (need to avoid vacuous results!)

o SGD with early stopping will allow you to generalize
o .. but current theory is not sharp enough to be useful

® Improved analysis is ongoing

Thanks for listening
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Numerics

Neural net (2 hidden layers) example

Is the error actually dependent on log(d) ?

0.0150 A —®— post-processing iterate
P S —— |3st iterate
;c; qt) 0.0145 - — == log(d~ ') best fit, post-proc
E Q — = log(d~!) best fit, last iter
= £ 0.0140-
=
g 8
5 1.0.01351
2 e
S |
£ = 0.0130-

0.01251_ . -

10~ 10!

Failure probability ¢
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Detail: post-processing

For a stochastic problem, it can be expensive or impossible to compute m[l%l] IV f ()]
te A

(note: for convex problems, this is not an issue since we can use Jensen's inequality)

issue 1
Issue 2
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Detail: post-processing, 1

For a stochastic problem, it can be expensive or impossible to compute m[m] IV f ()]
te[T] " °,

(note: for convex problems, this is not an issue since we can use Jensen's inequality)

issue 1

Solution: sampling. Use standard concentration inequalities (Hoeffding, etc.) under various

assumptions; all samples are iid, so classical analysis.

f(x) = %Zﬁ(x,sz) oS %Zf(w,sim)
i=1
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Detail: post-processing, 2

For a stochastic problem, it can be expensive or impossible to compute m[m] IV f ()]
te[T] " °,

(note: for convex problems, this is not an issue since we can use Jensen's inequality)

issue 1
issue 2

Saeed Ghadimi and Guanghui Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic
programming, SIAM Journal on Optimization 23 (2013), no. 4, 2341-2368.

Solution: sampling again! We extend a variant of a trick used by Ghadimi and Lan ‘13

Groposition [Corollary of Lemma 33 in Madden, Dall'Anese, B. '21] \

If we sample a set S of ninq indices in [T] choosing t w.p. oc 1/v/t
independently with replacement, then (Ve > 0)

T
P (mm IV f(ze)|]* > exp(l)e> < exp(—njnq)+P Z 7\|Vf (z4)]]? > €

N = o

A 7
-~

(this is the core quantity bounded

in the easier theorem)

Stephen Becker (U. Colorado) High-Probability Bounds and Stability for SGD GdR MOA '22 (Nice, Oct 13 2022) 40



